Point Cloud Library (PCL) 1.12.0
Loading...
Searching...
No Matches
internal.h
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Point Cloud Library (PCL) - www.pointclouds.org
5 * Copyright (c) 2011, Willow Garage, Inc.
6 *
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * * Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * * Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * * Neither the name of Willow Garage, Inc. nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38#pragma once
39
40#include <pcl/gpu/containers/device_array.h>
41//#include <pcl/gpu/utils/safe_call.hpp>
42#include "safe_call.hpp"
43
44namespace pcl
45{
46 namespace device
47 {
48 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
49 // Types
50 using ushort = unsigned short;
53 using PointType = float4;
54
55 //TSDF fixed point divisor (if old format is enabled)
56 constexpr int DIVISOR = std::numeric_limits<short>::max();
57
58 //Should be multiple of 32
59 constexpr int VOLUME_X = 512;
60 constexpr int VOLUME_Y = 512;
61 constexpr int VOLUME_Z = 512;
62
63
64 constexpr float VOLUME_SIZE = 3.0f; // in meters
65
66 /** \brief Camera intrinsics structure
67 */
68 struct Intr
69 {
70 float fx, fy, cx, cy;
71 Intr () {}
72 Intr (float fx_, float fy_, float cx_, float cy_) : fx(fx_), fy(fy_), cx(cx_), cy(cy_) {}
73
74 Intr operator()(int level_index) const
75 {
76 int div = 1 << level_index;
77 return (Intr (fx / div, fy / div, cx / div, cy / div));
78 }
79 };
80
81 /** \brief 3x3 Matrix for device code
82 */
83 struct Mat33
84 {
85 float3 data[3];
86 };
87
88 /** \brief Light source collection
89 */
91 {
92 float3 pos[1];
93 int number;
94 };
95
96 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
97 // Maps
98
99 /** \brief Performs bilateral filtering of disparity map
100 * \param[in] src source map
101 * \param[out] dst output map
102 */
103 void
105
106 /** \brief Computes depth pyramid
107 * \param[in] src source
108 * \param[out] dst destination
109 */
110 void
111 pyrDown (const DepthMap& src, DepthMap& dst);
112
113 /** \brief Computes vertex map
114 * \param[in] intr depth camera intrinsics
115 * \param[in] depth depth
116 * \param[out] vmap vertex map
117 */
118 void
119 createVMap (const Intr& intr, const DepthMap& depth, MapArr& vmap);
120
121 /** \brief Computes normal map using cross product
122 * \param[in] vmap vertex map
123 * \param[out] nmap normal map
124 */
125 void
126 createNMap (const MapArr& vmap, MapArr& nmap);
127
128 /** \brief Computes normal map using Eigen/PCA approach
129 * \param[in] vmap vertex map
130 * \param[out] nmap normal map
131 */
132 void
133 computeNormalsEigen (const MapArr& vmap, MapArr& nmap);
134
135 /** \brief Performs affine transform of vertex and normal maps
136 * \param[in] vmap_src source vertex map
137 * \param[in] nmap_src source vertex map
138 * \param[in] Rmat Rotation mat
139 * \param[in] tvec translation
140 * \param[out] vmap_dst destination vertex map
141 * \param[out] nmap_dst destination vertex map
142 */
143 void
144 tranformMaps (const MapArr& vmap_src, const MapArr& nmap_src, const Mat33& Rmat, const float3& tvec, MapArr& vmap_dst, MapArr& nmap_dst);
145
146 /** \brief Performs depth truncation
147 * \param[out] depth depth map to truncation
148 * \param[in] max_distance truncation threshold, values that are higher than the threshold are reset to zero (means not measurement)
149 */
150 void
151 truncateDepth(DepthMap& depth, float max_distance);
152
153 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
154 // ICP
155
156 /** \brief (now it's extra code) Computes corespondances map
157 * \param[in] vmap_g_curr current vertex map in global coo space
158 * \param[in] nmap_g_curr current normals map in global coo space
159 * \param[in] Rprev_inv inverse camera rotation at previous pose
160 * \param[in] tprev camera translation at previous pose
161 * \param[in] intr camera intrinsics
162 * \param[in] vmap_g_prev previous vertex map in global coo space
