Boost.Signhals2

Douglas Gregor

Frank Mori Hess

Copyright © 2001-2004 Douglas Gregor
Copyright © 2007-2009 Frank Mori Hess

Distributed under the Boost Software License, Version 1.0. (See accompanying file LI CENSE_1_0. txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents

Fgu oo (8 oi (ol H PP P PP UPPPTNN 3
SIGNAISZ ...t e et e et e et et e et e e e aba s 3
BT Lo (- PP SO TRUPPPTTRPUPPPPN 4
HOW 10 REBA thiS TULOTTELeeueeieeiit ettt e ettt s e ettt e ettt s e et e ab e e e eebbreeeebaaeeeen 4
HEIO, WOTTA! (BEJINNEL) ..ttt ettt e ettt e ettt e et ettt e ettt e e et e bt s e e e ettt e et ettt e e eetb e eeeennnaeeees 4
CalliNG MUITIPIE SIOUS ...ttt ettt et ettt et e e s et ettt e et e et e et e e r et e ebbr e e e nnb e e eenans 4
Passing Values t0 @Nd FIOM SIOLSiiiiitieiiii ettt ettt e ettt e ettt e e et et e e et et e e e eatereeeenba e eeenes 6
CONNECEION IMANAGEIMIENT ... e ettt ettt ettt ettt ettt et et e et e eh e et et b e et et e et e bt e et et e e et et e e et et e e eeeba s 10
EXAMPIE; DOCUMEBNT-VIEIW ...ttt ettt ettt ettt ettt e e ettt e et et e et e et e e e et e e et e b n e et eba e e eenans 14
Giving a Slot Access to itS CONNECiON (AGVANCE)couuuuiiiiti ettt ettt e e e eenans 16
Changing the Mut ex Type of a Signal (AGVANCE).coouuuiiiiii e et e et e e e e e eenes 17
Linking against the SIGNalS2 [IDIarYccc.uu oot e e e e e e e 17
(S apo L= o oo = o ST PUPPPTTRPPPPPN 18
Miscellaneous TULOITAl EXBMPIESiiiii ettt et ettt e et e e e et e e e e s 18
DOCUMENE-VIIW ...ttt ettt ettt ettt ettt oot ettt e et et e e et e bt e e e e bt e et et r e e e ebb e e e nnan s 19
Postconstructors and Predestructors With deCONST FUCT () «.vevneeenaeieeeii et e e e et e e et e e e e e e e e eeennns 19
(RS 1= £ 00 TP TP 20
Header <bo0St/SIgNaAlS2. P> ... e e s 20
Header <boost/signal S2/CONNEC ON PP . .oiuiiiii e e e e e et e e et e e e et e e e e aaa e e e ennenns 20
Header <boost/Signal S2/deCONSITUCT. PP .. .ceevii e e e e e r e e et e e e e e e e e e aaa e e e eaae e eeeneen 25
Header <boost/signal S2/dummy MUEEX. PPuiiiiiiiiee e et e e e et e e e et e e e e e st s e e e aat s e eaesenaaaees 27
Header <boost/Signals2/last VAlUBINPP™uuuiiiiiii et e e et e e e et e e e e aa e e e anaes 28
Header <boost/SigNal S2/MUEEX. PP .. .o et e e e et e e e ettt e e e et e e e e et e e e e et a e e e et aaaeans 30
Header <boost/signals2/optional_last ValUB.NPPDSvuiiiiii e 31
Header <boost/signals2/shared_connection blOCK. NP> .. .covvuiiiiii e 32
Header <boost/SignalS2/Signal PPoiiiii e 35
Header <boost/signals2/signal_base P>uiiiii 41
Header <boost/SignalS2/Signal Y P DD .. .cieii et aaaa 42
Header <Boost/SigNalS2/Sl Ot NP> .. .oeeeiei e a e 46
Header <boost/SIgnalS2/SIOt DaSE. PPviiiii et aaaa 50
Header <boost/signal S2/trackabl € NPP> ... e 51
=20 T = | TSP PPPPPPRPPPPIN 53
[F g1 oo (8 oi (oo H PP PP PPPPTT 53
SIgNAIS AN COMDINENS ...ttt ettt ettt e e et et oo et e e et et e et e ah e e et e eb e et e nb s e e e eeb e e eenans 53
CoNNECHIONS N0 OtNEN CIASSESottt e et et et e e e e e e enaas 54
Frequently ASKEA QUESIIONS iieeii ittt ettt ettt et s e et e e e et et et e e et e e e et e e e 55
DESIGN REIONEIE ...t ettt e et oo et e ettt e e et e e et e et et et e 56
User-level ConNECtioN MaNBGEMENTuuu ittt e ettt e e et e e ettt e et e et e e et ab it e e e eab e reeeesbreeeesbnaeeeentnaeeees 56
Automatic CoNNECEION MENBGEIMENTttt ettt ettt ettt et e et e et e et e ab e et e ab e et e et e et enaa e eeenans 56
optional _| ast _val ue asthe Default COMDINES e 56
160000l 11 1= g 10 11< 1 =TSP TSO PP UPPPTTRSPPPN 57
1

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

CONNECEION INEEITACES. 4+ OPEIBION ...ivtuiitiieei et et e et e e e e e e e e e e e e e e et e e et e e et e e e ta e eaa e e et e eetn e eaneeennns 58
SIGNAIS2 MULEX ClaSSES . .ivtu ettt eiii et e et e e e e e et e et e e et e e et e e et e e et et et e e et e e et e e aa e e aa e e et e e eaneeetntessnnaeanneeeenss 58
Comparison with other Signal/SIot IMPlEMENALIONSuiiiii e e e e e e e e e eaaas 58
S 7= ES VA N O =g TN 60
Porting from Boost.SignalS t0 BOOSE.SIGNAIS2Zuuiiiiieiiiei et e e e e e e e e e e e e e e e et e e et e e et e e et e e ean e eaaas 60
S o7z Ea AN o I T Y= o] 4= | SN 62
QL= ES 1 1 (PSP 63
JaNOe o= (6 (= £ PP PRP 63
2

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Introduction

The Boost.Signals2 library is an implementation of a managed signals and slots system. Signals represent callbacks with multiple
targets, and are also called publishers or events in similar systems. Signals are connected to some set of dots, which are callback
receivers (also called event targets or subscribers), which are called when the signal is "emitted.”

Signalsand slots are managed, in that signals and slots (or, more properly, objectsthat occur as part of the slots) can track connections
and are capable of automatically disconnecting signal/slot connectionswhen either isdestroyed. This enablesthe user to make signal/dot
connections without expending a great effort to manage the lifetimes of those connections with regard to the lifetimes of all objects
involved.

When signals are connected to multiple slots, there is a question regarding the rel ationship between the return values of the slotsand
the return value of the signals. Boost.Signals2 allows the user to specify the manner in which multiple return values are combined.

Signals2

Thisdocumentation describes athread-safe variant of the original Boost.Signalslibrary. There have been some changesto theinterface
to support thread-safety, mostly with respect to automatic connection management. Thisimplementation was written by Frank Mori
Hess. Acknowledgements are also due to Timmo Stange, Peter Dimov, and Tony Van Eerd for ideas and feedback, and to Douglas
Gregor for the original version of Boost.Signals this effort was based on.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Tutorial

How to Read this Tutorial

Thistutorial isnot meant to be read linearly. Itstop-level structure roughly separates different conceptsin the library (e.g., handling
calling multiple slots, passing values to and from slots) and in each of these concepts the basic ideas are presented first and then
more complex uses of the library are described later. Each of the sections is marked Beginner, Intermediate, or Advanced to help
guidethereader. The Beginner sectionsincludeinformation that all library users should know; one can make good use of the Signal s2
library after having read only the Beginner sections. The Intermediate sections build on the Beginner sections with slightly more
complex uses of the library. Finally, the Advanced sections detail very advanced uses of the Signals2 library, that often require a
solid working knowledge of the Beginner and I ntermediate topics; most users will not need to read the Advanced sections.

Hello, World! (Beginner)

Thefollowing example writes "Hello, World!" using signals and slots. First, we create asignal si g, asignal that takes no arguments
and has a void return value. Next, we connect the hel | o function object to the signal using the connect method. Finally, use the
signal si g likeafunction to call the dots, which in turnsinvokes Hel | oWor | d: : oper at or () to print "Hello, World!".

struct HelloWwrld

{
voi d operator()() const
{
std::cout << "Hello, World!" << std::endl;
}
3

/1 Signal with no argunents and a void return val ue
boost: :signal s2::signal <void ()> sig;

// Connect a HelloWwrld slot
Hel | oWorl d hel | o;

si g. connect (hel | 0);

// Call all of the slots
sig();

Calling Multiple Slots

Connecting Multiple Slots (Beginner)

Calling asingle dot from asignal isn't very interesting, so we can make the Hello, World program more interesting by splitting the
work of printing "Hello, World!" into two completely separate slots. The first slot will print "Hello" and may look like this:

struct Hello

{
voi d operator()() const
{
std::cout << "Hello";
}
b

The second slot will print ", World!" and a newline, to complete the program. The second slot may look like this:

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

struct World

{
voi d operator()() const
{
std::cout << ", World!'" << std::endl;
}
}

Likein our previous example, we can create asignal si g that takesno argumentsand hasavoi d return value. Thistime, we connect
both ahel | o and awor | d slot to the same signal, and when we call the signal both slots will be called.

boost: : signal s2::signal <void ()> sig;

si g. connect (Hello());
si g. connect (MWorld());

sig();

By default, slots are pushed onto the back of the dot list, so the output of this program will be as expected:

Hel | o, Worl d!

Ordering Slot Call Groups (Intermediate)

Slots are free to have side effects, and that can mean that some slotswill haveto be called before others even if they are not connected
in that order. The Boost.Signals2 library allows slots to be placed into groups that are ordered in some way. For our Hello, World
program, we want "Hello" to be printed before ", World!", so we put "Hello" into a group that must be executed before the group
that ", World!" isin. To do this, we can supply an extra parameter at the beginning of the connect call that specifies the group.
Group values are, by default, i nt s, and are ordered by the integer < relation. Here's how we construct Hello, World:

boost : : signal s2::signal <void ()> sig;

sig.connect (1, World()); // connect with group 1
sig.connect (0, Hello()); // connect with group O

Invoking the signal will correctly print "Hello, World!", because the Hel | o object isin group 0, which precedes group 1 where the
Wor | d object resides. The group parameter is, in fact, optional. We omitted it in the first Hello, World example because it was unne-
cessary when al of the dots are independent. So what happens if we mix calls to connect that use the group parameter and those
that don't? The "unnamed" slots (i.e., those that have been connected without specifying a group name) can be placed at the front or
back of thedot list (by passingboost : : si gnal s2: : at_front orboost: : si gnal s2:: at _back asthelast parameter toconnect ,
respectively), and default to the end of the list. When a group is specified, the final at _front or at _back parameter describes
where the slot will be placed within the group ordering. Ungrouped slots connected with at _f r ont will always precede all grouped
slots. Ungrouped slots connected with at _back will always succeed all grouped slots.

If we add anew ot to our example like this:

struct GoodMor ni ng

{
voi d operator()() const
{
std::cout << "... and good norning!" << std::endl;
}
3

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

/1 by default slots are connected at the end of the slot |ist
si g. connect (GoodMor ni ng());

/'l slots are invoked this order:
/1 1) ungrouped slots connected with boost::signals2::at_front

/1 2) grouped slots according to ordering of their groups
/1 3) ungrouped slots connected with boost::signal s2::at_back

sig();

... we will get the result we wanted:

Hel | o, Worl d!
and good nor ni ng!

Passing Values to and from Slots

Slot Arguments (Beginner)

Signals can propagate arguments to each of the dots they call. For instance, a signal that propagates mouse motion events might
want to pass along the new mouse coordinates and whether the mouse buttons are pressed.

Asan example, we'll create asignal that passestwo f | oat argumentsto its slots. Then welll create afew slots that print the results
of various arithmetic operations on these values.

void print_args(float x, float y)

{
std::cout << "The argunents are " << x << " and " << y << std::endl
}
void print_sum(float x, float y)
{
std::cout << "The sumis " << x + y << std::endl
}
void print_product(float x, float y)
{
std::cout << "The product is " << x * y << std::endl
}
void print_difference(float x, float y)
{
std::cout << "The difference is " << x - y << std::endl;
}
void print_quotient(float x, float vy)
{
std::cout << "The quotient is " << x [/ y << std::endl;
}

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

boost: :signal s2::signal <void (float, float)> sig;

si g. connect (&print_args);

si g. connect (&print_sum;

si g. connect (&pri nt _product);

si g. connect (&print_difference);
si g. connect (&print_quotient);

sig(5., 3.);
This program will print out the following:

The argunents are 5 and 3
The sumis 8

The product is 15

The difference is 2

The quotient is 1.66667

So any values that are given to si g when it is called like afunction are passed to each of the dots. We have to declare the types of
these values up front when we create the signal. The type boost : : si gnal s2: : si gnal <void (float, fl oat)> means that
thesignal hasavoi d return value and takestwo f | oat values. Any slot connected to si g must therefore be ableto taketwo f | oat
values.

Signal Return Values (Advanced)

Just as slots can receive arguments, they can also return values. These values can then be returned back to the caller of the signal
through a combiner. The combiner is a mechanism that can take the results of calling slots (there may be no results or a hundred;
we don't know until the program runs) and coalesces them into a single result to be returned to the caller. The single result is often
asimplefunction of the results of the slot calls: the result of the last slot call, the maximum value returned by any slot, or acontainer
of al of the results are some possibilities.

We can modify our previous arithmetic operations example slightly so that the slots all return the results of computing the product,
guotient, sum, or difference. Then the signal itself can return a value based on these results to be printed:

float product(float x, float y) { return x * vy; }
float quotient(float x, float y) { return x / y; }
float sum(float x, float y) { return x +vy; }

float difference(float x, float y) { return x - vy; }

boost::signal s2::signal <float (float, float)> sig;

si g. connect (&pr oduct) ;

si g. connect (" i ent);
si g. connect (&sum ;

si g. connect (&di f f erence);

/1 The default comnbiner returns a boost::optional containing the return
// value of the last slot in the slot list, in this case the

/1 difference function.

std::cout << *sig(5, 3) << std::endl;

This example program will output 2. Thisis because the default behavior of asignal that hasareturntype (f | oat , the first template
argument given to the boost : : si gnal s2: : si gnal classtemplate) isto call all slots and then return aboost : : opti onal con-
taining the result returned by the last lot called. Thisbehavior isadmittedly silly for this example, because sl ots have no side effects
and the result is the last slot connected.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

A more interesting signal result would be the maximum of the values returned by any slot. To do this, we create a custom combiner
that looks like this:

/1 combi ner which returns the maxi mumval ue returned by all slots
t enpl at e<t ypenane T>
struct maxi mum

{
typedef T result_type

t enpl at e<t ypenane | nputlterator>
T operator()(lnputlterator first, Inputlterator last) const

{

/1 If there are no slots to call, just return the
// default-constructed val ue
if(first == last) return T();
T max_val ue = *first++;
while (first !'=last) {

if (max_value < *first)

max_val ue = *first;
++first;

}

return max_val ue;

}
}s

The maxi numclasstemplate acts as afunction object. Itsresult typeis given by itstemplate parameter, and thisisthe type it expects
to be computing the maximum based on (e.g., maxi nunxf | oat > would find the maximum f | oat in asequence of f | oat s). When
amaxi mumobject is invoked, it is given an input iterator sequence[first, |ast) that includes the results of calling all of the
dots. maxi numuses this input iterator sequence to cal culate the maximum element, and returns that maximum value.

