Boost.Signals

Douglas Gregor
Copyright © 2001-2004 Douglas Gregor

Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file LI -
CENSE_1_0. t xt or copy at http://www.boost.org/LICENSE_1_0.txt)

Table of Contents

Fgu oo (¥ oi [l RSP PPT TR UPPPTNN 2
BT Lo - PSP UPPPTTRPUPPPPN 3
HOW 10 REBA thiS TULOTTELeeeeieeiii ettt ettt e ettt e e et et r e e ettt e e e e etbreeeebaaeaeen 3
1600l ppT o7z] o 111§V N o (PP TP PPPPPTR 3
HEIO, WOTTA! (BEJINNEL) ..ttt ettt e ettt ettt et ettt s e ettt e e et ettt e et ee bt e et ebb e e e eebb e eeeenbaeeees 3
CalliNG MUITIPIE SIOLS ...ttt ettt ettt e et e ettt e ettt e et e eaa e et e abe e et e nb e e e enaans 4
Passing ValUES t0 8N FTOM SIOLS ...ttt ettt e ettt et e e e et et e et et e e e enb e e e enans 6
CONNECEION IMANAGEIMIENT ... e ettt ettt ettt ettt ettt ettt e e et o et e eb e et et b e et et e e e et e b e e et et e e et et e e e e et e e e eeba s 10
EXMPIE; DOCUMENT-VIBW ...ttt ettt ettt ettt e e ettt ettt e ettt e et e e e et e et e et et n e e e et n e e e et e e e eenans 13
Linking against the SIgNalSTIDIary i ettt e e et e e et e eeeeb e eees 16
(RS 1= £ 0o TP PTTO T OPPPTT 17
[aT=7 o L= 000 1S S T 7= o) o > P 17
Header <b00St/SIgNal S/ Sl Ot NP> ... e e e et a it a e et aaa 21
Header <boost/signal S/trackalil@.NpP=ciiiii e 22
Header <boost/signalS/CoNNECHON. PPuui i e e et e e e e e e e et e e e et aeaeaa s 23
Header <boOSH/VISIE BACN. PP ..uiiii e e e r s 27
Header <DOOSH/IASt VAIUB.NPDSciiiiii e e e e e et e et et e e e et e e e e et e e e e aaan e eeanenns 27
Frequently ASKEA QUESIIONS iieeii ittt ettt ettt oot e et et e e e et e e e et e bt et e e et e bb e e e e b 30
DESIGN OVEIVIEIW ...ttt ettt ettt e ettt e e ettt oo e et et e e e et et s e e et e ta s e et e e ta o e e et e ta s e e e e e ba s e e e et be e e e e esba s e e eenbeneeeenbnnaaaee 32
TYPE EFBSUIE ...ttt ettt ettt et et et et et et et e e e e s 32
(oo oY =T oR A e Yo e 1 PPN 32
S (o 0= | (= (o PSP UPPPTTR 32
Vi Sit_each FUNCHON tEMPIAEEo.ue ettt e e e et e et e e e e b s 33
DESIGN REIONEIE ...t ettt oo et oo et bt ettt e e et e e e et e e e et e et et e b e e et 34
ChoiCe Of SIOt DEiNMITIONSceeeeee et ettt e et e et e b e et et e et et e e e e ra s 34
User-level ConNECtION MaNBGEIMENTouuu ittt ettt ettt e ettt e ettt e et e et e e ettt e e e ettt e et esbaeeeerbn e eeestnaaeees 34
COMDINES TNEEITACE ...ttt e e ettt et ettt e e et et s e et ettt e et ebb e e e eerbreeeebbaeaees 35
CONNECLION INEEITACES: 7 OPEIBION ... ceeete i eeeitt ettt et e ettt e ettt e e ettt e ettt e e ettt e e et et r e et e ebeaeeeesbe s eeeeebnnaeeees 36
R Tod & Lo BTN (0T = PP 36
Comparison with other Signal/SIot iMPIEMENEBLIONSc.uuiiiiit e e e 37
=S U] (PSPPSR SPPPTTR 38
A CCEIIEANCE TESES ..ttt ettt ettt et et et 38
1

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals

Introduction

E I Note

Boost.Signals is no longer being actively maintained. Do not use Boost.Signals for new development (use
Boost.Signals2 instead). If you have existing Boost.Signals-based code, it will continue to work, but consider
moving to Boost.Signals2. Thereis a porting guide in the Signals2 documentation.

The Boost.Signals library is an implementation of a managed signals and slots system. Signals represent callbacks with multiple
targets, and are also called publishers or eventsin similar systems. Signals are connected to some set of slots, which are callback
receivers (also called event targets or subscribers), which are called when the signal is "emitted."

Signals and slots are managed, in that signals and slots (or, more properly, objectsthat occur as part of the slots) track all connections
and are capable of automatically disconnecting signal/sl ot connectionswhen either is destroyed. This enablesthe user to make signal/dot
connections without expending a great effort to manage the lifetimes of those connections with regard to the lifetimes of al objects
involved.

When signals are connected to multiple slots, there is a question regarding the rel ationship between the return values of the slotsand
the return value of the signals. Boost.Signals allows the user to specify the manner in which multiple return values are combined.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

Tutorial

How to Read this Tutorial

Thistutorial isnot meant to be read linearly. Itstop-level structure roughly separates different conceptsin the library (e.g., handling
calling multiple slots, passing values to and from slots) and in each of these concepts the basic ideas are presented first and then
more complex uses of the library are described later. Each of the sections is marked Beginner, Intermediate, or Advanced to help
guide the reader. The Beginner sectionsinclude information that all library users should know; one can make good use of the Signals
library after having read only the Beginner sections. The Intermediate sections build on the Beginner sections with slightly more
complex uses of the library. Finally, the Advanced sections detail very advanced uses of the Signalslibrary, that often require asolid
working knowledge of the Beginner and Intermediate topics; most users will not need to read the Advanced sections.

Compatibility Note

Boost.Signals has two syntactical forms: the preferred form and the compatibility form. The preferred form fits more closely with
the C++ language and reduces the number of separate template parameters that need to be considered, often improving readability;
however, the preferred form is not supported on all platforms due to compiler bugs. The compatible form will work on all compilers
supported by Boost.Signals. Consult the table below to determine which syntactic form to use for your compiler. Users of
Boost.Function, please note that the preferred syntactic form in Signals is equivalent to that of Function's preferred syntactic form.

If your compiler does not appear in this list, please try the preferred syntax and report your results to the Boost list so that we can
keep this table up-to-date.

Preferred syntax Portable syntax
¢ GNU C++ 2.95.%, 3.0.x, 3.1.x * Any compiler supporting the preferred syntax
e Comeau C++4.2.45.2 ¢ Microsoft Visual C++ 6.0, 7.0

SGI MIPSpro 7.3.0 Borland C++5.5.1

Intel C++ 5.0, 6.0

Sun WorkShop 6 update 2 C++ 5.3

» Compag's cxx 6.2 * Metrowerks CodeWarrior 8.1

Microsoft Visual C++ 7.1

Hello, World! (Beginner)

Thefollowing example writes "Hello, World!" using signals and slots. First, we create asignal si g, asignal that takes no arguments
and has avoid return value. Next, we connect the hel | o function object to the signal using the connect method. Finally, use the
signal si g likeafunction to call the slots, which in turnsinvokes Hel | owor | d: : oper at or () to print "Hello, World!".

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

Preferred syntax
struct HelloWwrld
{

voi d operator()() const

{
std::cout << "Hello, Wrld!'" << std::endl;

}
I

/1
// Signal with no argunents and a void return O

val ue
boost: : signal <void ()> sig;

/1 Connect a Hellowrld slot
Hel | oWworl d hel | o;
si g. connect (hel | 0);

/1 call all
sig();

of the slots

Calling multiple slots

Connecting multiple slots (Beginner)

Portable syntax

struct Hellowrld

{
voi d operator()() const
{
std::cout << "Hello, World!" << std::endl;
}
}s
I

/1 Signal with no argunents and a void return O
val ue
boost : : si gnal O<voi d> si g;

/1 Connect a HelloWwrld slot
Hel | oWorl d hel | o;
si g. connect (hel | 0);

/1 call all
sig();

of the slots

Calling asingle dot from asignal isn't very interesting, so we can make the Hello, World program more interesting by splitting the
work of printing "Hello, World!" into two completely separate slots. The first slot will print "Hello" and may look like this:

struct Hello

{
voi d operator()() const
{
std::cout << "Hello";
}
b

The second slot will print ", World!" and a newline, to complete the program. The second slot may look like this:

struct World

{
voi d operator()() const
{
std::cout << ", World!" << std::endl
}
s

Likein our previous example, we can createasigna si g that takes no arguments and hasavoi d return value. Thistime, we connect
both ahel | o and awor | d slot to the same signal, and when we call the signal both slots will be called.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals

Preferred syntax Portable syntax
boost: :signal <void ()> sig; boost : : si gnal O<voi d> si g;
si g. connect (Hell o()); si g.connect (Hell o());
si g. connect (Worl d()); si g. connect (Worl d());

sig(); sig();

By default, dots are called in first-in first-out (FIFO) order, so the output of this program will be as expected:

Hel | o, Worl d!