163 * \param[in] nmap_g_prev previous vertex map in global coo space
164 * \param[in] distThres distance filtering threshold
165 * \param[in] angleThres angle filtering threshold. Represents sine of angle between normals
166 * \param[out] coresp
167 */
168 void
169 findCoresp (const MapArr& vmap_g_curr, const MapArr& nmap_g_curr, const Mat33& Rprev_inv, const float3& tprev, const Intr& intr,
170 const MapArr& vmap_g_prev, const MapArr& nmap_g_prev, float distThres, float angleThres, PtrStepSz<short2> coresp);
171
172 /** \brief (now it's extra code) Computation Ax=b for ICP iteration
173 * \param[in] v_dst destination vertex map (previous frame cloud)
174 * \param[in] n_dst destination normal map (previous frame normals)
175 * \param[in] v_src source normal map (current frame cloud)
176 * \param[in] coresp Corespondances
177 * \param[out] gbuf temp buffer for GPU reduction
178 * \param[out] mbuf output GPU buffer for matrix computed
179 * \param[out] matrixA_host A
180 * \param[out] vectorB_host b
181 */
182 void
183 estimateTransform (const MapArr& v_dst, const MapArr& n_dst, const MapArr& v_src, const PtrStepSz<short2>& coresp,
184 DeviceArray2D<float>& gbuf, DeviceArray<float>& mbuf, float* matrixA_host, float* vectorB_host);
185
186
187 /** \brief Computation Ax=b for ICP iteration
188 * \param[in] Rcurr Rotation of current camera pose guess
189 * \param[in] tcurr translation of current camera pose guess
190 * \param[in] vmap_curr current vertex map in camera coo space
191 * \param[in] nmap_curr current vertex map in camera coo space
192 * \param[in] Rprev_inv inverse camera rotation at previous pose
193 * \param[in] tprev camera translation at previous pose
194 * \param[in] intr camera intrinsics
195 * \param[in] vmap_g_prev previous vertex map in global coo space
196 * \param[in] nmap_g_prev previous vertex map in global coo space
197 * \param[in] distThres distance filtering threshold
198 * \param[in] angleThres angle filtering threshold. Represents sine of angle between normals
199 * \param[out] gbuf temp buffer for GPU reduction
200 * \param[out] mbuf output GPU buffer for matrix computed
201 * \param[out] matrixA_host A
202 * \param[out] vectorB_host b
203 */
204 void
205 estimateCombined (const Mat33& Rcurr, const float3& tcurr, const MapArr& vmap_curr, const MapArr& nmap_curr, const Mat33& Rprev_inv, const float3& tprev, const Intr& intr,
206 const MapArr& vmap_g_prev, const MapArr& nmap_g_prev, float distThres, float angleThres,
207 DeviceArray2D<float>& gbuf, DeviceArray<float>& mbuf, float* matrixA_host, float* vectorB_host);
208
209
210 void
211 estimateCombined (const Mat33& Rcurr, const float3& tcurr, const MapArr& vmap_curr, const MapArr& nmap_curr, const Mat33& Rprev_inv, const float3& tprev, const Intr& intr,
212 const MapArr& vmap_g_prev, const MapArr& nmap_g_prev, float distThres, float angleThres,
213 DeviceArray2D<double>& gbuf, DeviceArray<double>& mbuf, double* matrixA_host, double* vectorB_host);
214
215
216 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
217 // TSDF volume functions
218
219 /** \brief Perform tsdf volume initialization
220 * \param[out] array volume to be initialized
221 */
222 PCL_EXPORTS void
224
225 //first version
226 /** \brief Performs Tsfg volume uptation (extra obsolete now)
227 * \param[in] depth_raw Kinect depth image
228 * \param[in] intr camera intrinsics
229 * \param[in] volume_size size of volume in mm
230 * \param[in] Rcurr_inv inverse rotation for current camera pose
231 * \param[in] tcurr translation for current camera pose
232 * \param[in] tranc_dist tsdf truncation distance
233 * \param[in] volume tsdf volume to be updated
234 */
235 void
236 integrateTsdfVolume (const PtrStepSz<ushort>& depth_raw, const Intr& intr, const float3& volume_size,
237 const Mat33& Rcurr_inv, const float3& tcurr, float tranc_dist, PtrStep<short2> volume);
238
239 //second version
240 /** \brief Function that integrates volume if volume element contains: 2 bytes for round(tsdf*SHORT_MAX) and 2 bytes for integer weight.