We actually use this new function object type by installing it as a combiner for our signal. The combiner template argument follows
the signal’s calling signature:

boost::signal s2::signal <float (float x, float y),
maxi munxf | oat > > sig;

Now we can connect slots that perform arithmetic functions and use the signal:

si g. connect (&pr oduct) ;

si g. connect ("i ent);
si g. connect (&sum ;

si g. connect (&di f f erence) ;

/1 Qutputs the nmaxi mum value returned by the connected slots, in this case
/1 15 fromthe product function.
std::cout << "maxi mum " << sig(5, 3) << std::endl;

The output of this program will be 15, because regardless of the order in which the slots are connected, the product of 5 and 3 will
be larger than the quotient, sum, or difference.

In other cases we might want to return all of the values computed by the slots together, in one large data structure. This is easily
done with a different combiner:

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

/1 aggregate_values is a conbiner which places all the values returned
/1l fromslots into a container

t enpl at e<t ypenane Cont ai ner >

struct aggregate_val ues

{
typedef Container result_type;

t enpl at e<t ypenane | nputlterator>
Cont ai ner operator()(lnputlterator first, Inputlterator |ast) const

{

Cont ai ner val ues;

while(first !'=last) {
val ues. push_back(*first);
++first;

}

return val ues;

Again, we can create asignal with this new combiner:

boost ::signal s2::signal <float (float, float),
aggr egat e_val ues<std: :vector<float> > > sig;

si g. connect ("i ent);
si g. connect (&or oduct) ;

si g. connect (&sum ;

si g. connect (&di f ference) ;

std::vector<float> results = sig(5, 3);
std::cout << "aggregate val ues:
std::copy(results.begin(), results.end(),

std::ostreamiterator<float>(std::cout, " "));
std::cout << "\n";

The output of this program will contain 15, 8, 1.6667, and 2. It isinteresting here that the first template argument for the si gnall
class, f | oat, isnot actually the return type of the signal. Instead, it is the return type used by the connected slots and will also be
theval ue_t ype of theinput iterators passed to the combiner. The combiner itself isafunction object anditsr esul t _t ype member
type becomes the return type of the signal.

The input iterators passed to the combiner transform dereference operations into slot calls. Combiners therefore have the option to
invoke only some slots until some particular criterion is met. For instance, in adistributed computing system, the combiner may ask
each remote system whether it will handle the request. Only one remote system needsto handle aparticular request, so after aremote
system accepts the work we do not want to ask any other remote systemsto perform the same task. Such a combiner need only check
the value returned when dereferencing the iterator, and return when the value is acceptable. The following combiner returns the first
non-NULL pointer toaFul fi | | edRequest data structure, without asking any later dlots to fulfill the request:

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

struct DistributeRequest {
typedef Fulfill edRequest* result_type;

t enpl at e<t ypenane | nputlterator>
result_type operator()(lnputlterator first, Inputlterator |ast) const

{
while (first !'=last) {
if (result_type fulfilled = *first)
return fulfilled;
++first;
}
return O;
}

}s

Connection Management

Disconnecting Slots (Beginner)

Slots aren't expected to exist indefinitely after they are connected. Often slots are only used to receive a few events and are then
disconnected, and the programmer needs control to decide when a slot should no longer be connected.

Theentry point for managing connectionsexplicitly istheboost : : si gnal s2: : connect i on class. Theconnect i on classuniquely
represents the connection between a particular signal and a particular slot. The connect ed() method checksif the signal and slot
are till connected, and the di sconnect () method disconnects the signal and dot if they are connected before it is called. Each
call to the signal's connect () method returns a connection object, which can be used to determine if the connection still exists or
to disconnect the signal and slot.

boost::signal s2::connection ¢ = sig.connect(HelloWrld());
std::cout << "¢ is connected\n";
sig(); // Prints "Hello, World!"

c.di sconnect(); // Disconnect the Hell owrld object
std::cout << "c is disconnected\n";
sig(); // Does nothing: there are no connected slots

Blocking Slots (Beginner)

Slots can be temporarily "blocked", meaning that they will be ignored when the signal is invoked but have not been permanently
disconnected. Thisistypically used to prevent infinite recursion in cases where otherwise running a slot would cause the signal it is
connected to to be invoked again. A boost : : si gnal s2: : shared_connect i on_bl ock object will temporarily block aslot. The
connection is unblocked by either destroying or calling unbl ock on al the shar ed_connect i on_bl ock objects that reference
the connection. Here is an example of blocking/unblocking slots:

boost: :signal s2::connection ¢ = sig.connect(HelloWrld());
std::cout << "c is not blocked.\n";
sig(); // Prints "Hello, World!"

{

boost: : si gnal s2::shared_connecti on_bl ock bl ock(c); // block the slot
std::cout << "c is blocked.\n";
sig(); // No output: the slot is blocked
} I/ shared_connection_bl ock going out of scope unbl ocks the sl ot
std::cout << "¢ is not blocked.\n";
sig(); // Prints "Hello, World!"}

10

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Scoped Connections (Intermediate)

The boost : : si gnal s2:: scoped_connecti on class references a signal/dot connection that will be disconnected when the
scoped_connect i on class goes out of scope. This ability is useful when a connection need only be temporary, e.g.,

{
boost: :signal s2::scoped_connection c(sig.connect(ShortLived()));
sig(); // will call ShortLived function object

} I/ scoped_connection goes out of scope and di sconnects

sig(); // ShortLived function object no | onger connected to sig

Note, attemptsto initialize a scoped_connection with the assignment syntax will fail dueto it being noncopyable. Either the explicit
initialization syntax or default construction followed by assignment from asi gnal s2: : connect i on will work:

/! doesn't conpile due to conpiler attenpting to copy a tenporary scoped_connection object
/1 boost:: signal s2::scoped_connection cO = sig.connect(ShortLived());

/1 okay
boost: : si gnal s2:: scoped_connecti on cl(sig.connect(ShortLived()));

/1 al so okay
boost: : si gnal s2:: scoped_connection c2
c2 = sig.connect(ShortlLived());

Disconnecting Equivalent Slots (Intermediate)

One can disconnect slots that are equivalent to a given function object using aform of the si gnal : : di sconnect method, so long
as the type of the function object has an accessible == operator. For instance:

void foo() { std::cout << "foo"; }
void bar() { std::cout << "bar\n"; }

boost: :signal s2::signal <void ()> sig;

si g. connect (&f 00) ;
si g. connect (&bar);
sig();

/! disconnects foo, but not bar
si g. di sconnect (& 00) ;
sig();

Automatic Connection Management (Intermediate)

Boost.Signals2 can automatically track the lifetime of objectsinvolved in signal/slot connections, including automatic disconnection
of slots when objects involved in the slot call are destroyed. For instance, consider a simple news delivery service, where clients
connect to a news provider that then sends news to all connected clients as information arrives. The news delivery service may be
constructed like this:

class Newsltem{ /* ... */ };

t ypedef boost::signal s2::signal <void (const Newslten®) > signal _type
si gnal _type deliver News;

11

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

Clients that wish to receive news updates need only connect a function object that can receive news items to the del i ver News
signal. For instance, we may have a special message areain our application specifically for news, e.g.,:

struct NewsMessageArea : public MessageArea

{
publi c:
I
voi d di spl ayNews(const Newsltem& news) const
{
nmessageText = news.text();
updat e();
}
b
I
NewsMessageAr ea *newsMessageArea = new NewsMessageArea(/* ... */);
I

del i ver News. connect (boost : : bi nd(&NewsMessageAr ea: : di spl ayNews,
newsMessageArea, _1));

However, what if the user closesthe news message area, destroying the news MessageAr ea object that del i ver News knows about?
Most likely, a segmentation fault will occur. However, with Boost.Signals2 one may track any object which is managed by a
shared_ptr, by using sl ot::track. A slot will automatically disconnect when any of its tracked objects expire. In addition,
Boost.Signals2 will ensure that no tracked object expireswhilethe dlot it isassociated with isin mid-execution. It does so by creating
temporary shared_ptr copies of the slot's tracked objects before executing it. To track News MessageAr ea, we use a shared_ptr to
manage its lifetime, and pass the shared_ptr to the dlot viaitssl ot : : t r ack method before connecting it, e.g.:

...

boost: : shared_ptr<NewsMessageAr ea> newsMessageAr ea(new NewsMessageArea(/* ... */));

...

del i ver News. connect (si gnal _type: : sl ot_type(&\NewsMessageAr ea: : di spl ayNews,
newsMessageArea. get (), _1).track(newsMessageArea));

Note there is no explicit call to bind() needed in the above example. If the si gnal s2: : sl ot constructor is passed more than one
argument, it will automatically pass all the argumentsto bi nd and use the returned function object.

Also note, we pass an ordinary pointer as the second argument to the slot constructor, using news MessageAr ea. get () instead of
passing theshar ed_pt r itself. If we had passed the news MessageAr ea itself, acopy of theshar ed_pt r would have been bound
into the slot function, preventing the shar ed_pt r from expiring. However, the use of sl ot : : t r ack implies we wish to allow the
tracked object to expire, and automatically disconnect the connection when this occurs.

shar ed_pt r classesother thanboost : : shared_pt r (suchasst d: : shar ed_pt r) may a so betracked for connection management
purposes. They are supported by the sl ot : : t rack_f or ei gn method.

Postconstructors and Predestructors (Advanced)

One limitation of using shar ed_pt r for tracking is that an object cannot setup tracking of itself in its constructor. However, it is
possible to set up tracking in a post-constructor which is called after the object has been created and passed to ashar ed_ptr. The
Boost.Signals2 library provides support for post-constructors and pre-destructors viathe deconst r uct () factory function.

For most cases, the simplest and most robust way to setup postconstructorsfor aclassisto define an associated adl _post const r uct
function which can be found by deconst r uct () , makethe class constructors private, and givedeconst r uct accessto the private
constructors by declaring deconst ruct _access afriend. This will ensure that objects of the class may only be created through
thedeconst ruct () function, and their associated adl _post const ruct () function will aways be called.

12

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

The examples section contains several examples of defining classes with postconstructors and predestructors, and creating objects
of these classes using deconst r uct ()

Be aware that the postconstructor/predestructor support in Boost.Signals2 isin no way essential to the use of the library. The use of
deconst ruct ispurely optional. One alternative isto define static factory functionsfor your classes. Thefactory function can create
an object, pass ownership of the object to ashar ed_pt r, setup tracking for the object, then return the shared_ptr.

When Can Disconnections Occur? (Intermediate)
Signal/slot disconnections occur when any of these conditions occur:

» Theconnection isexplicitly disconnected viathe connection'sdi sconnect method directly, or indirectly viathesignal'sdi scon-
nect method, or scoped_connect i on's destructor.

» An object tracked by the dot is destroyed.
e Thesignal isdestroyed.

These events can occur at any time without disrupting asignal's calling sequence. If asignal/slot connection is disconnected at any
time during asignal's calling sequence, the calling sequence will still continue but will not invoke the disconnected slot. Additionally,
asignal may be destroyed whileit isin acalling sequence, and which caseit will completeitsslot call sequence but may not be accessed
directly.

Signals may be invoked recursively (e.g., asigna A calls adlot B that invokes signal A...). The disconnection behavior does not
change in the recursive case, except that the slot calling sequence includes slot calls for all nested invocations of the signal.

Note, even after aconnection isdisconnected, itss associated slot may still bein the process of executing. In other words, disconnection
does not block waiting for the connection's associated slot to complete execution. This situation may occur in a multi-threaded en-
vironment if the disconnection occurs concurrently with signal invocation, or in asingle-threaded environment if a slot disconnects
itself.

Passing Slots (Intermediate)

Slots in the Boost.Signals2 library are created from arbitrary function objects, and therefore have no fixed type. However, it is
commonplace to require that slots be passed through interfaces that cannot be templates. Slots can be passed viathe sl ot _t ype for
each particular signal type and any function object compatible with the signature of the signal can be passed to asl ot _t ype para-
meter. For instance:

13

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

/1l a pretend GU button
class Button
{
t ypedef boost::signals2::signal<void (int x, int y)> Ondick;
public:
typedef Ondick::slot_type OndickSl ot Type;
/1 forward slots through Button interface to its private signal
boost: : signal s2::connection doOnCd ick(const OnCickSl ot Type & slot);

/1 simulate user clicking on GU button at coordi nates 52, 38
void simulatedick();
private:
Ond ick ondick;

b

boost: :signal s2::connection Button::doOnC ick(const OnClickSl ot Type & slot)
{ return ondick.connect(slot);

}

voi d Button::sinulatedick()

{ onCick(52, 38);

}

voi d printCoordinates(long x, long y)

i std::cout << "(" << x << ", " <<y << ")\n";

Button button;
butt on. doOnC i ck(&pri nt Coor di nat es) ;
button. si mul ated i ck();

The doOnd i ck method is now functionally equivalent to the connect method of the ond i ck signal, but the details of the
doOnCl i ck method can be hidden in an implementation detail file.

Example: Document-View

Signals can be used to implement flexible Document-View architectures. The document will contain a signal to which each of the
views can connect. The following Docunrent class defines a simple text document that supports mulitple views. Note that it stores
asingle signal to which all of the views will be connected.