Ordering slot call groups (Intermediate)

Slotsare free to have side effects, and that can mean that some slotswill haveto be called before others even if they are not connected
in that order. The Boost.Signals library allows slots to be placed into groups that are ordered in some way. For our Hello, World
program, we want "Hello" to be printed before ", World!", so we put "Hello" into a group that must be executed before the group
that ", World!" isin. To do this, we can supply an extra parameter at the beginning of the connect call that specifies the group.
Group values are, by default, i nt s, and are ordered by the integer < relation. Here's how we construct Hello, World:

Preferred syntax Portable syntax
boost: :signal <void ()> sig; boost : : si gnal O<voi d> si g;
sig.connect (1, World()); sig.connect (1, World());
si g.connect (0, Hello()); si g.connect (0, Hello());
sig(); sig();

This program will correctly print "Hello, World!", because the Hel | o abject isin group 0, which precedes group 1 wherethewor | d
object resides. The group parameter is, in fact, optional. We omitted it in the first Hello, World example because it was unnecessary
when all of the slots are independent. So what happensif we mix callsto connect that use the group parameter and those that don't?
The "unnamed" dats (i.e., those that have been connected without specifying a group name) can be placed at the front or back of
theslotlist (by passingboost : : si gnal s: : at _front orboost: : si gnal s: : at _back asthelast parameter toconnect , respect-
ively), and defaults to the end of the list. When a group is specified, the final parameter describes where the slot will be placed
within the group ordering. If we add a new slot to our example like this:

struct GoodMbr ni ng

{
voi d operator()() const
{
std::cout << "... and good norning!" << std::endl;
}
b

si g. connect (GoodMr ni ng());

... we will get the result we wanted:

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

Hel l o, World!
and good nor ni ng!

Passing values to and from slots

Slot Arguments (Beginner)

Signals can propagate arguments to each of the slots they call. For instance, a signal that propagates mouse motion events might
want to pass along the new mouse coordinates and whether the mouse buttons are pressed.

Asan example, we'll create asignal that passestwo f | oat argumentsto its slots. Then welll create afew dots that print the results
of various arithmetic operations on these values.

void print_sum(float x, float y)

{
std::cout << "The sumis " << x+y << std::endl;

}

void print_product(float x, float y)

{
std::cout << "The product is " << x*y << std::endl;

}

void print_difference(float x, float y)

{
std::cout << "The difference is " << x-y << std::endl;

}

void print_quotient(float x, float y)

{
std::cout << "The quotient is " << x/y << std::endl;

}

Preferred syntax Portable syntax
boost: :signal <void (float, float)> sig; boost: : signal 2<void, float, float> sig
si g. connect (&print _sun; si g. connect (&print_sum;
si g. connect (&pri nt _product); si g. connect (&pri nt _product);
si g. connect (&print_di fference); si g. connect (&print_difference);
si g. connect (&print_quotient); si g. connect (&print_quotient);
sig(5, 3); sig(5, 3);

This program will print out the following:

The sumis 8

The product is 15

The difference is 2
The quotient is 1.66667

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals

So any values that are given to si g when it is called like afunction are passed to each of the dots. We have to declare the types of
these values up front when we create the signal. Thetypeboost : : si gnal <void (float, float)> meansthatthesigna hasa
voi d return value and takes two f | oat values. Any slot connected to si g must therefore be able to taketwo f | oat values.

Signal Return Values (Advanced)

Just as slots can receive arguments, they can also return values. These values can then be returned back to the caller of the signal
through a combiner. The combiner is a mechanism that can take the results of calling slots (there many be no results or a hundred,
we don't know until the program runs) and coalesces them into a single result to be returned to the caller. The single result is often
asimple function of the results of the dot calls: theresult of thelast dlot call, the maximum value returned by any dlot, or acontainer
of al of the results are some possibilities.

We can modify our previous arithmetic operations example slightly so that the dlots all return the results of computing the product,
quotient, sum, or difference. Then the signal itself can return a value based on these results to be printed:

Preferred syntax Portable syntax

float product(float x, float y) { return x*y; 0O float product(float x, float y) { return x*y; O
} }

float quotient(float x, float y) { return O float quotient(float x, float y) { return O
x'y; } x'y; }

float sun(float x, float y) { return x+y; } float sun(float x, float y) { return x+y; }
float difference(float x, float y) { return x- float difference(float x, float y) { return x-
y: } y: }

boost::signal <float (float x, float y)> sig; boost: :signal 2<fl oat, float, float> sig;

si g. connect (&or oduct) ; si g. connect (&or oduct) ;

si g. connect ("i ent); si g. connect ("i ent);

si g. connect (&sun ; si g. connect (&sunj ;

si g. connect (&di f f erence) ; si g. connect (&di f f erence) ;

std::cout << sig(5, 3) << std::endl; std::cout << sig(5, 3) << std::endl;

This example program will output 2. Thisis because the default behavior of asignal that hasareturntype (f | oat , the first template
argument given to the boost : : si gnal classtemplate) isto call all slots and then return the result returned by the last slot called.
This behavior is admittedly silly for this example, because slots have no side effects and the result is the last slot connect.

A moreinteresting signal result would be the maximum of the values returned by any slot. To do this, we create a custom combiner
that looks like this:

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

t enpl at e<typenane T>
struct maxi mum

{
typedef T result_type;

t enpl at e<t ypenane | nputlterator>
T operator()(lnputlterator first, Inputlterator last) const

{
/1 If there are no slots to call, just return the
/| default-constructed val ue
if (first == |ast)
return T();

T max_val ue = *first++;
while (first !'=last) {
if (max_value < *first)
max_val ue = *first;
++first;

}

return nmax_val ue;

The naxi numclasstemplate acts as afunction object. Itsresult typeis given by itstemplate parameter, and thisisthe type it expects
to be computing the maximum based on (e.g., mraxi nunmxf | oat > would find the maximum f | oat inasequenceof f | oat). When
amaxi mumobject is invoked, it is given an input iterator sequence[first, |ast) that includes the results of caling all of the
dots. maxi numuses this input iterator sequence to cal cul ate the maximum element, and returns that maximum value.

We actually use this new function object type by installing it as a combiner for our signal. The combiner template argument follows
the signal's calling signature:

Preferred syntax Portable syntax

boost::signal <float (float x, float y), boost: :signal 2<fl oat, float, float,
maxi munxf | oat > > sig; maxi munxf | oat> > sig;

Now we can connect slots that perform arithmetic functions and use the signal:

si g. connect ("i ent);
si g. connect (&pr oduct) ;

si g. connect (&sum ;

si g. connect (&di f f erence) ;

std::cout << sig(5, 3) << std::endl;

The output of this program will be 15, because regardless of the order in which the slots are connected, the product of 5 and 3 will
be larger than the quotient, sum, or difference.

In other cases we might want to return all of the values computed by the slots together, in one large data structure. This is easily
done with a different combiner:

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

t enpl at e<t ypenane Cont ai ner >
struct aggregate_val ues

{
typedef Container result_type;

t enpl at e<t ypenane | nputlterator>
Cont ai ner operator()(lnputlterator first, Inputlterator |ast) const

{

return Container(first, last);

}
}s

Again, we can create asignal with this new combiner:

Preferred syntax Portable syntax

boost::signal <float (float, float), boost: : signal 2<fl oat, float, float,
aggr egat e_val ues<std: :vector<float> > > [0 aggr egat e_val ues<std: :vector<float> > > [J

sig; sig;

si g. connect ("i ent); si g. connect ("i ent);

si g. connect (&or oduct) ; si g. connect (&or oduct) ;

si g. connect (&sunj ; si g. connect (&sunj ;

si g. connect (&di f f erence) ; si g. connect (&di f f erence) ;

std::vector<float> results = sig(5, 3); std::vector<float> results = sig(5, 3);

std::copy(results.begin(), results.end(), std::copy(results.begin(), results.end(),
std::ostream.iterator<float>(cout, " ")); std::ostream.iterator<float>(cout, " "));

The output of this program will contain 15, 8, 1.6667, and 2. It is interesting here that the first template argument for the si gnal
class, f | oat , isnot actually the return type of the signal. Instead, it is the return type used by the connected slots and will also be
theval ue_t ype of theinput iterators passed to the combiner. The combiner itself isafunction object anditsr esul t _t ype member
type becomes the return type of the signal.