241 * \param[in] depth_raw Kinect depth image
242 * \param[in] intr camera intrinsics
243 * \param[in] volume_size size of volume in mm
244 * \param[in] Rcurr_inv inverse rotation for current camera pose
245 * \param[in] tcurr translation for current camera pose
246 * \param[in] tranc_dist tsdf truncation distance
247 * \param[in] volume tsdf volume to be updated
248 * \param[out] depthRawScaled Buffer for scaled depth along ray
249 */
250 PCL_EXPORTS void
251 integrateTsdfVolume (const PtrStepSz<ushort>& depth_raw, const Intr& intr, const float3& volume_size,
252 const Mat33& Rcurr_inv, const float3& tcurr, float tranc_dist, PtrStep<short2> volume, DeviceArray2D<float>& depthRawScaled);
253
254 /** \brief Initialzied color volume
255 * \param[out] color_volume color volume for initialization
256 */
257
258 void
260
261 /** \brief Performs integration in color volume
262 * \param[in] intr Depth camera intrionsics structure
263 * \param[in] tranc_dist tsdf truncation distance
264 * \param[in] R_inv Inverse camera rotation
265 * \param[in] t camera translation
266 * \param[in] vmap Raycasted vertex map
267 * \param[in] colors RGB colors for current frame
268 * \param[in] volume_size volume size in meters
269 * \param[in] color_volume color volume to be integrated
270 * \param[in] max_weight max weight for running color average. Zero means not average, one means average with prev value, etc.
271 */
272 void
273 updateColorVolume(const Intr& intr, float tranc_dist, const Mat33& R_inv, const float3& t, const MapArr& vmap,
274 const PtrStepSz<uchar3>& colors, const float3& volume_size, PtrStep<uchar4> color_volume, int max_weight = 1);
275
276 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
277 // Raycast and view generation
278 /** \brief Generation vertex and normal maps from volume for current camera pose
279 * \param[in] intr camera intrinsices
280 * \param[in] Rcurr current rotation
281 * \param[in] tcurr current translation
282 * \param[in] tranc_dist volume truncation distance
283 * \param[in] volume_size volume size in mm
284 * \param[in] volume tsdf volume
285 * \param[out] vmap output vertex map
286 * \param[out] nmap output normals map
287 */
288 void
289 raycast (const Intr& intr, const Mat33& Rcurr, const float3& tcurr, float tranc_dist, const float3& volume_size,
290 const PtrStep<short2>& volume, MapArr& vmap, MapArr& nmap);
291
292 /** \brief Renders 3D image of the scene
293 * \param[in] vmap vertex map
294 * \param[in] nmap normals map
295 * \param[in] light poase of light source
296 * \param[out] dst buffer where image is generated
297 */
298 void
299 generateImage (const MapArr& vmap, const MapArr& nmap, const LightSource& light, PtrStepSz<uchar3> dst);
300
301
302 /** \brief Renders depth image from give pose
303 * \param[in] R_inv inverse camera rotation
304 * \param[in] t camera translation
305 * \param[in] vmap vertex map
306 * \param[out] dst buffer where depth is generated
307 */
308 void
309 generateDepth (const Mat33& R_inv, const float3& t, const MapArr& vmap, DepthMap& dst);
310
311 /** \brief Paints 3D view with color map
312 * \param[in] colors rgb color frame from OpenNI
313 * \param[out] dst output 3D view
314 * \param[in] colors_weight weight for colors
315 */
316 void
317 paint3DView(const PtrStep<uchar3>& colors, PtrStepSz<uchar3> dst, float colors_weight = 0.5f);
318
319 /** \brief Performs resize of vertex map to next pyramid level by averaging each four points
320 * \param[in] input vertext map