14

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

cl ass Docunent

{
publi c:
t ypedef boost::signal s2::signal<void ()> signal _t;

publi c:
Docunent ()
{}

/* Connect a slot to the signal which will be enmtted whenever
text is appended to the docunent. */
boost: : signal s2::connection connect(const signal _t::slot_type &subscriber)

{
}

voi d append(const char* s)

{

return msig. connect (subscri ber);

mtext +=s;
m sig();
}

const std::string& getText() const

{
}

return mtext;

private:
signal _t m si g;
std::string mtext;

3
Next, we can begin to define views. The following Text Vi ew class provides asimple view of the document text.

cl ass Text Vi ew

{
publi c:
Text Vi ew(Document & doc): m docunent (doc)
{
m_connecti on = m docunent. connect (boost: : bi nd(&Text Vi ew. : refresh, this));
}
~Text Vi ew()
{
m_connect i on. di sconnect () ;
}
void refresh() const
{
std::cout << "TextView " << mdocunent.getText() << std::endl;
}
private:
Docunent & m docunent ;
boost:: signal s2::connection m.connection;
b

Alternatively, we can provide aview of the document translated into hex values using the Hex Vi ew view:

15

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

cl ass HexVi ew

{
publi c:
HexVi ew(Docunent & doc): m docunent (doc)

{
}

~HexVi ew()
{

}

m_connecti on = m docunent. connect (boost: : bi nd(&HexVi ew. : refresh, this));

m_connecti on. di sconnect ();

voi d refresh() const

{

const std::string& s = m.docunent.getText();
std::cout << "HexView ";

for (std::string::const_iterator it = s.begin(); it !=s.end(); ++it)
std::cout << ' ' << std::hex << static_cast<int>(*it);

std::cout << std::endl;

}

private:
Docunent & m _docunent ;
boost: :signal s2::connection m.connection;

To tie the example together, here isa simple nmai n function that sets up two views and then modifies the document:

int main(int argc, char* argv[])

{
Docunent doc;
Text Vi ew vl(doc);
HexVi ew v2(doc);
doc. append(argc == 2 ? argv[1l] : "Hello world!'");
return O;
}

The complete example source, contributed by Keith MacDonald, is available in the examples section. We also provide variations
on the program which employ automatic connection management to disconnect views on their destruction.

Giving a Slot Access to its Connection (Advanced)

You may encounter situations where you wish to disconnect or block a slot's connection from within the slot itself. For example,
suppose you have a group of asynchronous tasks, each of which emits a signal when it completes. You wish to connect a slot to all
the tasks to retrieve their results as each completes. Once a given task completes and the slot is run, the slot no longer needs to be
connected to the completed task. Therefore, you may wish to clean up old connections by having the slot disconnect its invoking
connection when it runs.

For adlot to disconnect (or block) itsinvoking connection, it must have accesstoasi gnal s2: : connect i on object which references
the invoking signal-slot connection. The difficulty is, the connect i on object is returned by the si gnal : : connect method, and
thereforeisnot available until after the ot isalready connected to the signal . This can be particularly troublesomein amulti-threaded
environment where the signal may be invoked concurrently by a different thread while the slot is being connected.

Therefore, the signal classes provide si gnal : : connect _ext ended methods, which allow slots which take an extra argument to
be connected to asignal. Theextraargument isasi gnal s2: : connect i on object which refersto the signal-slot connection currently
invoking the slot. si gnal : : connect _ext ended uses slots of the type given by the si gnal : : ext ended_sl ot _t ype typedef.

16

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

The exampl es section includes an extended_slot program which demonstrates the syntax for using si gnal : : connect _ext ended.

Changing the wtex Type of a Signal (Advanced).

For most casesthe default type of boost : : si gnal s2: : mut ex for asi gnal s2: : si gnal 'sMut ex template type parameter should
befine. If you wish to use an alternate mutex type, it must be default-constructible and fulfill the Lockabl e concept defined by the
Boost. Thread library. That is, it must have | ock() and unl ock() methods (the Lockabl e concept also includesatry_I ock()
method but this library does not require try locking).

The Boost.Signals? library provides one alternate mutex class for use with si gnal : boost : : si gnal s2: : dummmy_nut ex. Thisis
afake mutex for use in single-threaded programs, where locking a real mutex would be useless overhead. Other mutex types you
could use with si gnal include boost : : nut ex, or the st d: : nut ex from C++11.

Changing a signal’'s Mut ex template type parameter can be tedious, due to the large number of template parameters which precede
it. Thesi gnal _t ype metafunction is particularly useful in this case, since it enables named template type parameters for the si g-
nal s2: :signal class. For example, to declare a signal which takes an i nt as an argument and uses a boost: : si g-
nal s2: : dummy_nut ex for its Mut ex types, you could write:

namespace bs2 = boost::signal s2;
usi ng bs2:: keywords;
bs2::signal _type<void (int), nmutex_type<bs2::dunmmy_mutex> >::type sig;

Linking against the Signals2 library

Unlike the original Boost.Signals library, Boost.Signals2 is currently header-only.

17

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Example programs

Miscellaneous Tutorial Examples

hello_world_slot
This example is a basic example of connecting aslot to asignal and then invoking the signal.

Download hello_world_slot.cpp.

hello_world_multi_slot
This example extends the hello_world_slot example slightly by connecting more than one slot to the signal before invoking it.

Download hello_world_multi_slot.cpp.

ordering_slots
This example extendsthe hello_world_multi_slot example slightly by using slot groups to specify the order slots should be invoked.

Download ordering_slots.cpp.

slot_arguments
The slot_arguments program shows how to pass arguments from a signal invocation to slots.

Download slot_arguments.cpp.

signal_return_value
This example shows how to return avalue from slotsto the signal invocation. It usesthe default opt i onal _| ast _val ue combiner.

Download signa_return_value.cpp.

custom_combiners
This example shows more returning of values from slotsto the signal invocation. Thistime, custom combiners are defined and used.

Download custom_combiners.cpp.

disconnect_and_block

This example demonstrates various means of manually disconnecting slots, aswell astemporarily blocking them viashar ed_con-
necti on_bl ock.

Download disconnect_and_block.cpp.
passing_slots

This example demonstrates the passing of slot functions to a private signal through a non-template interface.

Download passing_slots.cpp.

18

httpo://www.renderx.com/

../../../../libs/signals2/example/hello_world_slot.cpp
../../../../libs/signals2/example/hello_world_multi_slot.cpp
../../../../libs/signals2/example/ordering_slots.cpp
../../../../libs/signals2/example/slot_arguments.cpp
../../../../libs/signals2/example/signal_return_value.cpp
../../../../libs/signals2/example/custom_combiners.cpp
../../../../libs/signals2/example/disconnect_and_block.cpp
../../../../libs/signals2/example/passing_slots.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

extended_slot

This example demonstrates connecting an extended slot to asignal. An extended slot accepts a reference to its invoking signal-slot
connection as an additional argument, permitting the slot to temporarily block or permanently disconnect itself.

Download extended_slot.cpp.

Document-View

doc_view

This is the document-view example program which is described in the tutorial. It shows usage of a signal and slots to implement
two different views of atext document.

Download doc_view.cpp.

doc_view_acm

This program modifies the original doc_view.cpp example to employ automatic connection management.
Download doc_view_acm.cpp.

doc_view_acm_deconstruct

This program modifies the doc_view_acm.cpp example to use postconstructors and the deconst r uct () factory function.

Download doc_view_acm_deconstruct.cpp.

Postconstructors and Predestructors with dgeconstruct ()

postconstructor_ex1

This program is abasic example of how to define aclass with a postconstructor which usesdeconst r uct () asitsfactory function.
Download postconstructor_ex1.

postconstructor_ex2

This program extends the postconstructor_ex1 example dlightly, by additionally passing arguments from the deconst r uct () call
through to the class' constructor and postconstructor.

Download postconstructor_ex2.
predestructor_example

This program is a basic example of how to define a class with a predestructor which usesdeconst ruct () asitsfactory function.

Download predestructor_example.

19

httpo://www.renderx.com/

../../../../libs/signals2/example/extended_slot.cpp
../../../../libs/signals2/example/doc_view.cpp
../../../../libs/signals2/example/doc_view_acm.cpp
../../../../libs/signals2/example/doc_view_acm_deconstruct.cpp
../../../../libs/signals2/example/postconstructor_ex1.cpp
../../../../libs/signals2/example/postconstructor_ex2.cpp
../../../../libs/signals2/example/predestructor_example.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Reference

Header <boost/signals2.hpp>

Including the "boost/signals2.hpp" header pullsin all the other headers of the Signals2 library. It is provided as a convenience.

Header <boost/signals2/connection.hpp>

nanespace boost {
nanespace signal s2 {
cl ass connection
voi d swap(connecti on& connectiong&)
cl ass scoped_connection
}
}

Class connection

boost::signal s2::connection — Query/disconnect a signal-slot connection.
Synopsis
/1 I'n header: <boost/signal s2/connecti on. hpp>

cl ass connection {
public:
/'l construct/copy/ destruct
connection();
connection(const connection&)
connecti on(connecti on&&)
connect i on& oper at or =(const connection&)
connecti on& oper at or =(connecti on&&) ;

/'l connection nanagenent
voi d di sconnect () const
bool connected() const;

/'l bl ocki ng
bool bl ocked() const;

/'l nodifiers
voi d swap(connectiong&);

/'l comparisons

bool operator==(const connection&) const;
bool operator!=(const connection&) const;
bool operator<(const connection&) const

b

/'l specialized al gorithms
voi d swap(connection&, connectiong&)

20

render

s httpo://www.renderx.com/

../../../../boost/signals2.hpp
../../../../boost/signals2/connection.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

Description

The signals2::connection class represents a connection between a Signal and a Slot. It is alightweight object that has the ability to
query whether the signal and slot are currently connected, and to disconnect the signal and dlot. It isalways safeto query or disconnect
a connection.

Thread Safety

The methods of the connect i on class are thread-safe with the exception of swap and the assignment operator. A connecti on
object should not be accessed concurrently when either of these operations is in progress. However, it is always safe to access a
different connect i on object in another thread, even if the two connect i on objects are copies of each other which refer to the
same underlying connection.

connecti on public construct/copy/destruct

connection();

Effects: Sets the currently represented connection to the NULL connection.
Postconditions: I't hi s->connect ed().
Throws: Will not throw.
2 connection(const connection& other);
Effects: t hi s references the connection referenced by ot her .
Throws: Will not throw.
3. connecti on(connecti on&& ot her);
Move constructor.
Effects: t hi s references the connection formerly referenced by ot her . The moved-from ot her no longer references any
connection.
Throws: Will not throw.
4. connecti on& operator=(const connection& rhs);
Effects: t hi s references the connection referenced by r hs.
Throws: Will not throw.
5. connecti on& operat or=(connecti on&& rhs);
Move assignment.
Effects: t hi s references the connection formerly referenced by r hs. The moved-from r hs no longer references any con-
nection.
Throws: Will not throw.

connect i on connection management

voi d di sconnect () const;

Effects: If t hi s->connect ed(), disconnects the signal and slot referenced by this; otherwise, this operation
isano-op.
Postconditions: 't hi s->connect ed().

bool connected() const;

21

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Returns: true if thisreferences anon-NULL connection that is still active (connected), and f al se otherwise.
Throws: Will not throw.

connecti on blocking

L bool bl ocked() const;

Queries if the connection is blocked. A connection may be blocked by creating a boost : : si gnal s2: : shar ed_connec-
ti on_bl ock object.

Returns: t rue if the associated dlot is either disconnected or blocked, f al se otherwise.

Throws: Will not throw.

connect i on modifiers
voi d swap(connecti on& ot her);

Effects: Swaps the connections referenced int hi s and ot her .
Throws: Will not throw.

connecti on comparisons

bool operator==(const connection& other) const;

Returns: true if t hi s and ot her reference the same connection or both reference the NULL connection, and f al se oth-
erwise.
Throws: Will not throw.
2. bool operator!=(const connection& other) const;
Returns: I'(*this == other)
Throws: Will not throw.
3.

bool operator<(const connection& other) const;

Returns: t r ue if the connection referenced by t hi s precedesthe connection referenced by ot her based on some unspecified
ordering, and f al se otherwise.
Throws: Will not throw.

connect i on specialized algorithms
voi d swap(connecti on& x, connection& y);

Effects: X. swap(y)
Throws: Will not throw.

Class scoped_connection

boost::signals2::scoped connection — Limits a signal-slot connection lifetime to a particular scope.

22

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Synopsis
/'l 1n header: <boost/signal s2/connection. hpp>

cl ass scoped_connection : public connection {
publi c:
/'l construct/copy/ destruct
scoped_connection();
scoped_connection(const connecti on&);
scoped_connecti on(scoped_connecti on&&) ;
scoped_connecti on(connecti on&s&) ;
scoped_connecti on& operat or=(const connectiong&);
scoped_connecti on& oper at or =(scoped_connecti on&s&) ;
scoped_connecti on& operat or =(connecti on&&) ;
~scoped_connection();

/'l public nethods
connection rel ease();
private:
/'l construct/copy/ destruct
scoped_connecti on(const scoped_connecti ong&);
scoped_connecti on& operat or=(const scoped_connecti on&);

e

Description
A connection which automatically disconnects on destruction.
Thread Safety

The methods of the scoped_connect i on class (including those inherited from its base connect i on class) are thread-safe with
the exception of signals2::connection::swap, release, and the assignment operator. A scoped_connect i on object should not be
accessed concurrently when any of these operations is in progress. However, it is always safe to access a different connect i on
object in another thread, even if it references the same underlying signal-slot connection.

scoped_connect i on public construct/copy/destruct
scoped_connection();

Default constructs an empty scoped_connection.

Postconditions: connected() == fal se
Throws: Will not throw.
2. scoped_connection(const connecti on& ot her);
Effects: t hi s references the connection referenced by ot her .
Postconditions: connect ed() == other. connected()
Throws: Will not throw.
3. scoped_connecti on(scoped_connecti on&& ot her);
Move constructor.
Effects: t hi s references the connection formerly referenced by ot her . The moved-from ot her no longer references any
connection.
Throws: Will not throw.

23

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

scoped_connecti on(connecti on&& ot her) ;

Move constructor.
Effects: t hi s references the connection formerly referenced by ot her . The moved-from ot her no longer references any
connection.
Throws: Will not throw.
5.

scoped_connecti on& operat or=(const connecti on& rhs);

Copy assignment from unscoped connection.

Effects: t hi s references the connection referenced by r hs. If t hi s aready references another connection, the
old connection will be disconnected first.
Postconditions: connect ed() == other.connected()
Throws: Will not throw.
6. scoped_connecti on& oper at or =(scoped_connecti on&& rhs);
Move assignment.
Effects: t hi s references the connection formerly referenced by r hs. The moved-from r hs no longer references any con-
nection. If t hi s aready references another connection, the old connection will be disconnected first.
Throws: Will not throw.
7 scoped_connecti on& operat or=(connecti on&& rhs);
Move assignment.
Effects: t hi s references the connection formerly referenced by r hs. The moved-from r hs no longer references any con-
nection. If t hi s already references another connection, the old connection will be disconnected first.
Throws: Will not throw.

~scoped_connection();

Effects: If t hi s- >connect ed() , disconnects the signal-slot connection.

scoped_connect i on public methods

connection rel ease();

Effects: Releases the connection so it will not be disconnected by thescoped_connect i on whenitisdestroyed
or reassigned. The scoped_connect i on isreset to the NULL connection after this call completes.