The input iterators passed to the combiner transform dereference operations into slot calls. Combiners therefore have the option to
invoke only some slots until some particular criterion is met. For instance, in a distributed computing system, the combiner may ask
each remote system whether it will handle the request. Only one remote system needsto handle aparticular request, so after aremote
system accepts the work we do not want to ask any other remote systemsto perform the same task. Such a combiner need only check
the value returned when dereferencing the iterator, and return when the value is acceptable. The following combiner returns the first
non-NULL pointer to aFul fi | | edRequest data structure, without asking any later slots to fulfill the request:

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals

struct DistributeRequest {
typedef Fulfill edRequest* result_type;

t enpl at e<t ypenane | nputlterator>
result_type operator()(lnputlterator first, Inputlterator |ast) const

{
while (first !'=last) {
if (result_type fulfilled = *first)
return fulfilled;
++first;
}
return O;
}

}s

Connection Management

Disconnecting Slots (Beginner)

Slots aren't expected to exist indefinately after they are connected. Often slots are only used to receive a few events and are then
disconnected, and the programmer needs control to decide when a slot should no longer be connected.

Theentry point for managing connectionsexplicitly istheboost : : si gnal s: : connect i on class. Theconnect i on classuniquely
represents the connection between a particular signal and a particular slot. The connect ed() method checksif the signal and slot
are till connected, and the di sconnect () method disconnects the signal and dot if they are connected before it is called. Each
call to the signal's connect () method returns a connection object, which can be used to determine if the connection still exists or
to disconnect the signal and slot.

boost: :signal s::connection ¢ = sig.connect(HelloWwrld());
if (c.connected()) {
/1 ¢ is still connected to the signal

sig(); // Prints "Hello, World!"

}

c.di sconnect(); // Disconnect the Hellowrld object
assert(!c.connected()); c isn't connected any nore

sig(); // Does nothing: there are no connected slots

Blocking Slots (Beginner)

Slots can be temporarily "blocked", meaning that they will be ignored when the signal is invoked but have not been disconnected.
The bl ock member function temporarily blocks a slot, which can be unblocked viaunbl ock. Hereis an example of blocking/un-
blocking dots:

boost::signals::connection ¢ = sig.connect(HelloWrld());
sig(); // Prints "Hello, World!"

c.block(); // block the slot
assert(c. bl ocked());
sig(); // No output: the slot is blocked

c.unbl ock(); // unblock the slot
sig(); // Prints "Hello, World!"

10

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

Scoped connections (Intermediate)

The boost : : si gnal s: : scoped_connecti on class references a signal/slot connection that will be disconnected when the
scoped_connect i on class goes out of scope. This ability is useful when a connection need only be temporary, e.g.,

{
boost::signal s::scoped_connection ¢ = sig.connect(ShortLived());
sig(); // will call ShortLived function object

sig(); // ShortLived function object no | onger connected to sig

Disconnecting equivalent slots (Intermediate)

One can disconnect slots that are equivalent to a given function object using aform of thedi sconnect method, so long as the type
of the function object has an accessible == operator. For instance:

Preferred syntax Portable syntax

void foo(); void foo();

voi d bar(); voi d bar();

signal <voi d()> sig; si gnal O<voi d> si g;

si g. connect (& 00) ; si g. connect (& 00) ;

si g. connect (&ar) ; si g. connect (&bar) ;

/!l disconnects foo, but not bar /] disconnects foo, but not bar
si g. di sconnect (&f 00) ; si g. di sconnect (& 00) ;

Automatic connection management (Intermediate)

Boost.Signals can automatically track the lifetime of objectsinvolved in signal/slot connections, including automatic disconnection
of slots when objects involved in the slot call are destroyed. For instance, consider a simple news delivery service, where clients
connect to a news provider that then sends news to all connected clients as information arrives. The news delivery service may be
constructed like this:

Preferred syntax Portable syntax
class Newsltem{ /* ... */ }; class Newsltem{ /* ... */ };
boost: :signal <void (const Newslten®&) > delivO boost: : signal 1<voi d, const Newsltem&> deliv0O
er News; er News;

Clients that wish to receive news updates need only connect a function object that can receive news items to the del i ver News
signal. For instance, we may have a special message areain our application specifically for news, e.g.,:

11

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

struct NewsMessageArea : public MessageArea

{
publi c:
/1
voi d di spl ayNews(const Newslten& news) const
{
nessageText = news.text();
updat e() ;
}
}s
/1
NewsMessageAr ea newsMessageArea = new NewsMessageArea(/* ... */);
/1

del i ver News. connect (boost : : bi nd(&NewsMessageAr ea: : di spl ayNews,
newsMessageArea, _1));

However, what if the user closesthe news message area, destroying the news MessageAr ea object that del i ver News knows about?
Most likely, a segmentation fault will occur. However, with Boost.Signals one need only make News MessageAr ea trackable, and
the dlot involving news MessageAr ea will be disconnected when newsMessageAr ea is destroyed. The NewsMessageAr ea class
is made trackable by deriving publicly from the boost : : si gnal s: : t r ackabl e class, e.g.:

struct NewsMessageArea : public MessageArea, public boost::signals::trackable

{
/1

}s

At thistimethereisasignificant limitation to the use of t r ackabl e objectsin making slot connections: function objects built using
Boost.Bind are understood, such that pointersor referencestot r ackabl e objectspassedtoboost : : bi nd will befound and tracked.

Warning: User-defined function objects and function objects from other libraries (e.g., Boost.Function or Boost.Lambda) do not
implement the required interfaces for t r ackabl e object detection, and will silently ignore any bound trackable objects. Future
versions of the Boost libraries will address this limitation.

When can disconnections occur? (Intermediate)

Signal/dlot disconnections occur when any of these conditions occur:

» Theconnection isexplicitly disconnected viathe connection'sdi sconnect method directly, or indirectly viathesignal'sdi scon-
nect method or scoped_connect i on's destructor.

» Atrackabl e object bound to the slot is destroyed.
» Thesignal isdestroyed.

These events can occur at any time without disrupting asignal's calling sequence. If asignal/slot connection is disconnected at any
time during asignal's calling sequence, the calling sequence will still continue but will not invoke the disconnected slot. Additionally,
asignal may be destroyed whileit isin acalling sequence, and which caseit will completeitsslot call sequence but may not be accessed
directly.

Signals may be invoked recursively (e.g., asignal A calls a slot B that invokes signal A...). The disconnection behavior does not
change in the recursive case, except that the slot calling sequence includes slot calls for all nested invocations of the signal.

12

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

Passing slots (Intermediate)

Slotsin the Boost.Signals library are created from arbitrary function objects, and therefore have no fixed type. However, it is com-
monplaceto require that slots be passed through interfaces that cannot be templates. Slots can be passed viathes| ot _t ype for each
particular signal type and any function object compatible with the signature of the signal can be passed to asl ot _t ype parameter.

For instance:
Preferred syntax Portable syntax

cl ass Button cl ass Button

typedef boost::signal<void (int x, int y)>0O typedef boost::signal 2<void,int,int> OnQO
Ond i ck; dick;
public: public:

voi d doOnC i ck(const Ondick::slot_type& O voi d doOnClick(const Ondick::slot_type& O
slot); slot);
private: private:

Ondick ondick; Ond ick ondick;
I b
voi d Button::doOnd i ck(voi d Button::doOnd i ck(

const Ondick::slot_type& sl ot const Ondick::slot_type& slot
))

{ {

onCl i ck. connect (sl ot); onC i ck. connect (sl ot);
} }
voi d print Coordinates(long x, long vy) voi d print Coordinates(long x, long vy)
{ {

std::cout << "(" << Xx << ", " <<y << ")\n"; std::cout << "(" << x << ", " <<y << ")\n";
} }
voi d f(Button& button) void f(Button& button)
{ {

butt on. doOnd i ck(&pri nt Coor di nat es) ; butt on. doOnd i ck(&pri nt Coor di nat es) ;
} }

The doOnd i ck method is now functionally equivalent to the connect method of the onCl i ck signal, but the details of the
doOnd i ck method can be hidden in an implementation detail file.

Example: Document-View

Signals can be used to implement flexible Document-View architectures. The document will contain a signal to which each of the
views can connect. The following Docunent class defines a simple text document that supports mulitple views. Note that it stores
asingle signal to which al of the views will be connected.