321 * \param[out] output resized vertex map
322 */
323 void
324 resizeVMap (const MapArr& input, MapArr& output);
325
326 /** \brief Performs resize of vertex map to next pyramid level by averaging each four normals
327 * \param[in] input normal map
328 * \param[out] output vertex map
329 */
330 void
331 resizeNMap (const MapArr& input, MapArr& output);
332
333 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
334 // Cloud extraction
335
336 /** \brief Perform point cloud extraction from tsdf volume
337 * \param[in] volume tsdf volume
338 * \param[in] volume_size size of the volume
339 * \param[out] output buffer large enough to store point cloud
340 * \return number of point stored to passed buffer
341 */
342 PCL_EXPORTS std::size_t
343 extractCloud (const PtrStep<short2>& volume, const float3& volume_size, PtrSz<PointType> output);
344
345 /** \brief Performs normals computation for given points using tsdf volume
346 * \param[in] volume tsdf volume
347 * \param[in] volume_size volume size
348 * \param[in] input points where normals are computed
349 * \param[out] output normals. Could be float4 or float8. If for a point normal can't be computed, such normal is marked as nan.
350 */
351 template<typename NormalType>
352 void
353 extractNormals (const PtrStep<short2>& volume, const float3& volume_size, const PtrSz<PointType>& input, NormalType* output);
354
355 /** \brief Performs colors exctraction from color volume
356 * \param[in] color_volume color volume
357 * \param[in] volume_size volume size
358 * \param[in] points points for which color are computed
359 * \param[out] colors output array with colors.
360 */
361 void
362 exctractColors(const PtrStep<uchar4>& color_volume, const float3& volume_size, const PtrSz<PointType>& points, uchar4* colors);
363
364 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
365 // Utility
366 struct float8 { float x, y, z, w, c1, c2, c3, c4; };
367 struct float12 { float x, y, z, w, normal_x, normal_y, normal_z, n4, c1, c2, c3, c4; };
368
369 /** \brief Conversion from SOA to AOS
370 * \param[in] vmap SOA map
371 * \param[out] output Array of 3D points. Can be float4 or float8.
372 */
373 template<typename T>
374 void
375 convert (const MapArr& vmap, DeviceArray2D<T>& output);
376
377 /** \brief Merges pcl::PointXYZ and pcl::Normal to PointNormal
378 * \param[in] cloud points cloud
379 * \param[in] normals normals cloud
380 * \param[out] output array of PointNomals.
381 */
382 void
384
385 /** \brief Check for qnan (unused now)
386 * \param[in] value
387 */
388 inline bool
389 valid_host (float value)
390 {
391 return *reinterpret_cast<int*>(&value) != 0x7fffffff; //QNAN
392 }
393
394 /** \brief synchronizes CUDA execution */
395 inline
396 void
397 sync () { cudaSafeCall (cudaDeviceSynchronize ()); }
398
399
400 template<class D, class Matx> D&
401 device_cast (Matx& matx)
402 {
403 return (*reinterpret_cast<D*>(matx.data ()));
404 }
405
406 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
407 // Marching cubes implementation
408
409 /** \brief Binds marching cubes tables to texture references */
410 void
411 bindTextures(const int *edgeBuf, const int *triBuf, const int *numVertsBuf);
412
413 /** \brief Unbinds */
414 void
416
417 /** \brief Scans tsdf volume and retrieves occupied voxels
418 * \param[in] volume tsdf volume
419 * \param[out] occupied_voxels buffer for occupied voxels. The function fulfills first row with voxel ids and second row with number of vertices.