Postconditions: connected() == fal se

Returns: A connection object referencing the connection which was released by the scoped_connecti on.

scoped_connect i on private construct/copy/destruct
scoped_connection(const scoped_connecti on& ot her);
The scoped_connection class is not copyable. It may only be copy constructed from an unscoped connect i on object.
scoped_connecti on& operat or=(const scoped_connecti on& rhs);

The scoped _connection class is not copyable. It may only be copy assigned from an unscoped connect i on object.

24

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

Header <boost/signals2/deconstruct.hpp>

nanespace boost {
namespace signal s2 {
cl ass deconstruct _access;
cl ass postconstructor_invoker;
t enpl at e<t ypenane T> postconstructor_i nvoker<T> deconstruct();
tenpl at e<typenane T, typenanme Al>
post construct or _i nvoker <T> deconstruct (const Al &);
tenpl at e<typenane T, typenanme Al, typenane A2>
post constructor _i nvoker <T> deconstruct(const Al & const A2 &);

tenpl at e<typenane T, typename Al, typenane A2, ..., typenane AN>
post construct or _i nvoker <T>
deconstruct (const Al & const A2 & ..., const AN &) ;

Function deconstruct

boost::signals2::deconstruct — Create ashar ed_pt r with support for post-constructors and pre-destructors.
Synopsis
/'l 1n header: <boost/signal s2/deconstruct. hpp>

t enpl at e<t ypenanme T> postconstructor_i nvoker <T> deconstruct();
tenpl at e<typenane T, typenane Al>
post constructor _i nvoker <T> deconstruct (const Al & argl);
tenpl at e<typenanme T, typenane Al, typenane A2>
post constructor _i nvoker <T> deconstruct (const Al & argl, const A2 & arg2);

tenpl at e<typenane T, typenanme Al, typename A2, ..., typename AN>

post construct or _i nvoker <T>

deconstruct (const Al & argl, const A2 & arg2, ..., const AN & argN);
Description

Creates an object and itsowning shar ed_pt r <T> (wrapped insideapost const r uct or _i nvoker) using only asingle allocation,
in amanner similar to that of boost : : make_shar ed() . In addition, deconst r uct supports postconstructors and predestructors.
The returned shar ed_pt r iswrapped inside apost const ruct or _i nvoker in order to provide the user with an opportunity to
pass arguments to a postconstructor, while insuring the postconstructor is run before the wrapped shar ed_pt r isaccessible.

In order to use deconst r uct you must define a postconstructor for your class. More specifically, you must define an adl _post -

const ruct function which can be found via argument-dependent lookup. Typically, this means defining an adl _post const r uct

function in the same namespace as its associated class. See the reference for post const ruct or _i nvoker for a specification of
what arguments are passed to the adl _post const ruct call.

Optionally, you may define a predestructor for your class. Thisis done by defining an adl _pr edest r uct function which may be
found by argument-dependent lookup. The deleter of the shar ed_pt r created by deconst ruct will make an unqualified call to
adl _predest ruct with asingle argument: a pointer to the object which is about to be deleted. As a convenience, the pointer will
always be cast to point to a hon-const type before being passed to adl _pr edest ruct . If no user-defined adl _pr edest r uct
function is found via argument-dependent lookup, a default function (which does nothing) will be used. After adl _pr edest r uct
iscalled, the deleter will delete the object with checked_del et e.

Any arguments passed to adeconst ruct () cal areforwarded to the matching constructor of the template type T. Arguments may
also be passed to the class associated adl _post const ruct function by using the post construct or _i nvoker: : post con-
struct () methods.

25

httpo://www.renderx.com/

../../../../boost/signals2/deconstruct.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Notes: If your compiler supports the C++11 features of rvalue references and variadic templates, then deconst ruct will
perform perfect forwarding of arguments to the T constructor, using a prototype of:;

tenmpl ate< typename T, typenane... Args > postconstructor_invoker< T > deconO
struct(Args && ... args);

Otherwise, argument forwarding is performed via const references, as specified in the synopsis. In order to pass non-
const references to a constructor, you will need to wrap them in reference wrappers using boost::ref.

You may give al the deconst r uct overloads access to your class private and protected constructors by declaring

deconstruct_accessafriend. Using private constructorsin conjunction with deconstruct_access can be useful to ensure

your objectsare only created by deconst r uct , and thustheir postconstructors or predestructorswill alwaysbe called.
Returns: A post const ruct or _i nvoker <T> owning anewly allocated object of type T.

Class deconstruct_access

boost::signals2::deconstruct_access — Gives deconstruct access to private/protected constructors.
Synopsis
/1 I n header: <boost/signal s2/deconstruct. hpp>

cl ass deconstruct _access {

I

Description

Declaring deconst ruct _access afriend to your class will give the deconstruct factory function access to your class' private and
protected constructors. Using private constructorsin conjunction withdeconst r uct _access can be useful to ensure postconstructible
or predestructible objects are always created properly using deconst r uct .

Class postconstructor_invoker

boost::signals2::postconstructor_invoker — Pass arguments to and run postconstructors for objects created with deconstruct().
Synopsis
/'l 1In header: <boost/signal s2/deconstruct. hpp>

cl ass postconstructor_invoker {
publi c:

/1 public nmethods
operator const shared_ptr<T> &)
const shared_ptr<T> & postconstruct ()
tenpl at e<t ypenane Al> const shared_ptr<T> & postconstruct (Al)
tenpl at e<t ypenane Al, typenane A2>

const shared_ptr<T> & postconstruct (Al, Al)
tenpl at e<typenane Al, typenane A2, ..., typenane AN>

const shared_ptr<T> & postconstruct (Al, Al, ..., Al)

26

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

Description

Objectsof typepost const ruct or _i nvoker arereturned by callsto the deconstruct() factory function. These objects are intended
to either beimmediately assigned to ashared_ptr (in which case the class conversion operator will perform the conversion by calling
the postconstruct with no arguments), or to be converted to shared_ptr explicitly by the user calling one of the postconstruct methods.

post const ruct or _i nvoker public methods
operator const shared_ptr<T> &();
The conversion operator has the same effect as explicitly calling the post const r uct method with no arguments.

const shared_ptr<T> & postconstruct();
t enpl at e<t ypename Al> const shared_ptr<T> & postconstruct (Al al);
tenpl at e<t ypenane Al, typenane A2>
const shared_ptr<T> & postconstruct (Al al, Al a2);
tenpl at e<t ypenane Al, typenane A2, ..., typenane AN>
const shared_ptr<T> & postconstruct (Al al, Al a2, ..., Al aN);

The post const ruct methods make an unqualified call to adl _post const ruct () and then return the shar ed_pt r which
was wrapped inside the post const ruct or _i nvoker object by deconstruct (). The first two arguments passed to the
adl _post const ruct () call arealwaystheshar ed_pt r owning theobject created by deconst r uct () , followed by aordinary
pointer to the same object. As a convenience, the ordinary pointer will always be cast to point to a non-const type before being
passed to adl _post const r uct . The remaining arguments passed to adl _post const ruct are whatever arguments the user
may have passed to the post const ruct method.

Header <boost/signals2/dummy_mutex.hpp>

nanespace boost {
nanespace signal s2 {
cl ass dumy_nut ex;

}
}

Class dummy_mutex

boost::signals2::dummy_mutex — Fake mutex which does nothing.
Synopsis
/1 I'n header: <boost/signal s2/ dumry_nut ex. hpp>

class dummy_nutex : public noncopyable {
public:

void | ock();

bool try_lock();

voi d unl ock();

b

Description

You may wish to use the dummy_nut ex class for the Mut ex template type of your signals if you are not concerned about thread
safety. This may give dlightly faster performance, since dunmy_nut ex performs no actual locking.

27

httpo://www.renderx.com/

../../../../boost/signals2/dummy_mutex.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

voi d lock();
No effect.
bool try_lock();

No effect.

Returns: true.
voi d unl ock();
No effect.

Header <boost/signals2/last_value.hpp>

namespace boost {
namespace signal s2 {
tenpl at e<t ypenane T> cl ass | ast _val ue;
tenpl at e<> cl ass | ast_val ue<voi d>;

class no_slots error;

}
}

Class template last_value

boost::signals2::last_value — Evaluate an I nputlterator sequence and return the last value in the sequence.
Synopsis

/1 I'n header: <boost/signal s2/1ast_val ue. hpp>

t enpl at e<t ypenane T>
class last_val ue {
public:

/'l types

typedef T result_type;

/'l invocation

t enpl at e<t ypenane | nputlterator>
result_type operator()(lnputlterator, Inputlterator) const;

Description

Thel ast _val ue classwasthe default Conbi ner template parameter type for signalsin the original Signalslibrary. Signals2 uses
optional_last_value as the default, which does not throw.

| ast _val ue invocation

t enpl at e<t ypenane | nputlterator>
result_type operator()(lnputlterator first, Inputlterator |ast) const;

28

render

httpo://www.renderx.com/

../../../../boost/signals2/last_value.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Effects: Attempts to dereference every iterator in the sequence[first, |ast).
Returns: The result of the last successful iterator dereference.
Throws: no_slots error if no iterators were successfully dereferenced, unless the template type of | ast _val ue isvoi d.

Specializations

» Classlast_value<void>

Class last_value<void>

boost::signals2::last_value<void> — Evaluate an Inputlterator sequence.
Synopsis
/1 I'n header: <boost/signal s2/1ast_val ue. hpp>

class | ast_val ue<voi d> {
public:

/'l types

typedef void result_type

/1l invocation

t enpl at e<t ypenane | nputlterator>
result_type operator()(lnputlterator, Inputlterator) const;

Description

| ast _val ue invocation

t enpl at e<t ypenane | nputlterator>
result_type operator()(lnputlterator first, Inputlterator |ast) const

Effects: Attempts to dereference every iterator in the sequence[first, |ast).
Throws: Unlike the non-void versions of | ast _val ue, the void specialization does not throw.

Class no_slots_error

boost::signals2::no_slots error — Indicates a combiner was unable to synthesize areturn value.
Synopsis
/1l I'n header: <boost/signal s2/1ast_val ue. hpp>

class no_slots_error : public std::exception {
publi c:
virtual const char * what() const;

b

Description
Theno_sl ot s_er ror exception may bethrown by signals2::last_ valuewhen it isrun but unableto obtain any resultsfrom itsinput
iterators.

29

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

virtual const char * what() const;

Header <boost/signals2/mutex.hpp>

nanespace boost {
namespace signal s2 {
cl ass nutex;

}
}

Class mutex

boost::signals2::mutex — A header-only mutex which implements the L ockable concept of Boost. Thread.
Synopsis
/1 I'n header: <boost/signal s2/ nut ex. hpp>

class nutex {
public:

voi d | ock();
bool try_lock();
voi d unl ock()

i

Description

Themut ex classimplementsthe Lockabl e concept of Boost. Thread, and isthe default Mut ex template parameter type for signals.
If boost has detected thread support in your compiler, the mut ex class will map to a CRITICAL_SECTION on Windows or a
pthread_mutex on POSIX. If thread support is not detected, mut ex will behave similarly to a dummy_mutex. The header file

boost / confi g. hpp definesthe macro BOOST_HAS_ THREADS when boost detects threading support. The user may globally disable
thread support in boost by defining BOOST DISABLE_THREADS before any boost header files are included.

If you are already using the Boost. Thread library, you may prefer to use its boost::mutex class instead as the mutex type for your
signals.

You may wish to use athread-unsafe signal, if the signal is only used by a single thread. In that case, you may prefer to usethe sig-
nals2::dummy_mutex class as the Mut ex template type for your signal.

voi d lock();
L ocks the mutex.
bool try_lock();

Makes a non-blocking attempt to lock the mutex.

Returns: t r ue On success.
voi d unl ock()

Unlocks the mutex.

30

httpo://www.renderx.com/

../../../../boost/signals2/mutex.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Header <boost/signals2/optional_last_value.hpp>

nanespace boost {
namespace signal s2 {
tenpl at e<typenane T> cl ass optional _| ast_val ue

tenpl at e<> cl ass optional _| ast _val ue<voi d>
}
}

Class template optional _last_value

boost::signals2::optional_last_value — Evaluate an Inputlterator sequence and return a boost::optional which containsthe last value
in the sequence, or an empty boost::optional if the sequence was empty.

Synopsis

/'l In header: <boost/signal s2/optional _| ast_val ue. hpp>

t enpl at e<t ypenane T>
class optional _| ast_val ue {
public:
/'l types
t ypedef boost::optional <T> result_type;

/! invocation

t enpl at e<t ypenane | nputlterator>
result_type operator()(lnputlterator, Inputlterator) const;

Description

optional _I| ast _val ue isthedefault Combiner templatetypefor signalsinthe Boost.Signal s2 library. The advantage of opt i on-
al _l ast_val ue oversignals2::last_valueisthat opti onal _I ast _val ue can return an empty boost::optional. rather than throwing
an exception, when its| nput | t er at or sequenceis empty.

optional _| ast_val ue invocation

L tenpl at e<typenane | nputlterator>
result_type operator()(lnputlterator first, Inputlterator |ast) const
Effects: Attempts to dereference every iterator in the sequence[first, |ast).
Returns: The result of the last successful iterator dereference, wrapped in aboost::optional. Thereturned opt i onal will be
empty if no iterators were dereferenced.
Throws: Does not throw.

Specializations

» Classoptiona_last value<void>

Class optional_last_value<void>

boost::signals2::optional_last_value<void> — Evaluate an I nputlterator sequence.

31

render

httpo://www.renderx.com/

../../../../boost/signals2/optional_last_value.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

Synopsis
/'l In header: <boost/signal s2/optional _|ast_val ue. hpp>

cl ass optional _| ast_val ue<voi d> {
publi c:

/'l types

typedef void result_type

/1 invocation

t enpl at e<t ypenane | nputlterator>
result_type operator()(lnputlterator, Inputlterator) const;

Description

Thisspeciaization of signals2::optional_last_valueisprovided to copewith thefact that thereisno such thing asanopt i onal <voi d>,
which optional_last_value would otherwisetry to use asitsresul t _t ype. This speciaization instead setsther esul t _t ype to be
voi d.

optional _| ast_val ue invocation

tenpl at e<typenane | nputlterator>
result_type operator()(lnputlterator first, Inputlterator |ast) const

Effects: Attempts to dereference every iterator in the sequence [first, last).
Header <boost/signals2/shared _connection_block.hpp>

nanespace boost {
nanespace signal s2 {
cl ass shared_connecti on_bl ock

}
}

Class shared_connection_block

boost::signals2::shared_connection_block — Blocks a connection between asignal and aslot.