13

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

cl ass Docunent

{
publi c:
t ypedef boost::signal <void (bool)> signal _t;
t ypedef boost::signals::connection connection_t;
publi c:
Docunent ()
{}
connection_t connect(signal _t::slot_function_type subscriber)
{
return msig. connect (subscriber);
}
voi d di sconnect (connection_t subscri ber)
{
subscri ber. di sconnect ();
}
voi d append(const char* s)
{
mtext += s;
m si g(true);
}
const std::string& getText() const
{
return mtext;
}
private:
signal _t m si g;
std::string mtext;
b

Next, we can define a Vi ew base class from which views can derive. Thisisn't strictly required, but it keeps the Document-View
logic separate from the logic itself. Note that the constructor just connects the view to the document and the destructor disconnects
the view.

14

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

class View

{
publi c:
Vi ew(Docunment & m
m_docunent (M
{
m_connecti on = m docunent. connect (boost::bind(&View :refresh, this, _1));
}
virtual ~View()
{
m _docunent . di sconnect (m_connecti on);
}
virtual void refresh(bool bExtended) const = O;
pr ot ect ed:
Docunent & m _docunent ;
private:
Docunent : : connection_t m.connecti on;
b
g

Finally, we can begin to define views. The following Text Vi ew class provides asimple view of the document text.

class TextView : public View

{
publi c:
Text Vi ew(Docunent & doc)
Vi ew(doc)
{}
virtual void refresh(bool bExtended) const
{
std::cout << "TextView " << mdocunent.getText() << std::endl;
}
b

Alternatively, we can provide aview of the document translated into hex values using the Hex Vi ew view:

class HexView : public View

{
publi c:
HexVi ew(Docurent & doc)
Vi ew doc)
{}
virtual void refresh(bool bExtended) const
{
const std::string& s = m.docunent.getText();
std::cout << "HexView";
for (std::string::const_iterator it = s.begin(); it !=s.end(); ++it)
std::cout << ' ' << std::hex << static_cast<int>(*it);
std::cout << std::endl;
}
3

15

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

To tie the example together, here isa simple mai n function that sets up two views and then modifies the document:

int main(int argc, char* argv[])

{
Documnent doc;
Text Vi ew vl(doc);
HexVi ew v2(doc);
doc. append(argc == 2 ? argv[1l] : "Hello world!'");
return O;
}

The complete exampl e source, contributed by Keith MacDonald, isavailablein | i bs/ si gnal s/ exanpl e/ doc_vi ew. cpp.

Linking against the Signals library

Part of the Boost.Signals library is compiled into a binary library that must be linked into your application to use Signals. Please
refer to the Getting Started guide. You will need to link against the boost _si gnal s library.

16

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../libs/signals/example/doc_view.cpp
http://www.boost.org/doc/libs/release/doc/html/../../more/getting_started.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

Reference

Header <boost/signal.hpp>

nanmespace boost {

tenpl at e<typenane R typenane T1, typenane T2, ..., typenanme TN,
typenane Conbi ner = | ast_val ue<R>, typenanme Goup = int,
typenanme G oupConpare = std::|ess<G oup>,
typenane Sl otFunction = functionN<R T1, T2, ..., TN> >
cl ass signal N,
t enpl at e<t ypenane Signature, typenanme Conbi ner = |ast_val ue<R>,

typename Group = int, typename G oupConpare = std::|ess<G oup>,
typenane Sl ot Function = functi onN<Si gnat ure> >
cl ass signal;
namespace signals {

enum connect _position { at_front, at_back };

}
}

Class template signalN

boost::signalN — Set of safe multicast callback types.

17

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/signal.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

Synopsis

/'l I'n header: <boost/signal.hpp>

tenpl at e<typenane R, typenane T1, typenane T2, ..., typenanme TN,
typenane Conbi ner = | ast_val ue<R>, typenanme Goup = int,
typenane GroupConpare = std::|ess<G oup>,
typenane SlotFunction = functionN<R, T1, T2, ..., TN> >
class signal N : public signals::trackable,
private noncopyabl e /'l Exposition only

{
publi c:
/'l types
typedef typenanme Conbiner::result_type result_type;
t ypedef Conbi ner conbi ner _type;
t ypedef G oup group_type;
t ypedef G oupConpare group_conpare_type;
t ypedef Sl ot Function sl ot _function_type;
t ypedef sl ot <Sl ot Functi on> sl ot _type;
t ypedef unspecified sl ot _result_type;
t ypedef unspecified slot_call _iterator;
typedef T1 argunent _type; /1 1f N==1
typedef T1 first_argunent _type; /'l 1f N==2
typedef T2 second_argunent _type; // If N==2
typedef T1 argl_type;
t ypedef T2 arg2_type;
typedef TN argN_type;

/] static constants
static const int arity = N

/'l construct/copy/ destruct
si gnal N(const conbi ner_type& = conbi ner _type(),

const group_conpare_type& = group_conpare_type());
~signal N();

/'l connection nanagenent
si gnal s:: connection
connect (const slot_type& signals::connect_position = signals::at_back);
si gnal s:: connection
connect (const group_type& const slot_typeg&,
si gnal s:: connect _position = signals::at_back);
voi d di sconnect (const group_type&);
tenpl at e<t ypenane Sl ot> void disconnect(const Slot&);
voi d di sconnect _all _slots();
bool enpty() const;
std::size_t numslots() const;

/'l invocation
result_type operator()(argl_type, arg2_type, ..., argN_type);
result_type operator()(argl_type, arg2_type, ..., argN_type) const;

/'l conbi ner access
conbi ner _type& conbiner();
const conbi ner _type& conbi ner() const;

18

render

> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals

Description

The class template signalN covers several related classes signal0, signall, signal2, etc., where the number suffix describes the
number of function parametersthe signal and its connected slotswill take. Instead of enumerating all classes, asingle pattern signalN

will be described, where N represents the number of function parameters.

si gnal N public construct/copy/destruct

si gnal N(const conbi ner_type& conbi ner = conbi ner _type(),

const group_conpare_type& conpare = group_conpare_type());

Effects: Initializes the signal to contain no dots, copies the given combiner into internal storage, and stores the
given group comparison function object to compare groups.
Postconditions: t hi s->enpty()
~signal N();
Effects: Disconnects all slots connected to *t hi s.

si gnal Nconnection management

L signal s:: connection
connect (const sl ot_type& sl ot,
signal s:: connect _position at = signals::at_back);
signal s:: connection
connect (const group_type& group, const slot_type& slot,
signal s:: connect _position at = signals::at_back);

Effects: Connects the signal thisto theincoming slot. If the slot isinactive, i.e., any of the trackable objects bound by
the dot call have been destroyed, then the call to connect isano-op. If the second version of connect isinvoked,
the dot is associated with the given group. The at parameter specifies where the slot should be connected:
at _front indicatesthat the slot will be connected at the front of thelist or group of dotsand at _back indicates
that the dlot will be connected at the back of the list or group of dlots.

Returns: A signal s:: connecti on object that references the newly-created connection between the signal and the
dot; if the slot isinactive, returns a disconnected connection.

Throws: This routine meets the strong exception guarantee, where any exception thrown will cause the slot to not be
connected to the signal.

Complexity: Constant time when connecting a slot without a group name or logarithmic in the number of groups when
connecting to a particular group.

Notes: It is unspecified whether connecting a dlot while the signal is calling will result in the slot being called imme-
diately.

2. . . _
voi d di sconnect (const group_type& group);
t enpl at e<t ypenane Sl ot> void disconnect(const Slot& slot);

Effects: If the parameter is (convertible to) a group name, any slots in the given group are disconnected. Otherwise,
any slots equal to the given slot are disconnected.

Throws: Will not throw unless a user destructor or equality operator == throws. If either throws, not all slots may be
disconnected.

Complexity: If agroup isgiven, O(lg g) + k where g is the number of groups in the signal and k is the number of dlotsin
the group. Otherwise, linear in the number of slots connected to the signal.

3. . . _
voi d disconnect _all _slots();
Effects: Disconnects all slots connected to the signal.

Postconditions:

this->enpty().

19

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals

Throws:
Complexity:
Notes:

If disconnecting a slot causes an exception to be thrown, not all slots may be disconnected.
Linear in the number of dots known to the signal.
May be called at any time within the lifetime of the signal, including during calls to the signal's dats.

bool enpty() const;

Returns:
Throws:
Complexity:
Rationale:

t rue if no dots are connected to the signal, and f al se otherwise.

Will not throw.

Linear in the number of slots known to the signal.

Slots can disconnect at any point in time, including while those same slots are being invoked. It is therefore
possible that the implementation must search through alist of disconnected slotsto determineif any slots are
still connected.

std::size_t numslots() const;

Returns:
Throws:
Complexity:
Rationale:

S

The number of slots connected to the signal

Will not throw.

Linear in the number of dots known to the signal.