420 * \return number of voxels in the buffer
421 */
422 int
423 getOccupiedVoxels(const PtrStep<short2>& volume, DeviceArray2D<int>& occupied_voxels);
424
425 /** \brief Computes total number of vertexes for all voxels and offsets of vertexes in final triangle array
426 * \param[out] occupied_voxels buffer with occupied voxels. The function fulfills 3nd only with offsets
427 * \return total number of vertexes
428 */
429 int
431
432 /** \brief Generates final triangle array
433 * \param[in] volume tsdf volume
434 * \param[in] occupied_voxels occupied voxel ids (first row), number of vertexes(second row), offsets(third row).
435 * \param[in] volume_size volume size in meters
436 * \param[out] output triangle array
437 */
438 void
439 generateTriangles(const PtrStep<short2>& volume, const DeviceArray2D<int>& occupied_voxels, const float3& volume_size, DeviceArray<PointType>& output);
440 }
441}
DeviceArray2D class
DeviceArray class
PCL_EXPORTS std::size_t extractCloud(const PtrStep< short2 > &volume, const float3 &volume_size, PtrSz< PointType > output)
Perform point cloud extraction from tsdf volume.
void integrateTsdfVolume(const PtrStepSz< ushort > &depth_raw, const Intr &intr, const float3 &volume_size, const Mat33 &Rcurr_inv, const float3 &tcurr, float tranc_dist, PtrStep< short2 > volume)
Performs Tsfg volume uptation (extra obsolete now)
float4 PointType
Definition internal.hpp:58
void pyrDown(const DepthMap &src, DepthMap &dst)
Computes depth pyramid.
unsigned short ushort
Definition internal.h:50
void estimateCombined(const Mat33 &Rcurr, const float3 &tcurr, const MapArr &vmap_curr, const MapArr &nmap_curr, const Mat33 &Rprev_inv, const float3 &tprev, const Intr &intr, const MapArr &vmap_g_prev, const MapArr &nmap_g_prev, float distThres, float angleThres, DeviceArray2D< float > &gbuf, DeviceArray< float > &mbuf, float *matrixA_host, float *vectorB_host)
Computation Ax=b for ICP iteration.
D & device_cast(Matx &matx)
Definition internal.h:401
void unbindTextures()
Unbinds.
constexpr int VOLUME_Y
Definition internal.h:60
constexpr int VOLUME_Z
Definition internal.h:61
void createVMap(const Intr &intr, const DepthMap &depth, MapArr &vmap)
Computes vertex map.
void extractNormals(const PtrStep< short2 > &volume, const float3 &volume_size, const PtrSz< PointType > &input, NormalType *output)
Performs normals computation for given points using tsdf volume.
void generateImage(const MapArr &vmap, const MapArr &nmap, const LightSource &light, PtrStepSz< uchar3 > dst)
Renders 3D image of the scene.
void tranformMaps(const MapArr &vmap_src, const MapArr &nmap_src, const Mat33 &Rmat, const float3 &tvec, MapArr &vmap_dst, MapArr &nmap_dst)
Performs affine transform of vertex and normal maps.
void generateTriangles(const PtrStep< short2 > &volume, const DeviceArray2D< int > &occupied_voxels, const float3 &volume_size, DeviceArray< PointType > &output)
Generates final triangle array.
constexpr float VOLUME_SIZE
Definition internal.h:64
PCL_EXPORTS void initVolume(PtrStep< short2 > array)
Perform tsdf volume initialization.
void generateDepth(const Mat33 &R_inv, const float3 &t, const MapArr &vmap, DepthMap &dst)
Renders depth image from give pose.