32

httpo://www.renderx.com/

../../../../boost/signals2/shared_connection_block.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Synopsis
/'l 1In header: <boost/signal s2/shared_connection_bl ock. hpp>

cl ass shared_connection_bl ock {
publi c:
/'l construct/copy/ destruct
shared_connecti on_bl ock(const boost::signal s2::connection & = connection()
bool = true);
shar ed_connecti on_bl ock(const boost: :signal s2::shared_connecti on_bl ock &)
shar ed_connecti on_bl ock&
oper at or =(const boost: : si gnal s2:: shared_connecti on_bl ock &)
~shar ed_connecti on_bl ock() ;

/'l connection bl ocking
voi d unbl ock();

voi d bl ock();

bool bl ocking() const;

/1 mscell aneous nethods
boost: : si gnal s2::connection connection() const;

Description

A shar ed_connect i on_bl ock object blocks a connection, preventing the associated slot from executing when the associated
signal isinvoked. The connection will remain blocked until every shar ed_connect i on_bl ock that referencesthe connection releases
itsblock. A shar ed_connect i on_bl ock releasesits block when it is destroyed or its unblock method is called.

A shar ed_connect i on_bl ock issafeto use even after the signal s2::connection object it was constructed from has been destroyed,
or the connection it references has been disconnected.

Note, blocking a connection does not guarantee the associated slot has finished execution if it is already in the process of being run
when the connection block goesinto effect. Thisissimilar to the behaviour of disconnect, in that blocking a connection will not wait
for the connection's associated slot to complete execution. This situation may arisein amulti-threaded environment if the connection
block goes into effect concurrently with signal invocation, or in a single-threaded environment if a slot blocks its own connection.

shar ed_connecti on_bl ock public construct/copy/destruct

shared_connecti on_bl ock(const boost::signal s2::connection & conn = connection()
bool initially_blocking = true);

Effects: Creates a shar ed_connecti on_bl ock which can block the connection referenced by conn. The
shar ed_connecti on_bl ock will initially block theconnectionif and only if thei ni ti al | y_bl ocki ng
parameter ist rue. The block on the connection may be released by calling the unblock method, or
destroying the shar ed_connect i on_bl ock object.

Default construction of a shar ed_connecti on_bl ock results in a shar ed_connecti on_bl ock
which references the NULL connection. Such a shar ed_connect i on_bl ock is safe to use, though
not particularly useful until it isassigned another shar ed_connect i on_bl ock which referencesareal
connection.

Postconditions: t hi s->bl ocking() == initially_bl ocking

shar ed_connecti on_bl ock(const boost: : signal s2:: shared_connection_bl ock & ot her)

Effects: Copy constructs ashar ed_connect i on_bl ock which references the same connection as ot her .
Postconditions: t hi s->connection() == ot her.connection()

33

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

t hi s- >bl ocki ng() == ot her. bl ocki ng()

shar ed_connecti on_bl ock&
oper at or =(const boost: : si gnal s2:: shared_connecti on_bl ock & rhs);

Effects: Makest hi s reference the same connection asr hs.
Postconditions: t hi s->connection() == rhs. connection()

t hi s->bl ocki ng() == rhs. bl ocki ng()
Throws: Will not throw.

~shar ed_connecti on_bl ock() ;

Effects: If blocking() istrue, releases the connection block.

shar ed_connecti on_bl ock connection blocking

voi d unbl ock();

Effects: If blocking() is true, releases the connection block. Note, the connection may remain blocked due to
other shar ed_connect i on_bl ock objects.
Postconditions: t hi s->bl ocki ng() == fal se.
2. voi d bl ock();
Effects: If blocking() isfalse, reasserts a block on the connection.
Postconditions: t hi s->bl ocki ng() == true.
3. . _
bool bl ocking() const;
Returns: true if t hi s isasserting ablock on the connection.
Notes: t hi s->bl ocki ng() == true implies connection:: bl ocked() == true for the connection. However,

t hi s->bl ocki ng() == fal se does not necessarily imply connecti on: : bl ocked() == fal se, sincethe
connection may be blocked by another shar ed_connect i on_bl ock object.

shar ed_connecti on_bl ock miscellaneous methods
boost : : signal s2::connection connection() const;

Returns: A connection object for the connection referenced by t hi s.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

Header <boost/signals2/signal.hpp>

nanespace boost {
namespace signal s2 {

enum connect _position { at_front, at_back };

t enpl at e<t ypenane Si gnature,
typenanme Conbi ner = boost::signal s2::optional _I ast_val ue<R>,
typenane Group = int, typenane GoupConpare = std::|ess<G oup>,
typenane Sl ot Function = boost::function<Si gnature>,
typenane ExtendedSl ot Function = boost::function<R (const connecl
tion & T1, T2, ..., TN) >,
typenane Mutex = boost:: signal s2:: nut ex>
cl ass signal;
t enpl at e<t ypenane Signature, typenane Conbi ner, typenane G oup,
typenane GroupConpare, typenane Sl otFunction,
typenane ExtendedSl| ot Function, typename Mitex>
voi d swap(si gnal <Si gnature, Conbiner, G oup, G oupConpare, SlotFunction,
tion, Mitex>&,
si gnal <Si gnature, Conbiner, Goup, G oupConpare, SlotFunction,
tion, Mitex>&);
}
}

Class template signal

boost::signals2::signal — Safe multicast callback.

Ext endedS| ot FuncO

Ext endedS| ot FuncO

35

httpo://www.renderx.com/

../../../../boost/signals2/signal.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Synopsis

/'l In header: <boost/signal s2/signal.hpp>

t enpl at e<t ypenane Si gnature,
typenanme Conbi ner = boost::signal s2::optional _I ast_val ue<R>,
typenane Group = int, typenane GoupConpare = std::|ess<G oup>,
typenane Sl ot Function = boost::function<Si gnature>,

typenanme Ext endedSl ot Function = boost::function<R (const connection & T1, T2, ..., TN)>,
typenane Mutex = boost::signal s2:: nmut ex>
class signal : public boost::signals2::signal_base {
publi c:
/'l types
typedef Signature sigOd
nat ure_t ype;
t ypedef typename Conbiner::result_type restd
ult_type;
typedef Conbi ner contl
bi ner _type;
t ypedef G oup O
group_type;
t ypedef G oupConpare O
group_conpar e_t ype;
t ypedef Sl ot Function O
sl ot _function_type;
t ypedef typenane signal s2::slot<Signature, SlotFunction> O
sl ot _type;
t ypedef Ext endedSl ot Function ex
tended_sl ot _function_type;
typedef typenane signal s2::slot<R (const connection & T1, ..., TN), ExtendedSl ot Functi on> exO
t ended_sl ot _type;
typedef typenanme Sl otFunction::result_type O
slot_result_type;
t ypedef unspecified O
slot_call _iterator;
typedef T1 ar(d
gunent _type; /1l Exists iff arity ==
typedef T1 O
first_argunment _type; /1 Exists iff arity == 2
t ypedef T2 O
second_ar gunent _t ype; /1 Exists iff arity == 2

/] static constants
static const int arity = N, // The nunber of argunents taken by the signal.

/'l menber classes/structs/unions

t enpl at e<unsi gned n>

class arg {

public:

/'l types

typedef Tn type; // The type of the signal's (n+l)th argunent
}

/'l construct/copy/ destruct
signal (const conbi ner_type& = conbi ner _type(),
const group_conpare_type& = group_conpare_type());
si gnal (signal &&);
signal & operator=(signal &&);

/'l connection nanagenent
connecti on connect (const slot_type& connect_position = at_back);
connecti on connect (const group_type& const slot_typeg&,

36

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

connect _position = at_back);
connecti on connect _ext ended(const extended_sl ot_type&,
connect _position = at_back);
connecti on connect _ext ended(const group_type& const extended_sl ot_type&,
connect _position = at_back);
voi d di sconnect (const group_type&);
t enpl at e<t ypenane S> void di sconnect(const S&);
voi d di sconnect _all _slots();
bool enpty() const;
std::size_t numslots() const;

/'l invocation
result_type operator()(arg<0>::type, arg<l>: :type, ..., arg<N 1> :type);
result_type operator()(arg<0>::type, arg<l>:.:type, ..., arg<N 1> :type) const;

/'l conbi ner access
conbi ner _type conbiner() const;
voi d set _conbi ner (const conbi ner_type&);

/1l nodifiers
voi d swap(signal &) ;

I

/'l specialized algorithns
t enpl at e<typenane Signature, typenane Conbi ner, typenane G oup,
typenane GroupConpare, typenane Sl ot Function,
typenane ExtendedSl| ot Function, typename Mitex>
voi d swap(signal <Si gnature, Conbiner, G oup, G oupConpare, SlotFunction, ExtendedSl otFuncO
tion, Mitex>&,
si gnal <Si gnature, Conbiner, G oup, G oupConpare, SlotFunction, ExtendedSl otFuncO
tion, Mitex>&);

Description
See the tutorial for more information on how to use the signal class.

Template Parameters

typename Signature

2. t ypename Conbi ner = boost::signal s2::optional _| ast_val ue<R>
3. .
typename Group = int
4. _ .
typename G oupConpare = std::|ess<G oup>
5 t ypename Sl ot Function = boost::function<Si gnature>
6. t ypenane ExtendedSl ot Function = boost::function<R (const connection & T1, T2, ..., TN >
37

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

typenane Mutex = boost::signal s2:: nmutex

si gnal public types

1.

S

S

typedef typename signals2::slot<R (const connection &, T1, ..., TN), ExtendedS| otFunction> extended_slot_type;

Slots of the ext ended_sl ot _t ype may be connected to the signal using the connect_extended methods. The ext en-
ded_sl ot _t ype has an additional signals2::connection argument in its signature, which gives dot functions access to their
connection to the signal invoking them.

. typedef typename SlotFunction::result_type slot_result_type;

Thisisthe type returned when dereferencing the input iterators passed to the signal's combiner.

. typedef unspecified slot_call_iterator;

The input iterator type passed to the combiner when the signal is invoked.

gnal public construct/copy/destruct

signal (const conbi ner_type& conbi ner = conbi ner_type(),
const group_conpare_type& conpare = group_conpare_type());
Effects: Initializes the signal to contain no dots, copies the given combiner into internal storage, and stores the
given group comparison function object to compare groups.
Postconditions: t hi s->enpty()
signal (signal && other);
Move constructor.
Postconditions: Thesignal ot her isina"moved-from" statewhereit may only be destroyed, swapped, or move assigned.
Any other operation on a"moved-from" signal isinvalid.
Throws: Will not throw.
signal & operator=(signal && rhs);
Move assignment.
Postconditions: The signal r hs isin a"moved-from" state where it may only be destroyed, swapped, or move assigned.
Any other operation on a"moved-from" signal isinvalid.
Throws: Will not throw.

gnal connection management

connecti on connect (const slot_type& slot, connect_position at = at_back);
connection connect (const group_type& group, const slot_type& slot,
connect _position at = at_back);
Effects: Connects the signal thisto theincoming slot. If the slot isinactive, i.e., any of the dots's tracked objects have

been destroyed, then the call to connect is a no-op. If the second version of connect isinvoked, the slot is
associated with the given group. The at parameter specifies where the slot should be connected: at _f r ont
indicates that the slot will be connected at the front of the list or group of slotsand at _back indicatesthat the
slot will be connected at the back of the list or group of slots.

Returns: A si gnal s2: : connect i on object that references the newly-created connection between the signal and the
dot; if the slot isinactive, returns a disconnected connection.

38

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

Throws:
Complexity:

Notes:

This routine meets the strong exception guarantee, where any exception thrown will cause the sot to not be
connected to the signal.

Constant time when connecting a slot without a group name or logarithmic in the number of groups when
connecting to a particular group.

It is unspecified whether connecting a dlot while the signal is calling will result in the slot being called imme-
diately.

connecti on connect _ext ended(const extended_sl ot _type& sl ot,

connect _position at = at_back);

connecti on connect _ext ended(const group_type& group,

const extended_sl ot _type& sl ot,
connect _position at = at_back);

Theconnect _ext ended methodswork the sameastheconnect methods, except they take slots of typeext ended_sl ot _t ype.
Thisisuseful if adot needs to access the connection between it and the signal invoking it, for exampleif it wishes to disconnect
or block its own connection.

voi d di sconnect (const group_type& group);
t enpl at e<t ypenanme S> voi d di sconnect (const S& slot_func);

Effects:

Throws;

Complexity:

If the parameter is (convertible to) a group name, any slots in the given group are disconnected. Otherwise,
any slots equal to the given slot function are disconnected.

Note, the sl ot _f unc argument should not be an actual signals2::slot object (which does not even support
oper at or ==), but rather the functor you wrapped inside asignal s2::9 ot when you initially made the connection.
Will not throw unless a user destructor or equality operator == throws. If either throws, not all slots may be
disconnected.

If agroup isgiven, O(lg g) + k where g is the number of groups in the signal and k is the number of dlotsin
the group. Otherwise, linear in the number of slots connected to the signal.

voi d di sconnect _all _slots();

Effects:
Postconditions:
Throws:
Complexity:
Notes:

bool enpty()

Returns:
Throws:
Complexity:
Rationale:

std::size_t

Returns:
Throws:
Complexity:
Rationale:

Disconnects al dots connected to the signal.

this->enpty().

If disconnecting a slot causes an exception to be thrown, not all slots may be disconnected.

Linear in the number of slots known to the signal.

May be called at any time within the lifetime of the signal, including during calls to the signal's slots.

const;

t rue if no dots are connected to the signal, and f al se otherwise.

Will not throw.

Linear in the number of slots known to the signal.

Slots can disconnect at any point in time, including while those same slots are being invoked. It is therefore
possible that the implementation must search through alist of disconnected slots to determine if any slots are
till connected.

num sl ots() const;

The number of slots connected to the signal

Will not throw.

Linear in the number of dots known to the signal.

Slots can disconnect at any point in time, including while those same dlots are being invoked. It is therefore
possible that the implementation must search through alist of disconnected slotsto determine how many slots
are still connected.

39

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

si gnal invocation

result_type operator()(arg<0>::type al, arg<l>: :type a2, ...

arg<N-1>::type aN);

result_type operator()(arg<0>::type al, arg<l>: :type a2, ...

Effects:

Returns:
Throws:

Notes:

arg<N-1>::type aN) const;

Invokes the combiner with asl ot _cal | _i t er at or range [first, last) corresponding to the sequence of calls to
the dlots connected to signal *t hi s. Dereferencing an iterator in this range causes a slot call with the given set of
parameters(al, a2, ..., aN),theresult of whichisreturned from the iterator dereference operation.

The result returned by the combiner.

If an exception is thrown by a slot call, or if the combiner does not dereference any dot past some given slot, al
dlots after that dlot in the internal list of connected slots will not be invoked.