Slots can disconnect at any point in time, including while those same dlots are being invoked. It is therefore
possible that the implementation must search through alist of disconnected slotsto determine how many slots
are still connected.

gnal Ninvocation

result_type operator()(argl _type al, arg2_type a2, ..., argN type aN);
result_type operator()(argl_type al, arg2_type a2, ..., argN type aN) const;

Effects: Invokes the combiner with asl ot _cal | _i t er at or range [first, last) corresponding to the sequence of calls to
the slots connected to signal *t hi s. Dereferencing an iterator in this range causes a slot call with the given set of
parameters(al, a2, ..., aN),theresult of whichisreturned from the iterator dereference operation.

Returns: The result returned by the combiner.

Throws: If an exception is thrown by a slot call, or if the combiner does not dereference any slot past some given slot, all
slots after that dot in theinternal list of connected slots will not be invoked.

Notes: Only the slots associated with iterators that are actually dereferenced will be invoked. Multiple dereferences of the

same iterator will not result in multiple slot invocations, because the return value of the slot will be cached.

Theconst version of thefunction call operator will invoke the combiner asconst , whereasthenon-const version
will invoke the combiner as non-const .

Calling the function call operator may invoke undefined behavior if no slots are connected to the signal, depending
on the combiner used. The default combiner iswell-defined for zero dlotswhen the return typeisvoid but is undefined
when the return type is any other type (because there is no way to synthesize areturn value).

si gnal Ncombiner access

conbi ner _type& conbi ner();
const conbi ner _type& conbi ner () const;

Returns:
Throws:

A reference to the stored combiner.
Will not throw.

Class template signal

boost::signal — Safe multicast callback.

20

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

Synopsis

/'l I'n header: <boost/signal.hpp>

t enpl at e<typenane Signature, typenane Conbi ner = | ast_val ue<R>,
typenanme Group = int, typenane GoupConpare = std::|ess<G oup>,
typenane Sl ot Function = functionN<Si gnature> >
class signal : public signal N\R, T1, T2, ..., TN, Conbiner, G oup, G oupConpare, SlotFunction>

{
public:
/'l construct/copy/ destruct
signal (const conbi ner_type& = conbi ner _type(),
const group_conpare_type& = group_conpare_type());

Description

Classtemplate signal is a thin wrapper around the numbered class templates signal 0, signal 1, etc. It accepts a function type with N
arguments instead of N separate arguments, and derives from the appropriate signalN instantiation.

All functionality of this classtemplate isin its base class signalN.

Template Parameters

t ypename Si gnature

2. t ypenanme Conbi ner = | ast_val ue<R>
3. .
typename Group = int
4, _ ..
typenane G oupConpare = std::|ess<G oup>
5.

typename Sl ot Function = functi onN<Si gnat ure>

si gnal public construct/copy/destruct

signal (const conbi ner_type& conbi ner = conbi ner_type(),
const group_conpare_type& conpare = group_conpare_type());

Effects: Initializes the base class with the given combiner and comparison objects.

Header <boost/signals/slot.hpp>

namespace boost {
t enpl at e<t ypenane Sl ot Functi on> cl ass sl ot;

}

21

render
httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/signals/slot.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

Class template slot

boost::slot — Pass slots as function arguments.
Synopsis

/1 I'n header: <boost/signals/slot.hpp>

t enpl at e<t ypenane Sl ot Functi on>
class slot {

public:

/1 construct/copy/ destruct

tenpl at e<typenane Slot> slot(Slot);

b

Description

sl ot public construct/copy/destruct
tenpl at e<t ypenane Slot> slot(Slot target);

Effects: Invokes vi sit _each (unqualified) to discover pointers and references to si gnal s: : trackabl e objects in
target.

Initidlizest hi s to containtheincoming slot t ar get , which may be any function object withwhichasl ot Functi on
can be constructed.

Header <boost/signals/trackable.hpp>

namespace boost {
namespace signals {
cl ass trackabl e;
}
}

Class trackable

boost::signals::trackable — Enables safe use of multicast callbacks.
Synopsis
/1 I'n header: <boost/signal s/trackabl e. hpp>

class trackable {
publi c:
/1l construct/copy/ destruct
trackabl e();
trackabl e(const trackabl eg&);
trackabl e& operator=(const trackabl e&);
~trackabl e();

22

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/signals/trackable.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals

Description

Thet r ackabl e class provides automatic disconnection of signals and slots when objects bound in slots (via pointer or reference)
aredestroyed. Thet r ackabl e class may only be used as apublic base class for some other class; when used as such, that class may
be bound to function objects used as part of slots. The manner in which at r ackabl e object tracksthe set of signal-slot connections
itisapart of is unspecified.

The actual use of t rackabl e is contingent on the presence of appropriate visit_each overloads for any type that may contain
pointers or references to trackable objects.

trackabl e public construct/copy/destruct

trackabl e();

Effects: Setsthe list of connected slots to empty.
Throws: Will not throw.
2. trackabl e(const trackabl e& other);
Effects: Setsthelist of connected slots to empty.
Throws: Will not throw.
Rationale: Signal-dot connections can only be created via calls to an explicit connect method, and therefore cannot be
created here when trackable objects are copied.
3. trackabl e& operator=(const trackabl e& other);
Effects: Setsthelist of connected slots to empty.
Returns: *this
Throws: Will not throw.
Rationale: Signal-dot connections can only be created via calls to an explicit connect method, and therefore cannot be
created here when trackable objects are copied.
4. ~trackabl e();
Effects: Disconnects all signal/slot connectionsthat contain a pointer or reference to this trackable object that can be found

by visit_each.
Header <boost/signals/connection.hpp>

namespace boost {
namespace signals {
cl ass connecti on;
voi d swap(connection& connectiong&);
cl ass scoped_connecti on;
}
}

Class connection

boost::signals::connection — Query/disconnect a signal-slot connection.

23

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/signals/connection.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

Synopsis
/'l In header: <boost/signals/connection. hpp>

cl ass connection {
publi c:
/'l construct/copy/ destruct
connection();
connection(const connectiong&);
connecti on& operat or=(const connection&);

/'l connection nanagenent
voi d di sconnect () const;
bool connected() const;

/'l bl ocking

voi d bl ock(bool = true);
voi d unbl ock();

bool bl ocked() const;

/'l nodifiers
voi d swap(const connection&);

/'l conparisons

bool operator==(const connection&) const;
bool operator<(const connection&) const;

I

/'l specialized al gorithns
voi d swap(connection& connectiong&);

Description

The connection class represents a connection between a Signal and a Slot. It is a lightweight object that has the ability to query
whether the signal and dlot are currently connected, and to disconnect the signal and dlot. It is aways safe to query or disconnect a
connection.

connecti on public construct/copy/destruct

connection();

Effects: Sets the currently represented connection to the NULL connection.
Postconditions: I'thi s->connected().
Throws: Will not throw.
2. connecti on(const connection& other);
Effects: t hi s references the connection referenced by ot her .
Throws: Will not throw.
3. connecti on& operat or=(const connection& other);
Effects: t hi s references the connection referenced by ot her .
Throws: Will not throw.

24

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

connecti on connection management

voi d di sconnect () const;

Effects: If t hi s->connect ed(), disconnects the signal and slot referenced by this; otherwise, this operation
isano-op.
Postconditions: I't hi s->connected().
2. _
bool connected() const;
Returns: true if thisreferences anon-NULL connection that is till active (connected), and f al se otherwise.
Throws: Will not throw.

connecti on blocking

voi d bl ock(bool should_block = true);

Requires: connect ed()
Postconditions: bl ocked() == shoul d_bl ock
Throws: Will not throw.
2. .]
voi d unbl ock();
Requires: connect ed()
Postconditions: ! bl ocked()
Throws: Will not throw.
3.)
bool bl ocked() const;
Returns: t rue if the associated slot is either disconnected or blocked, f al se otherwise.
Throws: Will not throw.

connect i on modifiers
voi d swap(const connection& other);

Effects: Swaps the connectionsreferenced int hi s and ot her .
Throws: Will not throw.

connect i on comparisons

bool operator==(const connecti on& other) const;

Returns: true if t hi s and ot her reference the same connection or both reference the NULL connection, and f al se oth-
erwise.
Throws: Will not throw.
2. bool operator<(const connection& other) const;
Returns: t r ue if the connection referenced by t hi s precedesthe connection referenced by ot her based on some unspecified
ordering, and f al se otherwise.
Throws: Will not throw.
25

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

connect i on specialized algorithms
voi d swap(connection& x, connection& vy);

Effects: X. swap(y)
Throws: Will not throw.