void bilateralFilter(const DepthMap &src, DepthMap &dst)
Performs bilateral filtering of disparity map.
void sync()
synchronizes CUDA execution
Definition internal.h:397
void updateColorVolume(const Intr &intr, float tranc_dist, const Mat33 &R_inv, const float3 &t, const MapArr &vmap, const PtrStepSz< uchar3 > &colors, const float3 &volume_size, PtrStep< uchar4 > color_volume, int max_weight=1)
Performs integration in color volume.
void raycast(const Intr &intr, const Mat33 &Rcurr, const float3 &tcurr, float tranc_dist, const float3 &volume_size, const PtrStep< short2 > &volume, MapArr &vmap, MapArr &nmap)
Generation vertex and normal maps from volume for current camera pose.
void initColorVolume(PtrStep< uchar4 > color_volume)
Initialzied color volume.
void computeNormalsEigen(const MapArr &vmap, MapArr &nmap)
Computes normal map using Eigen/PCA approach.
void convert(const MapArr &vmap, DeviceArray2D< T > &output)
Conversion from SOA to AOS.
void estimateTransform(const MapArr &v_dst, const MapArr &n_dst, const MapArr &v_src, const PtrStepSz< short2 > &coresp, DeviceArray2D< float > &gbuf, DeviceArray< float > &mbuf, float *matrixA_host, float *vectorB_host)
(now it's extra code) Computation Ax=b for ICP iteration
void createNMap(const MapArr &vmap, MapArr &nmap)
Computes normal map using cross product.
void findCoresp(const MapArr &vmap_g_curr, const MapArr &nmap_g_curr, const Mat33 &Rprev_inv, const float3 &tprev, const Intr &intr, const MapArr &vmap_g_prev, const MapArr &nmap_g_prev, float distThres, float angleThres, PtrStepSz< short2 > coresp)
(now it's extra code) Computes corespondances map
bool valid_host(float value)
Check for qnan (unused now)
Definition internal.h:389
void paint3DView(const PtrStep< uchar3 > &colors, PtrStepSz< uchar3 > dst, float colors_weight=0.5f)
Paints 3D view with color map.
void resizeVMap(const MapArr &input, MapArr &output)
Performs resize of vertex map to next pyramid level by averaging each four points.
constexpr int VOLUME_X
Definition internal.h:59
int getOccupiedVoxels(const PtrStep< short2 > &volume, DeviceArray2D< int > &occupied_voxels)
Scans tsdf volume and retrieves occupied voxels.
void mergePointNormal(const DeviceArray< float4 > &cloud, const DeviceArray< float8 > &normals, const DeviceArray< float12 > &output)
Merges pcl::PointXYZ and pcl::Normal to PointNormal.
void exctractColors(const PtrStep< uchar4 > &color_volume, const float3 &volume_size, const PtrSz< PointType > &points, uchar4 *colors)
Performs colors exctraction from color volume.
constexpr int DIVISOR
Definition internal.h:56
void bindTextures(const int *edgeBuf, const int *triBuf, const int *numVertsBuf)
Binds marching cubes tables to texture references.
void truncateDepth(DepthMap &depth, float max_distance)
Performs depth truncation.
int computeOffsetsAndTotalVertexes(DeviceArray2D< int > &occupied_voxels)
Computes total number of vertexes for all voxels and offsets of vertexes in final triangle array.
void resizeNMap(const MapArr &input, MapArr &output)
Performs resize of vertex map to next pyramid level by averaging each four normals.
float4 NormalType
Definition internal.hpp:59
Camera intrinsics structure.
Definition internal.h:69
Intr operator()(int level_index) const
Definition internal.h:74
Intr(float fx_, float fy_, float cx_, float cy_)
Definition internal.h:72
Light source collection.
Definition internal.h:91
3x3 Matrix for device code
Definition internal.h:84
float3 data[3]
Definition internal.h:85