Only the slots associated with iterators that are actually dereferenced will be invoked. Multiple dereferences of the
same iterator will not result in multiple slot invocations, because the return value of the slot will be cached.

Theconst version of thefunction call operator will invokethe combiner asconst , whereasthenon-const version
will invoke the combiner as non-const .

si gnal combiner access

conbi ner _type conbiner() const;

Returns:
Throws:

A copy of the stored combiner.
Will not throw.

voi d set_conbi ner (const conbi ner_type& conbi ner);

Effects:
Throws:

Copies a new combiner into the signal for use with future signal invocations.
Will not throw.

si gnal modifiers

1

voi d swap(signal & other);

Effects:
Throws;

Swaps the signal referencedint hi s and ot her .
Will not throw.

Class template arg

boost::signals2::signal::arg

Synopsis

/1 I'n header: <boost/signal s2/signal.hpp>

t enpl at e<unsi gned n>

class arg {

publi c:

/'l types
typedef Tn type; // The type of the signal's (n+l)th argunent

b

40

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

si gnal specialized algorithms

tenpl at e<t ypenane Signature, typenane Conbi ner, typenane G oup,
typenane GroupConpare, typenane Sl otFunction,
typenanme Ext endedSl ot Function, typenane Mitex>
voi d swap(signal <Si gnature, Conbiner, Goup, GoupConpare, SlotFunction, ExtendedS otFunction,

Mut ex>& X,
si gnal <Si gnature, Conbi ner, G oup, G oupConpare, SlotFunction, ExtendedSl otFunction,

Mit ex>& y) ;

Effects: X. swap(y)
Throws: Will not throw.

Header <boost/signals2/signal_base.hpp>

nanespace boost {
nanmespace signal s2 {
cl ass si gnal _base;

}
}

Class signal_base
boost::signals2::signal_base — Base class for signals.
Synopsis

/'l I'n header: <boost/signal s2/signal _base. hpp>

cl ass signal _base : public noncopyable {
public:

/'l construct/copy/ destruct

virtual -~signal base();

i

Description

si gnal _base public construct/copy/destruct
virtual -~signal base();

Virtual destructor.

41

render
httpo://www.renderx.com/

../../../../boost/signals2/signal_base.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Header <boost/signals2/signal_type.hpp>

nanespace boost {
namespace signal s2 {
tenpl at e<t ypenane A0, typenane Al = boost::paraneter::void_,

typenane A2 = boost::paraneter::void_,
typenane A3 = boost::paraneter::void_,
typenane A4 = boost::paraneter::void_,
typenane A5 = boost::paraneter::void_,
typenane A6 = boost::paraneter::void_>

cl ass signal _type;
nanespace keywords {
t enpl at e<t ypenane Signature> class signature_type;
t enpl at e<t ypenane Conbi ner> cl ass conbi ner_type;
t enpl at e<t ypenane G oup> cl ass group_type;
t enpl at e<t ypenane G oupConpare> cl ass group_conpare_type;
t enpl at e<t ypenane Sl ot Functi on> cl ass sl ot_function_type;
t enpl at e<t ypenane Ext endedSl| ot Functi on> cl ass extended_sl ot _function_type;
t enpl at e<t ypenane Mitex> cl ass nutex_type;

Class template signature_type

boost::signals2::keywords::signature_type — A template keyword for signal_type.
Synopsis

/'l 1n header: <boost/signal s2/signal _type. hpp>
t enpl at e<t ypenane Si gnat ure>
class signature_type : public unspecified-type {
b
Description

Thisclassis atemplate keyword which may be used to pass the wrapped Si gnat ur e template type to the signal_type metafunction
as anamed parameter.

The code for this class is generated by a caling a macro from the Boost.Parameter library: BOOST_PARAMETER TEM
PLATE_KEYWORD(si ghat ure_t ype)
Class template combiner_type

boost::signals2::keywords::combiner_type — A template keyword for signal_type.
Synopsis

/1l I'n header: <boost/signal s2/signal _type. hpp>

t enpl at e<t ypenane Conbi ner >
cl ass conbi ner _type : public unspecified-type {

b

42

render

httpo://www.renderx.com/

../../../../boost/signals2/signal_type.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Description

This classis atemplate keyword which may be used to pass the wrapped Conmbi ner template type to the signal_type metafunction
as anamed parameter.

The code for this class is generated by a caling a macro from the Boost.Parameter library: BOOST_PARAMETER TEM
PLATE_KEYWORD(combi ner _t ype)
Class template group_type

boost::signals2::keywords::group_type — A template keyword for signal_type.
Synopsis

/'l I'n header: <boost/signal s2/signal _type. hpp>
t enpl at e<t ypenane G oup>

class group_type : public unspecified-type {
b

Description

This class is atemplate keyword which may be used to pass the wrapped G- oup template type to the signal_type metafunction as a
named parameter.

The code for this class is generated by a caling a macro from the Boost.Parameter library: BOOST_PARAMETER TEM
PLATE_KEYWORD(gr oup_t ype)
Class template group_compare_type

boost::signals2::keywords::group_compare_type — A template keyword for signal_type.
Synopsis

/'l I'n header: <boost/signal s2/signal _type. hpp>
t enpl at e<t ypenane G oupConpar e>

cl ass group_conpare_type : public unspecified-type {

}

Description

This class is a template keyword which may be used to pass the wrapped G oupConpar e template type to the signal_type
metafunction as a named parameter.

The code for this class is generated by a caling a macro from the Boost.Parameter library: BOOST PARAMETER TEM
PLATE_KEYWORD(gr oup_conpar e_t ype)

Class template slot_function_type

boost::signals2::keywords::slot_function_type — A template keyword for signal_type.

43

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Synopsis

/'l In header: <boost/signal s2/signal _type. hpp>
t enpl at e<t ypenane Sl ot Functi on>

class slot_function_type : public unspecified-type {

I

Description

This class is a template keyword which may be used to pass the wrapped Sl ot Functi on template type to the signa_type
metafunction as a named parameter.

The code for this class is generated by a caling a macro from the Boost.Parameter library: BOOST_PARAMETER TEM
PLATE_KEYWORD(sl ot _functi on_type)
Class template extended_slot_function_type

boost::signals2::keywords::extended_slot_function type — A template keyword for signal_type.
Synopsis

/'l I'n header: <boost/signal s2/signal _type. hpp>

t enpl at e<t ypenane Ext endedSl ot Functi on>

cl ass extended_sl ot _function_type : public unspecified-type {
b
Description

Thisclassisatemplate keyword which may be used to passthe wrapped Ext endedSl| ot Funct i on templatetypetothesigna_type
metafunction as a named parameter.

The code for this class is generated by a caling a macro from the Boost.Parameter library: BOOST_PARAMETER TEM
PLATE_KEYWORD(ext ended_sl ot _functi on_type)
Class template mutex_type

boost::signals2::keywords::mutex_type — A template keyword for signal_type.
Synopsis

/1 I'n header: <boost/signal s2/signal _type. hpp>
t enpl at e<t ypenane Mit ex>

class nutex_type : public unspecified-type {

b
Description

This class is atemplate keyword which may be used to pass the wrapped Mut ex template type to the signal_type metafunction as a
named parameter.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

The code for this class is generated by a caling a macro from the Boost.Parameter library: BOOST PARAMETER TEM
PLATE_KEYWORD(mut ex_t ype)

Class template signal_type
boost::signals2::signal_type — Specify athe template type parameters of a boost::signals2::signal using named parameters.
Synopsis

/'l I n header: <boost/signal s2/signal _type. hpp>

tenpl at e<typenane A0, typenane Al = boost::paraneter::void_,

typenane A2 = boost::paraneter::void_,
typenane A3 = boost::paraneter::void_,
typenane A4 = boost::paraneter::void_,
typenane A5 = boost::paraneter::void_,
typenane A6 = boost::paraneter::void_>
cl ass signal _type {
public:
/'l types
typedef inpl enmentation-detail si gnature_type; ad
typedef inpl ementation-detail conbi ner _type; ad
typedef inpl enmentation-detail group_type; ad
typedef inplenmentation-detail group_conpare_type; 0O
typedef inplenmentation-detail slot_function_type; 0O
t ypedef inpl ementation-detail ext ended_sl ot _funcO
tion_type;
typedef inpl enmentation-detail nut ex_t ype; ad
typedef typename signal <signature_type, conbiner_type, ..., nmutex_type> type; ad
b
Description

The si gnal _t ype metafunction employs the Boost.Parameter library to allow users to specify the template type parameters of a
signals2::signal using named parameters. The resulting signal type is provided through the si gnal _t ype: : t ype typedef. Named
template type parameters can enhance readability of code, and provide convenience for specifying classes which have alarge number
of template parameters.

The template type parameters may be passed positionally, similarly to passing them to the signals2::signal class directly. Or, they
may be passed as named template parameters by wrapping them in one of the template keyword classes provided in the
boost : : si gnal s2: : keywor ds namespace. The supported template keywords are: keywords::signature_type, keywords::combin-
er_type, keywords::group_type, keywords::group_compare type, keywords::slot_function_type, keywords::extended slot_func-
tion_type, and keywords::mutex_type.

The default types for unspecified template type parameters are the same as those for the signal class.

Named template type parameters are especially convenient when you only wish to change afew of asignal'stemplate type parameters
from their defaults, and the parameters you wish to change are near the end of the signal's template parameter list. For example, if
you only wish to change the Mut ex template type parameter of asignal, you might write:

45

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

nanespace bs2 = boost::signal s2;
usi ng bs2:: keywords;
bs2::signal _type<void (), mutex_type<bs2::dummy_nutex> >::type sig;

For comparison, to specify the same type using the signal class directly looks like:

namespace bs2 = boost: :signal s2;
bs2: : si gnal
<
void (),
bs2:: optional _I ast _val ue<voi d>,
int,
std::less<int>,
boost :: function<void () >,
boost :: functi on<void (const connection &) >,
bs2: : dunmy_nut ex
> sig;

Header <boost/signals2/slot.hpp>

namespace boost {
namespace signal s2 {
t enpl at e<t ypenane Si gnature,

typenane Sl ot Function = boost::function<R (T1, T2, ..., TN > >
cl ass slot;

Class template slot

boost::signals2::d ot — Pass dlots as function arguments, and associate tracked objects with aslot.

46

render

httpo://www.renderx.com/

../../../../boost/signals2/slot.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Synopsis

/'l I'n header: <boost/signal s2/slot.hpp>

t enpl at e<t ypenane Si gnature,

typenane Sl ot Function = boost::function<R (T1, T2, ..., TN)> >
class slot : public boost::signals2::slot_base {
public:
/'l types
typedef R result_type;
typedef T1 ar gurment _t ype; /1l Exists iff arity == 1
typedef T1 first_argunment _type; /1l Exists iff arity == 2
typedef T2 second_argument _type; // Exists iff arity == 2

t ypedef Signature si gnature_type;
t ypedef Sl otFunction slot_function_type;

/] static constants
static const int arity = N, // The nunber of argunments taken by the slot.

/'l menber classes/structs/unions

t enpl at e<unsi gned n>

class arg {

publi c:

/'l types

typedef Tn type; // The type of the slot's (n+l)th argunent

e

/'l construct/copy/ destruct

tenpl at e<typenane Sl ot> slot(const Slot &);

tenpl at e<t ypenane O her Si gnature, typenane O her Sl ot Functi on>
sl ot (const slot<Q herSignature, OherSlotFunction> &);

t enpl at e<t ypename Func, typenane Argl, typenane Arg2, ..., typenanme ArgN>
sl ot (const Func & const Argl & const Arg2 & ..., const ArgN &);

/1 invocation

result_type operator()(arg<0>::type, arg<l>: :_type, ..., arg<N-1>::type);
result_type operator()(arg<0>::type, arg<l>:.: _type, ..., arg<N1>::type) const;
/'l tracking

sl ot & track(const weak_ptr<voi d> &);
slot & track(const signal s2::signal_base &);
slot & track(const signal s2::slot_base &);
t enpl at e<t ypenane Forei gn\WeakPtr >
slot & track_foreign(const Forei gnWeakPtr &,
typenane weak_ptr_traits<Forei gn\WeakPtr>::shared_type * = 0);
t enpl at e<t ypenane For ei gnShar edPtr >
slot & track_foreign(const Forei gnSharedPtr &,
typenane shared_ptr_traits<ForeignSharedPtr>:: weak_type * = 0);

/1 slot function access
slot_function_type & slot_function();
const slot_function_type & slot_function() const;

Description

A dlot consists of a polymorphic function wrapper (boost::function by default) plus a container of weak_pt r s which identify the
dot's "tracked objects". If any of the tracked objects expire, the slot will automatically disableitself. That is, the dot's function call
operator will throw an exception instead of forwarding the function call to the slot's polymorphic function wrapper. Additionally, a
slot will automatically lock all the tracked objects as shar ed_pt r during invocation, to prevent any of them from expiring while
the polymorphic function wrapper is being run.

47

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

The slot constructor will search for signals2::signal and signals2::trackable inside incoming function objects and automatically track
them. It does so by applying avisitor to the incoming functors with boost::visit_each.

Template Parameters

t ypename Signature

typename Sl ot Function = boost::function<R (T1, T2, ..., TN >

sl ot public construct/copy/destruct

L tenpl at e<typenane Slot> slot(const Slot & target);
Effects: Initializes the Sl ot Functi on object in t hi s with t ar get, which may be any function object with which a
Sl ot Funct i on can be constructed.
In this specia case where the template type parameter Sl ot is acompatible signals2::signa type, the signal will
automatically be added to the slot's tracked object list. Otherwise, the slot's tracked object list isinitially empty.
2. tenpl at e<typenane O her Si gnature, typenane O her Sl ot Functi on>
sl ot (const slot<QherSignature, OherSlotFunction> & other_slot);
Effects: Initializest hi s with acopy of ot her _sl ot 'sQ her Sl ot Funct i on object and tracked object list.
3. t enpl at e<t ypenane Func, typenane Argl, typename Arg2, ..., typenane ArgN>
slot(const Func & f, const Argl & al, const Arg2 & a2, ..., const ArgN & aN);
Effects: Syntactic sugar for bi nd() when the constructor is passed morethan one argument. Asif: sl ot (boost : : bi nd(f,
al, a2, ..., aN)

sl ot invocation

result_type operator()(arg<0>::type al, arg<l>::_type a2,
arg<N-1>::type aN);

result_type operator()(arg<0>::type al, arg<l>::_type a2,
arg<N-1>::type aN) const;

Effects: Callsthe dot's Sl ot Funct i on object.

Returns: The result returned by the slot's Sl ot Funct i on object.

Throws: Any exceptionsthrown by theslot's Sl ot Funct i on object. boost::signals2::expired_slot if any object in thetracked
object list has expired.