Class scoped_connection

boost::signals::scoped_connection — Limits a signal-slot connection lifetime to a particular scope.
Synopsis
/'l I'n header: <boost/signal s/connection. hpp>

cl ass scoped_connection : private noncopyable /'l Exposition only

{

public:
/'l construct/copy/ destruct
scoped_connection(const connecti on&);
~scoped_connection();
/'l connection nanagenent

voi d di sconnect () const;
bool connected() const;

Description

scoped_connect i on public construct/copy/destruct
scoped_connection(const connecti on& ot her);

Effects: t hi s references the connection referenced by ot her .
Throws: Will not throw.

~scoped_connection();

Effects: If t hi s- >connect ed() , disconnects the signal-slot connection.

scoped_connect i on connection management

voi d di sconnect () const;

Effects: If t hi s->connect ed(), disconnects the signal and slot referenced by this; otherwise, this operation
isano-op.
Postconditions: I't hi s->connect ed().

bool connected() const;

Returns: t rue if thisreferencesanon-NULL connection that is still active (connected), and f al se otherwise.
Throws: Will not throw.

26

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

Header <boost/visit_each.hpp>

nanespace boost {
tenpl at e<typenane Visitor, typenane T>
void visit_each(const Visitor& const T& int);

Function template visit_each

boost::visit_each — Allow limited exploration of class members.
Synopsis
/1 1 n header: <boost/visit_each. hpp>

t enpl at e<typenane Visitor, typenane T>
void visit_each(const Visitor& visitor, const T& t, int);

Description

Thevi si t _each mechanism allows a visitor to be applied to every subobject in a given object. It is used by the Signals library to
discover si gnal s: : t rackabl e objects within afunction object, but other uses may surface if used universally (e.g., conservative
garbage collection). To fit within thevi si t _each framework, avi si t _each overload must be supplied for each object type.

Effects: vi sitor(t),andfor every subobject x of t :
e If x isareference, vi sit_each(visitor, ref(x), 0)
o Otherwise, vi sit_each(visitor, x, 0)
Notes: The third parameter is | ong for the fallback version of visit_each and the argument supplied to this third paramter

must always be 0. The third parameter is an artifact of the widespread lack of proper function template ordering, and
will be removed in the future.

Library authors will be expected to add additional overloads that specialize the T argument for their classes, so that
subobjects can be visited.

Callsto visit_each are required to be unqualified, to enable argument-dependent |ookup.
Header <boost/last_value.hpp>

nanmespace boost {
t enpl at e<t ypename T> cl ass | ast_val ue;

t enpl at e<> cl ass | ast_val ue<voi d>;

}

Class template last_value

boost::last_value — Evaluate an Inputlterator sequence and return the last value in the sequence.

27

> http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/visit_each.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/last_value.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

Synopsis

/'l In header: <boost/|ast_val ue. hpp>

t enpl at e<t ypenane T>
class last_val ue {
publi c:

/'l types

typedef T result_type

/1 invocation

t enpl at e<t ypenane | nputlterator>
result_type operator()(lnputlterator, Inputlterator) const;

Description

| ast _val ue invocation

t enpl at e<t ypenane | nputlterator>
result_type operator()(lnputlterator first, Inputlterator |ast) const

Requires: first 1= last
Effects: Dereferences every iterator in the sequence[first, |ast).
Returns: Theresult of dereferencing the iterator | ast - 1.

Specializations

» Classlast_value<void>

Class last_value<void>

boost::last_value<void> — Evaluate an I nputlterator sequence.
Synopsis
/'l I'n header: <boost/| ast_val ue. hpp>

class | ast_val ue<voi d> {
public:
/'l types
t ypedef unspecified result_type;

// invocation

tenpl at e<t ypenane | nputlterator>
result_type operator()(lnputlterator, Inputlterator) const;

Description

| ast _val ue invocation

t enpl at e<t ypenane | nputlterator>
result_type operator()(lnputlterator first, Inputlterator |ast) const

28

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

Effects: Dereferences every iterator in the sequence[first, |ast).

29

render

> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals

Frequently Asked Questions

1

Is Boost.Signals being actively maintained?
No. Please migrate to Boost.Signals2. There is a porting guide in the Signals2 documentation.
Don't noncopyable signal semantics mean that a class with a signal member will be noncopyable as well?

No. The compiler will not be able to generate a copy constructor or copy assignment operator for your classif it hasasignal
as amember, but you are free to write your own copy constructor and/or copy assignment operator. Just don't try to copy the
signal.

Is Boost.Signals thread-safe?

No. Using Boost.Signals in a multithreaded concept is very dangerous, and it is very likely that the results will be less than
satisfying. Boost.Signals will support thread safety in the future.

How do | get Boost.Signals to work with Qt?

When building with Qt, the Moc keywords si gnal s and sl ot s are defined using preprocessor macros, causing programs
using Boost.Signals and Qt together to fail to compile.

For Qt 4.1 and later, This behavior can be turned off in Qt on a per-project or per-file basis with the no_keywor ds option.
This works with out-of-the-box builds of Boost and Qt. You do hot need to re-configure, re-build, or duplicate existing lib-
raries. For a project where you want to use both Boost.Signals and Qt Signals and Slots, the relevant part of your .pro file
might look like this:

CONFI G += no_keywords # so @ won't #define any non-all-caps " keywords'
| NCLUDEPATH += . /usr/local/include/boost-1 33 1/
macx: LIBS += /usr/local/lib/libboost_signals-1 33 1.a # ...your exact paths may vary

Now you can mix Boost.Signals and Qt Signals and Slots in the same files, and even within the same class or function. You
will have to use the upper-case versions of Qt macrosin your own code. Seethe article A Deeper Look at Signals and Slots
[off-site] for more complete examples and a survey of the strengths of the two systems.

Older versions of Qt did not provide areliable mechanism for avoiding these unfriendly, all lower-case “keyword'-like macros.
Although thisis a problem with Qt and not Boost.Signals, a user can use the two systems together with a little extra effort.
There are two ways to do this:

Thefirst way involves defining the BOOST_SI GNALS NAMESPACE macro to some other identifier (e.g., si gnal sl i b) when
building and using the Boost.Signals library. Then the namespace of the Boost.Signals library will be
boost : : BOOST_SI GNALS_NAMESPACE instead of boost : : si gnal s. To retain the original namespace namein tranglation
units that do not interact with Qt, you can use a namespace alias:

nanmespace boost {
namespace signals = BOOST_SI GNALS NAMESPACE;
}

The second way, provided by Frank Hess and improved by Niels Dekker, involves creating a header si gnal sl i b. hpp that
contains the following code:

30

httpo://www.renderx.com/

http://www.boost.org/doc/html/signals2.html
http://www.boost.org/doc/html/signals2/api_changes.html#signals2.porting
http://scottcollins.net/articles/a-deeper-look-at-signals-and-slots.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

#i f ndef SI GNALSLI B_HPP_I NCLUDED
#def i ne SI GNALSLI B_HPP_I NCLUDED

#i f defined(signals) && defined(QOBJECTDEFS_H) && \
I def i ned(QT_MOC_CPP)

undef signals

define signals signals

#endi f

#i ncl ude <boost/signal . hpp>
namespace boost
{

namespace signalslib = signals;

}

#i f defined(signals) && defined(QOBJECTDEFS_H) && \
I def i ned(QT_MOC_CPP)
undef signals
/1l Restore the macro definition of "signals", as it was
/1 defined by Q's <qgobjectdefs. h>.
define signals protected
#endi f

#endi f

Use this header to include the Boost library, then refer to it in the namespace boost : : si gnal sl i b. This option is often
preferable to the first option because it can be used without recompiling the Signals library binary.

31

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals

Design Overview

Type Erasure

"Type erasure”, where static type information is eliminated by the use of dynamically dispatched interfaces, is used extensively
within the Boost.Signals library to reduce the amount of code generated by template instantiation. Each signal must manage a list
of slots and their associated connections, along with a st d: : map to map from group identifiers to their associated connections.
However, instantiating this map for every token type, and perhaps within each trand ation unit (for some popular template i nstantiation
strategies) increase compile time overhead and space overhead.