Notes: If you have already used lock to insure the tracked objects are valid, it is dlightly more efficient to use the

dlot_function() method and call the slot's Sl ot Funct i on directly.

sl ot tracking

sl ot & track(const weak_ptr<void> & tracked_object);
sl ot & track(const signal s2::signal_base & tracked_signal);
slot & track(const signals2::slot_base & tracked_slot);

Effects: Adds object(s) to the dlot's tracked object list. Should any of the tracked objects expire, then subsequent attempts
to cal the dlot'soper at or () or | ock() methods will throw an signals2::expired_slot exception.

48

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

When tracking a signal, a shared ptr internal to the signal classis used for tracking. The signal does not need to
be owned by an external shared_ptr.

In the case of passing another slot astheargument tot r ack() , only the objects currently in the other slot'stracked
object list are added to the tracked object list of t hi s. The other slot object itself is not tracked.
Returns: *this

t enpl at e<t ypenane For ei gn\WeakPt r >
slot & track_foreign(const Forei gnWeakPtr & tracked_object,
typenanme weak_ptr_traits<Forei gnWakPtr>::shared_type * SFINAE = 0);
t enpl at e<t ypenane For ei gnShar edPtr >
slot & track_foreign(const Forei gnSharedPtr & tracked_object,
typenane shared_ptr_traits<Forei gnSharedPtr>::weak_type * SFINAE = 0);

Effects: The track_f orei gn() method behaves similarly to calling the track() method with a boost::shared ptr or
boost::weak_ptr argument. However, track_f or ei gn is more flexible in that it will accept shared_ptr or
weak_ptr classesfrom outside of boost (most significantly st d: : shared_ptr orstd: : weak_ptr).

Inorder touseaparticular shar ed_pt r classwith thisfunction, aspecialization of boost::signals2::shared ptr_traits
must exist for it. Also, a specialization of boost::signals2::weak_ptr_traits must be provided for its corresponding
weak_ptr class. Theshared_ptr_traits speciaization must include a weak_t ype member typedef which
specifies the corresponding weak_pt r type of theshar ed_pt r class. Similarly, theweak_ptr _trai t s special-
ization must includeashar ed_t ype member typedef which specifies the corresponding shar ed_pt r type of the
weak_pt r class. Specializationsfor st d: : shared_ptr andst d: : weak_pt r areaready provided by thesignals2
library. For other shar ed_pt r classes, you must provide the specializations.

The second argument "SFINAE" may be ignored, it is used to resolve the overload between either shared_pt r
or weak_pt r objects passed in asthefirst argument.
Returns: *this

sl ot slot function access

slot_function_type & slot_function();
const slot_function_type & slot_function() const;

Returns: A reference to the slot's underlying SlotFunction object.

Class template arg

boost::signals2::dot::arg
Synopsis
/1 I'n header: <boost/signal s2/slot.hpp>

t enpl at e<unsi gned n>

class arg {

publi c:

/'l types

typedef Tn type; // The type of the slot's (n+l)th argunent
b

49

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Header <boost/signals2/slot_base.hpp>

nanespace boost {
namespace signal s2 {
cl ass sl ot _base
cl ass expired_slot;
}
}

Class slot_base

boost::signals2::dot_base — Base class for slots.
Synopsis
/'l In header: <boost/signal s2/slot_base. hpp>

cl ass sl ot_base {
public:
/'l types
typedef std::vector<inplenentation-detail> | ocked_container_type

/'l tracking
bool expired() const;
| ocked_cont ai ner _type | ock() const;

Description

sl ot _base tracking

bool expired() const;

Returns: t rue if any tracked object has expired.
2. . .
| ocked_cont ai ner _type | ock() const;
Returns: A container holding shar ed_pt r sto each of the slot's tracked objects. As long as the returned container is kept
in scope, none of the slot's tracked objects can expire.
Throws: expired_dot if any of the slot's tracked objects have expired.

Class expired_slot

boost::signals2::expired_slot — Indicates at least one of a dlot's tracked objects has expired.

50

render

httpo://www.renderx.com/

../../../../boost/signals2/slot_base.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

Synopsis
/'l 1n header: <boost/signal s2/slot_base. hpp>

class expired_slot : public bad_weak_ptr {

publi c:
virtual const char * what() const;
b
Description

Theexpi red_sl ot exception isthrown to indicate at |east one of aslot's tracked objects has expired.

virtual const char * what() const;

Header <boost/signals2/trackable.hpp>

namespace boost {
namespace signal s2 {
cl ass trackabl e;

}
}

Class trackable

boost::signal s2::trackable— Provided to ease porting for code using the boost::signals::trackabl e class from the original Boost.Signals
library.

Synopsis
/'l I'n header: <boost/signal s2/trackabl e. hpp>

class trackable {

publi c:
/1 construct/copy/ destruct
trackabl e();
trackabl e(const trackabl e&)
trackabl e& operator=(const trackabl e&)
~trackabl e()

Description

Use of thet r ackabl e classis not recommended for new code. Thet r ackabl e classis not thread-safe sincet r ackabl e objects
disconnect their associated connectionsin thet r ackabl e destructor. Sincethet r ackabl e destructor is not run until after the de-
structors of any derived classes have completed, that leaves open a window where a partially destructed object can still have active
connections.

The preferred method of automatic connection management with Boost.Signals2 is to manage the lifetime of tracked objects with
shar ed_pt r sand to use the signals2::dot::track method to track their lifetimes.

Thet r ackabl e class provides automatic disconnection of signals and slots when objects bound in slots (via pointer or reference)
aredestroyed. t r ackabl e class may only be used as a public base class for some other class; when used as such, that class may be

51

render

httpo://www.renderx.com/

../../../../boost/signals2/trackable.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

bound to function objects used as part of slots. The manner in which at r ackabl e object tracks the set of signal-slot connections
itisapart of is unspecified.

The actual use of trackabl e is contingent on the presence of appropriate visit_each overloads for any type that may contain
pointers or references to trackable objects.

t rackabl e public construct/copy/destruct

trackabl e();

Effects: Setsthelist of connected slots to empty.
Throws: Will not throw.
N trackabl e(const trackabl e& ot her);
Effects: Setsthelist of connected slots to empty.
Throws: Will not throw.
Rationale: Signal-dot connections can only be created via calls to an explicit connect method, and therefore cannot be
created here when trackable objects are copied.
3. trackabl e& operator=(const trackabl e& ot her);
Effects: Setsthelist of connected slots to empty.
Returns: *this
Throws: Will not throw.
Rationale: Signal-dot connections can only be created via calls to an explicit connect method, and therefore cannot be
created here when trackable objects are copied.
4. ~trackabl e();
Effects: Disconnects all signal/slot connectionsthat contain a pointer or reference to this trackable object that can be found

by visit_each.

52

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

Thread-Safety

Introduction

The primary motivation for Boost.Signals2 is to provide a version of the original Boost.Signals library which can be used safely in
amulti-threaded environment. Thisis achieved primarily through two changes from the original Boost.SignalsAPI. Oneistheintro-
duction of a new automatic connection management scheme relying on shar ed_pt r and weak_pt r, as described in the tutorial.
The second change was theintroduction of aMut ex templatetype parameter tothesi gnal class. This section detailshow thelibrary
employs these changes to provide thread-safety, and the limits of the provided thread-safety.

Signals and combiners

Each signal object default-constructs a Mut ex object to protect its internal state. Furthermore, a Mut ex is created each time a new
dlot is connected to the signal, to protect the associated signal-slot connection.

A signal's mutex is automatically locked whenever any of the signal's methods are called. The mutex isusually held until the method
completes, however there is one major exception to this rule. When a signal isinvoked by calling si gnal : : oper at or (), thein-
vocation first acquires alock on the signal's mutex. Then it obtains a handle to the signal's dlot list and combiner. Next it rel eases
the signal's mutex, before invoking the combiner to iterate through the slot list. Thus no mutexes are held by the signal while aslot
is executing. This design choice makesit impossible for user code running in a slot to deadlock against any of the mutexes used in-
ternally by the Boost.Signals2 library. It also prevents dots from accidentally causing recursive locking attempts on any of thelibrary's
internal mutexes. Therefore, if you invoke asignal concurrently from multiple threads, it is possible for the signal's combiner to be
invoked concurrently and thus the slots to execute concurrently.

During a combiner invocation, the following steps are performed in order to find the next callable slot while iterating through the
signal'sdlot list.

» The Mut ex associated with the connection to the slot is locked.

» All the tracked weak_pt r associated with the slot are copied into temporary shar ed_pt r which will be kept alive until the in-
vocationisdonewith theslot. If thisfailsdueto any of theweak_pt r being expired, the connection isautomatically disconnected.
Therefore a slot will never be run if any of its tracked weak _pt r have expired, and none of its tracked weak_pt r will expire
whilethe dot is running.

» Thedot'sconnectionischecked to seeif it isblocked or disconnected, and then the connection's mutex is unlocked. If the connection
was either blocked or disconnected, we start again from the beginning with the next dot in the ot list. Otherwise, we commit to
executing the slot when the combiner next dereferences the sot call iterator (unless the combiner should increment the iterator
without ever dereferencing it).

Note that since we unlock the connection's mutex before executing its associated slot, it is possible aslot will still be executing after
it has been disconnected by aconnect i on: : di sconnect (), if the disconnect was called concurrently with signal invocation.

You may have noticed above that during signal invocation, the invocation only obtains handles to the signal's slot list and combiner
while holding the signal's mutex. Thus concurrent signal invocations may still wind up accessing the same dot list and combiner
concurrently. So what happensif theslot listismodified, for example by connecting anew slot, whileasignal invocationisin progress
concurrently?If thedot list isalready in use, the signal performsadeep copy of the dlot list before modifying it. Thusthe aconcurrent
signal invocation will continue to use the old unmodified slot list, undisturbed by modifications made to the newly created deep
copy of the slot list. Future signal invocations will receive a handle to the newly created deep copy of the dlot list, and the old slot
list will be destroyed once it isno longer in use. Similarly, if you change asignal's combiner with si gnal : : set _conbi ner while
asignal invocation isrunning concurrently, the concurrent signal invocation will continue to use the old combiner undisturbed, while
future signal invocations will receive a handle to the new combiner.

The fact that concurrent signal invocations use the same combiner object means you need to insure any custom combiner you write
isthread-safe. So if your combiner maintains state which is modified when the combiner is invoked, you may need to protect that
state with amutex. Be aware, if you hold amutex in your combiner while dereferencing slot call iterators, you run therisk of deadlocks
and recursive locking if any of the slots cause additional mutex locking to occur. One way to avoid these perilsisfor your combiner

53

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

to release any locks before dereferencing a slot call iterator. The combiner classes provided by the Boost.Signals2 library are all
thread-safe, since they do not maintain any state across invocations.

Suppose a user writes a sl ot which connects another dlot to the invoking signal. Will the newly connected slot be run during the same
signal invocation in which the new connection was made? The answer is no. Connecting a new slot modifies the signal's slot list,
and as explained above, asignal invocation aready in progress will not see any modifications made to the dot list.

Suppose a user writes a slot which disconnects another slot from the invoking signal. Will the disconnected slot be prevented from
running during the same signal invocation, if it appearslater in the slot list than the slot which disconnected it? Thistime the answer
isyes. Even if the disconnected slot is still present in the signal's slot list, each slot is checked to see if it is disconnected or blocked
immediately beforeit is executed (or not executed as the case may be), as was described in more detail above.

Connections and other classes

The methods of thesi gnal s2: : connect i on classare thread-safe, with the exception of assignment and swap. Thisisachived via
locking the mutex associated with the object's underlying signal-slot connection. Assignment and swap are not thread-safe because
the mutex protectsthe underlying connectionwhichasi gnal s2: : connect i on object references, not thesi gnal s2: : connecti on
object itself. That is, there may be many copies of asi gnal s2: : connect i on object, al of which reference the same underlying
connection. There is not amutex for each si gnal s2: : connect i on object, thereis only asingle mutex protecting the underlying
connection they reference.

Theshar ed_connect i on_bl ock class obtains some thread-safety from the Mut ex protecting the underlying connection whichis
blocked and unblocked. The internal reference counting which is used to keep track of how many shar ed_connecti on_bl ock
objects are asserting blocks on their underlying connection is aso thread-safe (the implementation relies on shar ed_pt r for the
reference counting). However, individual shar ed_connecti on_bl ock objects should not be accessed concurrently by multiple
threads. As long as two threads each have their own shar ed_connect i on_bl ock object, then they may use them in safety, even
if both shar ed_connecti on_bl ock objects are copies and refer to the same underlying connection.

Thesi gnal s2: : sl ot classhasnointernal mutex locking built intoit. It isexpected that slot objectswill be created then connected
to asigna in a single thread. Once they have been copied into a signal's slot list, they are protected by the mutex associated with
each signal-slot connection.

Thesi gnal s2: : trackabl e class does NOT provide thread-safe automatic connection management. In particular, it leaves open
the possibility of asignal invocation calling into apartially destructed object if the trackable-derived object is destroyed in adifferent
thread from the one invoking the signal. si gnal s2: : t rackabl e is only provided as a convenience for porting single-threaded
code from Boost.Signals to Boost.Signals2.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

Frequently Asked Questions

1

Don't noncopyable signal semantics mean that a class with a signal member will be noncopyable as well?

No. The compiler will not be able to generate a copy constructor or copy assignment operator for your classif it hasasignal
as amember, but you are free to write your own copy constructor and/or copy assignment operator. Just don't try to copy the
signal.

Is Boost.Signals2 thread-safe?

Yes, aslong asthe Mutex template parameter is not set to afake mutex typelikeboost : : si gnal s2: : dunmy_nut ex. Also,
if your slots depend on objects which may be destroyed concurrently with signal invocation, you will need to use automatic
connection management. That is, the objects will need to be owned by shar ed_pt r and passed to the slot'st r ack () method
beforetheslot isconnected. Thesi gnal s2: : t r ackabl e scheme of automatic connection management isNOT thread-safe,
and isonly provided to ease porting of single-threaded code from Boost.Signals to Boost.Signals2.

See the documentation section on thread-safety for more information.

55

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

Design Rationale

User-level Connection Management

Users need to have fine control over the connection of signalsto slots and their eventual disconnection. The primary approach taken
by Boost.Signals2 isto returnasi gnal s2: : connect i on object that enables connected/disconnected query, manual disconnection,
and an automatic disconnection on destruction mode (si gnal s2: : scoped_connect i on). In addition, two other interfaces are
supported by the si gnal : : di sconnect overloaded method:

e Pass dot to disconnect: in this interfface model, the disconnection of a dot connected with sig. con-
nect (typeof (sig)::slot_type(slot_func)) isperformedviasi g. di sconnect (sl ot _f unc) . Internally, alinear search
using slot comparison is performed and the dlot, if found, is removed from the list. Unfortunately, querying connectedness ends
up as alinear-time operation.