To combat this so-called "template bloat”, we use Boost.Function and Boost.Any to store unknown types and operations. Then, all
of the code for handling thelist of slots and the mapping from slot identifiersto connectionsisfactored into the classsi gnal _base
that deals exclusively with the any and f unct i on objects, hiding the actual implementations using the well-known pimpl idiom.
Theactua si gnal Nclasstemplatesdeal only with codethat will change depending on the number of arguments or whichisinherently
templ ate-dependent (such as connection).

connection CI ass

Theconnecti on classis central to the behavior of the Boost.Signals library. It is the only entity within the Boost.Signals system
that has knowledge of all objects that are associated by a given connection. To be specific, the connect i on classitself ismerely a
thin wrapper over ashar ed_pt r toabasi ¢c_connect i on object.

connect i on objects are stored by all participants in the Signals system: each t r ackabl e object contains alist of connecti on
objects describing al connectionsit is a part of; similarly, al signals contain a set of pairs that define a slot. The pairs consist of a
dot function object (generally a Boost.Function object) and aconnect i on object (that will disconnect on destruction). Finally, the
mapping from slot groupsto slotsisbased on the key valueinast d: : nul ti map (the stored datain thest d: : nul ti map isthedot

pair).
Slot Call Iterator

The dot call iterator is conceptually a stack of iterator adaptors that modify the behavior of the underlying iterator through the list
of dots. The following table describes the type and behavior of each iterator adaptor required. Note that thisis only a conceptual
model: theimplementation collapsesall theselayersinto asingleiterator adaptor because several popular compilersfailed to compile
the implementation of the conceptual model.

32

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

Iterator Adaptor Purpose

Slot List Iterator An iterator through the list of slots connected to asignal. The
val ue_t ype of thisiterator will be st d: : pai r<any, con-
nect i on>, wherethe any contains an instance of the slot
function type.

Filter Iterator Adaptor Thisfiltering iterator adaptor filters out slots that have been
disconnected, so we never seeadisconnected Slot in later stages.

Projection Iterator Adaptor The projection iterator adaptor returns areference to the first
member of the pair that constitutes a connected slot (e.g., just
theboost : : any object that holds the slot function).

Transform Iterator Adaptor Thistransform iterator adaptor performsanany_cast to extract
areferenceto the dot function with the appropriate ot function
type.

Transform Iterator Adaptor Thistransform iterator adaptor callsthe function object returned

by dereferencing the underlying iterator with the set of argu-
mentsgivento the signal itself, and returnsthe result of that slot
call.

Input Caching Iterator Adaptor Thisiterator adaptor caches the result of dereferencing the un-
derlying iterator. Therefore, dereferencing thisiterator multiple
timeswill only result in the underlying iterator being derefer-
enced once; thus, aslot can only be called once but its result
can be used multiple times.

Slot Call Iterator Iterates over callsto each dot.

visit_each fUNCtiON template

Thevi si t _each function template is amechanism for discovering objects that are stored within another object. Function template
vi si t _each takesthree arguments: an object to explore, avisitor function object that isinvoked with each subobject, and thei nt
0.

The third parameter is merely atemporary solution to the widespread lack of proper function template partial ordering. The primary
vi si t _each function template specifies this third parameter type to be | ong, whereas any user specializations must specify their
third parameter to be of type i nt . Thus, even though a broken compiler cannot tell the ordering between, e.g., a match against a
parameter T and a parameter A<T>, it can determine that the conversion from the integer 0 to i nt is better than the conversion to
| ong. Theordering determined by this conversion thusachieves partial ordering of the function templatesin alimited, but successful,
way. The following example illustrates the use of this technique:

t enpl at e<t ypenanme> cl ass A {};

t enpl at e<typenanme T> void foo(T, long);

t enpl at e<typenanme T> void foo(A<T>, int);
A<T> at;

foo(at, 0);

In this example, we assume that our compiler can not tell that A<T> is a better match than T, and therefore assume that the function
templates cannot be ordered based on that parameter. Then the conversion from O to i nt is better than the conversion from 0 to
| ong, and the second function template is chosen.

33

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals

Design Rationale

Choice of Slot Definitions

The definition of a slot differs amongst signals and slots libraries. Within Boost.Signals, a slot is defined in avery loose manner: it
can be any function object that is callable given parameters of the types specified by the signal, and whose return valueis convertible
to the result type expected by the signal. However, alternative definitions have associated pros and cons that were considered prior
to the construction of Boost.Signals.

Slots derive from a specific base class. generally a scheme such as this will require all user-defined dlots to derive from some
library-specified Sl ot abstract class that defines a virtual function calling the slot. Adaptors can be used to convert a definition
such asthisto adefinition similar to that used by Boost.Signals, but the use of alarge number of small adaptor classes containing
virtual functions has been found to cause an unacceptable increase in the size of executables (polymorphic class types require
more code than non-polymorphic types).

This approach does have the benefit of simplicity of implementation and user interface, from an object-oriented perspective.

Slots constructed from a set of primitives: in this scheme the slot can have alimited set of types (often derived from acommon
abstract base class) that are constructed from some library-defined set of primitives that often include conversions from free
function pointers and member function pointers, and alimited set of binding capabilities. Such an approach is reasonably simple
and cover most common cases, but it does not alow alarge degree of flexibility in slot construction. Libraries for function object
composition have become quite advanced and it is out of the scope of asignalsand slotslibrary to encorporate such enhancements.
Thus Boost.Signal s does not include argument binding or function object composition primitives, but instead provides ahook (via
thevi si t _each mechanism) that allows existing binder/composition libraries to provide the necessary information to Signals.

Users not satisfied with the slot definition choice may opt to replace the default slot function type with an alternative that meetstheir
specific needs.

User-level Connection Management

Users need to have fine control over the connection of signals to slots and their eventual disconnection. The approach taken by
Boost.Signalsistoreturnaconnect i on object that enables connected/disconnected query, manual disconnection, and an automatic
disconnection on destruction mode. Some other possible interfaces include:

Pass dot to disconnect: in this interface model, the disconnection of a slot connected with si g. connect (sl ot) is performed
viasi g. di sconnect (sl ot). Internally, alinear search using slot comparison is performed and the dot, if found, is removed
from the list. Unfortunately, querying connectedness will generally also end up as linear-time operations. This model also fails
for implementation reasons when slots become more complex than simple function pointers, member function pointers and a
limited set of compositions and argument binders: to match the slot given in the call to di sconnect with an existing slot we
would need to be able to compare arbitrary function objects, which is not feasible.

Pass a token to disconnect: this approach identifies slots with a token that is easily comparable (e.g., a string), enabling slots to
be arbitrary function objects. While this approach is essentially equivalent to the approach taken by Boost.Signals, it is possibly
more error-prone for several reasons:

« Connections and disconnections must be paired, so the problem becomes similar to the problems incurred when pairing new
and del et e for dynamic memory allocation. While errors of this sort would not be catastrophic for asignals and slots imple-
mentation, their detection is generally nontrivial.

» Tokens must be unique, otherwise two slots will have the same name and will be indistinguishable. In environments where
many connections will be made dynamically, name generation becomes an additional task for the user. Uniqueness of tokens
also resultsin an additional failure mode when attempting to connect a slot using a token that has already been used.

* More parameterization would be required, because the token type must be user-defined. Additional parameterization steepens
the learning curver and overcomplicates a ssimple interface.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals

Thistype of interface is supported in Boost.Signals via the slot grouping mechanism. It augments the connect i on object-based
connection management scheme.

Combiner Interface

The Combiner interface was chosen to mimic a call to an algorithm in the C++ standard library. It is felt that by viewing slot call
results as merely a sequence of values accessed by input iterators, the combiner interface would be most natural to a proficient C++
programmer. Competing interface design generally required the combiners to be constructed to conform to an interface that would
be customized for (and limited to) the Signalslibrary. While these interfaces are generally enable more straighforward implementation
of the signals & dotslibraries, the combiners are unfortunately not reusable (either in other signals & dots libraries or within other
generic algorithms), and the learning curve is steepened slightly to learn the specific combiner interface.

The Signalsformulation of combinersisbased on the combiner using the " pull" mode of communication, instead of the more complex
"push” mechanism. With a "pull" mechanism, the combiner's state can be kept on the stack and in the program counter, because
whenever new datais required (i.e., calling the next slot to retrieve its return value), there is a simple interface to retrieve that data
immediately and without returning from the combiner's code. Contrast this with the "push” mechanism, where the combiner must
keep al state in class members because the combiner's routines will be invoked for each signal called. Compare, for example, a
combiner that returns the maximum element from calling the slots. If the maximum element ever exceeds 100, no more slots are to
be called.

Pull Push
struct pull_max { struct push_max {

typedef int result_type; typedef int result_type;

tenpl at e<typenane I nputlterator> push_max() : nmax_value(), got_first(false) O

result_type operator()(lnputlterator first, {}

Inputlterator |ast)
{ /1 returns fal se when we want to stop
if (first == |ast) bool operator()(int result) {
throw std::runtinme_error("Enpty!"); if (result > 100)

return false;
int max_value = *first++;

while(first !'=last & *first <= 100) { if ('got_first) {
if (*first > max_val ue) got _first = true;
max_val ue = *first; max_val ue = result;
++first; return true;
} }
return max_val ue; if (result > nax_val ue)
} max_val ue = result;

return true;

}

int get_value() const
{
if ('got_first)
throw std::runtinme_error("Enpty!");
return max_val ue;

}

private:
int nmax_val ue;
bool got_first;

h

35

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals

There are several points to note in these examples. The "pull” version is a reusable function object that is based on an input iterator
sequence with an integer val ue_t ype, and is very straightforward in design. The "push” model, on the other hand, relieson an in-
terface specific to the caller and isnot generally reusable. It also requires extrastate valuesto determine, for instance, if any elements
have been received. Though code quality and ease-of-useis generally subjective, the"pull" model isclearly shorter and morereusable
and will often be construed as easier to write and understand, even outside the context of asignals & dotslibrary.

The cost of the "pull" combiner interface is paid in the implementation of the Signals library itself. To correctly handle slot discon-
nections during calls (e.g., when the dereference operator isinvoked), one must construct the iterator to skip over disconnected slots.
Additionally, the iterator must carry with it the set of arguments to pass to each slot (although a reference to a structure containing
those arguments suffices), and must cache the result of calling the ot so that multiple dereferences don't result in multiple calls.
This apparently requires a large degree of overhead, though if one considers the entire process of invoking slots one sees that the
overhead is nearly equivalent to that in the " push" model, but we have inverted the control structuresto makeiteration and dereference
complex (instead of making combiner state-finding complex).

Connection Interfaces: += operator

Boost.Signals supports a connection syntax with the form si g. connect (sl ot), but amoreterse syntax si g += sl ot hasbeen
suggested (and has been used by other signals & dlots implementations). There are several reasons as to why this syntax has been
rejected:

* It'sunnecessary: the connection syntax supplied by Boost.Signalsis no less powerful that that supplied by the += operator. The
savings in typing (connect () vs. +=) is essentially negligible. Furthermore, one could argue that calling connect () is more
readable than an overload of +=.

» Ambiguous return type: there is an ambiguity concerning the return value of the += operation: should it be a reference to the
signal itself, toenablesi g += sl ot 1 += sl ot 2, or shoulditreturnaconnect i on for the newly-created signal/sl ot connection?

» Gateway to operators-=, +: when one has added a connection operator +=, it seems natural to have a disconnection operator - =.
However, this presents problems when the library allows arbitrary function objects to implicitly become slots, because dlots are
no longer comparable.

The second obvious addition when one has oper at or += would be to add a + operator that supports addition of multiple slots,
followed by assignment to asignal. However, this would requireimplementing + such that it can accept any two function objects,
which istechnically infeasible.

trackabl e Fationale

Thet r ackabl e classisthe primary user interface to automatic connection lifetime management, and its design affects usersdirectly.
Two issues stick out most: the odd copying behavior of t r ackabl e, and the limitation requiring users to derive from t r ackabl e
to create types that can participate in automatic connection management.

trackabl e COPYiNg behavior

The copying behavior of t rackabl e is essentidly that t r ackabl e subobjects are never copied; instead, the copy operation is
merely a no-op. To understand this, we look at the nature of a signal-slot connection and note that the connection is based on the
entities that are being connected; when one of the entities is destroyed, the connection is destroyed. Therefore, when at r ackabl e
subobject is copied, we cannot copy the connections because the connections don't refer to the target entity - they refer to the source
entity. Thisreason is dual to the reason signals are noncopyable: the slots connected to them are connected to that particular signal,
not the data contained in the signal.

Why derivation from trackabl e?
For t r ackabl e to work properly, there are two constraints:
* trackabl e must have storage space to keep track of all connections made to this object.

» trackabl e must be notified when the object is being destructed so that it can disconnect its connections.

36

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals

Clearly, deriving from t r ackabl e meets these two guidelines. We have not yet found a superior solution.

Comparison with other Signal/Slot implementations

libsigc++

libsigc++ isa C++ signals & slots library that originally started as part of an initiative to wrap the C interfacesto GTK librariesin
C++, and has grown to be a separate library maintained by Karl Nelson. There are many similarities between libsigc++ and
Boost.Signals, and indeed Boost.Signal s was strongly influenced by Karl Nelson and libsigc++. A cursory inspection of each library
will find asimilar syntax for the construction of signalsand in the use of connections and automatic connection lifetime management.
There are some major differencesin design that separate these libraries:

» Slot definitions: dotsin libsigct++ are created using a set of primitives defined by the library. These primitives allow binding of
objects (as part of the library), explicit adaptation from the argument and return types of the signal to the argument and return
types of the dlot (libsigc++ is, by default, more strict about types than Boost.Signals). A discussion of this approach with a com-
parison against the approach taken by Boost.Signalsis given in Choice of Slot Definitions.

» Combiner/Marshaller interface: the equivalent to Boost.Signals combiners in libsigc++ are the marshallers. Marshallers are
similar to the "push” interface described in Combiner Interface, and a proper treatment of the topic is given there.

.NET delegates

Microsoft has introduced the .NET Framework and an associated set of languages and language extensions, one of which is the
delegate. Delegates are similar to signals and slots, but they are more limited than most C++ signals and slots implementations in
that they:

* Require exact type matches between a delegate and what it is calling.
 Only return the result of the last target called, with no option for customization.

» Must call amethod witht hi s aready bound.

37

httpo://www.renderx.com/

http://libsigc.sourceforge.net
http://www.gtk.org
http://www.microsoft.com
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals

Testsuite

Acceptance tests

Test

dead dlot_test.cpp

deletion_test.cpp
ordering_test.cpp

signal_n_test.cpp

signal_test.cpp

trackable _test.cpp

Type

run

run
run

run

run

run

Description

Ensure that calling connect with a
slot that has already been disconnec-
ted via deletion does not actually
connect to the slot.

Test deletion of dots.

Test dlot group ordering.

Basic test of signal/slot connections
and invocation using the
boost : : si gnal Nclasstemplates.
Basic test of signal/slot connections

and invocation using the
boost : : si gnal classtemplate.

Test automatic lifetime management
using boost : : t rackabl e objects.

If failing...

Theboost : : si gnal classtem-
plate may not be usable on your
compiler. However, the
boost::signal N class tem-
plates may still be usable.

38

httpo://www.renderx.com/

../../libs/signals/test/dead_slot_test.cpp
../../libs/signals/test/deletion_test.cpp
../../libs/signals/test/ordering_test.cpp
../../libs/signals/test/signal_n_test.cpp
../../libs/signals/test/signal_test.cpp
../../libs/signals/test/trackable_test.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Signals
	Table of Contents
	Introduction
	Tutorial
	How to Read this Tutorial
	Compatibility Note
	Hello, World! (Beginner)
	Calling multiple slots
	Connecting multiple slots (Beginner)
	Ordering slot call groups (Intermediate)

	Passing values to and from slots
	Slot Arguments (Beginner)
	Signal Return Values (Advanced)

	Connection Management
	Disconnecting Slots (Beginner)
	Blocking Slots (Beginner)
	Scoped connections (Intermediate)
	Disconnecting equivalent slots (Intermediate)
	Automatic connection management (Intermediate)
	When can disconnections occur? (Intermediate)
	Passing slots (Intermediate)

	Example: Document-View
	Linking against the Signals library

	Reference
	Header <boost/signal.hpp>
	Class template signalN
	Synopsis
	Description
	signalN public construct/copy/destruct
	signalN connection management
	signalN invocation
	signalN combiner access

	Class template signal
	Synopsis
	Description
	Template Parameters
	signal public construct/copy/destruct

	Header <boost/signals/slot.hpp>
	Class template slot
	Synopsis
	Description
	slot public construct/copy/destruct

	Header <boost/signals/trackable.hpp>
	Class trackable
	Synopsis
	Description
	trackable public construct/copy/destruct

	Header <boost/signals/connection.hpp>
	Class connection
	Synopsis
	Description
	connection public construct/copy/destruct
	connection connection management
	connection blocking
	connection modifiers
	connection comparisons
	connection specialized algorithms

	Class scoped_connection
	Synopsis
	Description
	scoped_connection public construct/copy/destruct
	scoped_connection connection management

	Header <boost/visit_each.hpp>
	Function template visit_each
	Synopsis
	Description

	Header <boost/last_value.hpp>
	Class template last_value
	Synopsis
	Description
	last_value invocation
	Specializations

	Class last_value<void>
	Synopsis
	Description
	last_value invocation

	Frequently Asked Questions
	Design Overview
	Type Erasure
	connection class
	Slot Call Iterator
	visit_each function template

	Design Rationale
	Choice of Slot Definitions
	User-level Connection Management
	Combiner Interface
	Connection Interfaces: += operator
	trackable rationale
	trackable copying behavior
	Why derivation from trackable?

	Comparison with other Signal/Slot implementations
	libsigc++
	.NET delegates

	Testsuite
	Acceptance tests