 Passatoken to disconnect: this approach identifies slots with atoken that is easily comparable (e.g., a string), enabling slots to
be arbitrary function objects. While this approach is essentially equivalent to the connection approach taken by Boost.Signals2,
it is possibly more error-prone for several reasons:

 Connections and disconnections must be paired, so the problem becomes similar to the problems incurred when pairing new
and del et e for dynamic memory allocation. While errors of this sort would not be catastrophic for asignals and slots imple-
mentation, their detection is generally nontrivial.

« |f tokens are not unique, two slots may have the same name and be indistinguishable. In environments where many connections
will be made dynamically, name generation becomes an additional task for the user.

Thistype of interfaceis supported in Boost.Signal s2 viathe sl ot grouping mechanism, and the overload of si gnal : : di sconnect
which takes an argument of the signal's G oup type.

Automatic Connection Management

Automatic connection management in Signals2 depends on the use of boost : : shar ed_pt r to manage the lifetimes of tracked
objects. Thisisdiffersfrom the original Boost.Signalslibrary, which instead relied on derivation fromtheboost : : si gnal s: : t r ack-
abl e class. Thelibrary would be notified of an object's destruction by the boost : : si gnal s: : t rackabl e destructor.

Unfortunately, the boost : : si gnal s: : t r ackabl e scheme cannot be made thread safe due to destructor ordering. The destructor
of an class derived from boost : : si gnal s: : t rackabl e will always be called before the destructor of the base boost : : si g-

nal s: : t rackabl e class. However, for thread-safety the connection between the signal and object needs to be disconnected before
the object runs its destructors. Otherwise, if an object being destroyed in one thread is connected to asignal concurrently invoking
in another thread, the signal may call into a partially destroyed object.

We solve this problem by requiring that tracked objects be managed by shar ed_pt r. Slots keep aweak_pt r to every object the
dlot depends on. Connectionsto aslot are disconnected when any of itstracked weak_pt r sexpire. Additionally, signals create their
own temporary shar ed_pt r sto al of adot's tracked objects prior to invoking the slot. This insures none of the tracked objects
destruct in mid-invocation.

The new connection management scheme has the advantage of being non-intrusive. Objects of any type may be tracked using the
shar ed_pt r /weak_ptr scheme. Theold boost : : si gnal s: : t r ackabl e scheme requires the tracked objects to be derived from
thet r ackabl e base class, which is not always practical when interacting with classes from 3rd party libraries.

optional _| ast _val ue as the DefaUH. Combinel‘

The default combiner for Boost.Signals2 has changed from thel ast _val ue combiner used by default in the original Boost.Signals
library. This is because | ast _val ue requires that at least 1 slot be connected to the signal when it is invoked (except for the
| ast _val ue<voi d> specialization). In amulti-threaded environment where signal invocations and s ot connections and disconnections
may be happening concurrently, it isdifficult to fulfill thisrequirement. When using opt i onal _I ast _val ue, thereisno requirement
for dlotsto be connected when asignal isinvoked, since in that case the combiner may simply return an empty boost : : opt i onal .

56

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

Combiner Interface

The Combiner interface was chosen to mimic a cal to an algorithm in the C++ standard library. It is felt that by viewing slot call
results as merely a sequence of values accessed by input iterators, the combiner interface would be most natural to a proficient C++
programmer. Competing interface design generally required the combiners to be constructed to conform to an interface that would
be customized for (and limited to) the Signals2 library. While these interfaces are generally enable more straighforward implement-
ation of the signals & dots libraries, the combiners are unfortunately not reusable (either in other signals & dlotslibraries or within
other generic algorithms), and the learning curve is steepened dightly to learn the specific combiner interface.

The Signals2 formulation of combiners is based on the combiner using the "pull" mode of communication, instead of the more
complex "push" mechanism. With a "pull" mechanism, the combiner's state can be kept on the stack and in the program counter,
because whenever new data is required (i.e., calling the next slot to retrieve its return value), there is a simple interface to retrieve
that dataimmediately and without returning from the combiner's code. Contrast thiswith the "push" mechanism, where the combiner
must keep al state in class members because the combiner's routines will be invoked for each signal called. Compare, for example,
a combiner that returns the maximum element from calling the dlots. If the maximum element ever exceeds 100, no more slots are
to be called.

Pull Push
struct pull_max { struct push_nmax {

typedef int result_type; typedef int result_type;

tenpl at e<t ypenane | nputlterator> push_max() : max_value(), got_first(false) O

result_type operator()(lnputlterator first, {}

Inputlterator |ast)
{ /1 returns fal se when we want to stop
if (first == |ast) bool operator()(int result) {
throw std::runtime_error("Enmpty!"); if (result > 100)

return fal se;
int max_value = *first++;

while(first !'=last &k *first <= 100) { if (lgot_first) {
if (*first > max_val ue) got _first = true;
mex_val ue = *first; mex_val ue = result;
++first; return true;
} }
return max_val ue; if (result > max_val ue)
} mex_val ue = result;

return true;

}

int get_value() const

{
if ('got_first)
throw std::runtime_error("Enmpty!");
return max_val ue;

}

private:
int max_val ue;
bool got_first;

h

There are several points to note in these examples. The "pull” version is a reusable function object that is based on an input iterator
seguence with an integer val ue_t ype, and is very straightforward in design. The "push” model, on the other hand, relieson an in-
terface specific to the caller and isnot generally reusable. It also requires extra state values to determine, for instance, if any el ements

57

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

have been received. Though code quality and ease-of-useis generally subjective, the"pull" model isclearly shorter and morereusable
and will often be construed as easier to write and understand, even outside the context of asignals & dotslibrary.

The cost of the "pull" combiner interface is paid in the implementation of the Signals2 library itself. To correctly handle dot discon-
nections during calls (e.g., when the dereference operator isinvoked), one must construct the iterator to skip over disconnected slots.
Additionally, the iterator must carry with it the set of arguments to pass to each slot (although a reference to a structure containing
those arguments suffices), and must cache the result of calling the ot so that multiple dereferences don't result in multiple calls.
This apparently requires a large degree of overhead, though if one considers the entire process of invoking slots one sees that the
overhead is nearly equivalent to that in the " push" model, but we have inverted the control structuresto makeiteration and dereference
complex (instead of making combiner state-finding complex).

Connection Interfaces: += operator

Boost.Signals2 supports a connection syntax with theform si g. connect (sl ot), but amoreterse syntax si g += sl ot hashbeen
suggested (and has been used by other signals & slots implementations). There are several reasons as to why this syntax has been
rejected:

* It'sunnecessary: the connection syntax supplied by Boost.Signals2 is no less powerful that that supplied by the += operator. The
savings in typing (connect () vs. +=) is essentially negligible. Furthermore, one could argue that calling connect () is more
readable than an overload of +=.

» Ambiguous return type: there is an ambiguity concerning the return value of the += operation: should it be a reference to the
signd itself, toenablesi g += sl ot 1 += sl ot 2, or shoulditreturnasi gnal s2: : connect i on for the newly-created signal/slot
connection?

» Gateway to operators-=, +: when one has added a connection operator +=, it seems natural to have a disconnection operator - =.
However, this presents problems when the library allows arbitrary function objects to implicitly become slots, because slots are
no longer comparable.

The second obvious addition when one has oper at or += would be to add a + operator that supports addition of multiple slots,
followed by assignment to asignal. However, this would requireimplementing + such that it can accept any two function objects,
which istechnically infeasible.

Signals2 Mutex Classes

The Boost.Signals2 library provides 2 mutex classes. boost : : si gnal s2: : mut ex, andboost : : si gnal s2: : dunmy_nut ex. The
motivation for providing boost : : si gnal s2: : nut ex issimply that theboost : : mut ex classprovided by the Boost. Thread library
currently requireslinking tolibboost_thread. Theboost : : si gnal s2: : mut ex classallows Signals2 to remain aheader-only library.
You may still choose to use boost : : nut ex if you wish, by specifying it asthe Mut ex template type for your signals.

Theboost : : si gnal s2: : dummy_nut ex classis provided to allow performance sensitive single-threaded applicationsto minimize
overhead by avoiding unneeded mutex locking.

Comparison with other Signal/Slot implementations

libsigc++

libsigc++ isa C++ signals & dlots library that originally started as part of an initiative to wrap the C interfacesto GTK librariesin
C++, and has grown to be a separate library maintained by Karl Nelson. There are many similarities between libsigc++ and
Boost.Signals2, and indeed the original Boost.Signals was strongly influenced by Karl Nelson and libsigc++. A cursory inspection
of each library will find asimilar syntax for the construction of signalsand in the use of connections. There are some major differences
in design that separate these libraries:

» Sot definitions: dotsin libsigc++ are created using a set of primitives defined by the library. These primitives allow binding of
objects (as part of the library), explicit adaptation from the argument and return types of the signal to the argument and return
types of the dot (libsigc++ is, by default, more strict about types than Boost.Signal s2).

58

httpo://www.renderx.com/

http://libsigc.sourceforge.net
http://www.gtk.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

e Combiner/Marshaller interface: the equivalent to Boost.Signals2 combiners in libsigc++ are the marshallers. Marshallers are
similar to the "push” interface described in Combiner Interface, and a proper treatment of the topic is given there.

.NET delegates

Microsoft has introduced the .NET Framework and an associated set of languages and language extensions, one of which is the
delegate. Delegates are similar to signals and dlots, but they are more limited than most C++ signals and slots implementations in
that they:

* Require exact type matches between a delegate and what it is calling.
» Only return the result of the last target called, with no option for customization.

* Must call amethod witht hi s already bound.

59

render

httpo://www.renderx.com/

http://www.microsoft.com
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

Signals2 API Changes

Porting from Boost.Signals to Boost.Signals2

The changes made to the Boost.Signals2 API compared to the original Boost.Signalslibrary are summarized below. We also provide
some notes on dealing with each change while porting existing Boost.Signals code to Boost.Signal s2.

» The namespace boost : : si gnal s has been replaced by boost : : si gnal s2 to avoid conflict with the original Boost.Signals
implementation, as well asthe Qt "signals" macro. All the Boost.Signals2 classes are inside the boost : : si gnal s2 namespace,
unlike the original Boost.Signals which has some classes in the boost namespace in addition to its own boost : : si gnal s
namespace.

The Boost.Signal s2 header filesare contained intheboost / si gnal s2/ subdirectory instead of theboost / si gnal s subdirectory
used by the original Boost.Signals. Furthermore, all the headers except for the convenience header boost / si gnal s2. hpp are
inside the boost / si gnal s2/ subdirectory, unlike the original Boost.Signals which keeps a few headers in the parent boost /
directory in addition to its own boost / si gnal s/ subdirectory.

For example, thesi gnal classisnow intheboost : : si gnal s2 namespace instead of theboost namespace, and it's header file
isnow at boost / si gnal s2/ si gnal . hpp instead of boost / si gnal . hpp.

While porting, only trivial changes to #i ncl ude directives and nhamespace qualifications should be required to deal with these
changes. Furthermore, the new namespace and header locations for Boost.Signals2 allow it to coexist in the same program with
the original Boost.Signals library, and porting can be performed piecemeal.

» Automatic connection management is now achieved through theuse of shar ed_pt r eak_pt r andsi gnal s2: : sl ot : : t r ack(),
as described in the tutorial. However, the old (thread-unsafe) Boost.Signals scheme of automatic connection management is still
supported viathe boost : : si gnal s2: : trackabl e class.

If you do not intend to make your program multi-threaded, the easiest porting path is to ssimply replace your uses of
boost: :signal s::trackabl e as a base class with boost: : si gnal s2::trackabl e. Boost.Signals2 uses the same
boost : : vi si t _each mechanism to discover t r ackabl e objects as used by the original Boost.Signals library.

» Support for postconstructors (and predestructors) on objects managed by shar ed_pt r has been added with the deconst r uct
factory function. Thiswas motivated by theimportance of shar ed_pt r for the new connection tracking scheme, and the inability
to obtain ashar ed_pt r to an object in its constructor. The use of deconst r uct isdescribed in the tutorial.

The use of deconst ruct isin no way required, it is only provided in the hope it may be useful. You may wish to use it if you
are porting code where a class creates connections to its own member functions in its constructor, and you also wish to use the
new automatic connection management scheme. You could then move the connection creation from the constructor to to the an
adl _postconstruct function, where a reference to the owning shared_ptr is available for passing to sig-
nal s2::slot::track. The deconstruct function would be used create objects of the class and run their associated
adl _post construct function. You can enforce use of deconst ruct by making the class' constructors private and declaring
deconstruct _access afriend.

» Thesignal s2: : sl ot classtakesanew Si gnat ur e template parameter, is useabl e as afunction object, and has some additional
features to support the new Boost.Signals2 automatic connection management scheme.

The changes to the slot class should generally not cause any porting difficulties, especialy if you are using the boost : : si g-
nal s2: : t rackabl e compatibility class mentioned above. If you are converting your code over to use the new automatic connection
management scheme, you will need to employ some of the new slot features, as described in the tutorial.

e Theoptional _| ast_val ue classhasreplaced | ast _val ue asthe default combiner for signals.

Thesi gnal s2: : | ast _val ue combiner isstill provided, although its behavior is dlightly changed in that it throws an exception
when no slots are connected on signal invocation, instead of always requiring at least one slot to be connected (except for its void
specialization which never required any slots to be connected).

60

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

If you are porting signals which have avoi d return typein their signature and they use the default combiner, there are no changes
required. If you are using the default combiner with anon-void return type and care about the value returned from signal invocation,
you will haveto takeinto account that opt i onal _| ast _val ue returnsaboost : : opt i onal instead of aplainvalue. Onesimple
way to deal with this is to use boost::optional::operator*() to access the value wrapped inside the returned
boost: : opti onal .

Alternatively, you could do a port by specifying the Conbi ner template parameter for your si gnal s2: : si gnal to besi g-
nal s2::1ast_val ue.

Thesi gnal s2: : si gnal classhasan additiona typedef si gnal s2: : si gnal : : ext ended_sl ot _t ype andnewsi gnal s2: : si g-
nal : : connect _ext ended() methods. These allow connection of slots which take an additional si gnal s2: : connecti on ar-
gument, giving them thread-safe accessto their signal/slot connection when they areinvoked. Thereisalso anew Ext endedSl| ot -
Funct i on template parameter for specifying the underlying slot function type for the new extended slots.

These additions should have no effect on porting unless you are also converting your program from a single threaded program
into amulti-threaded one. Inthat case, if you have dotswhich need accessto their si gnal s2: : connect i on tothesignal invoking
them (for example to block or disconnect their connection) you may wish to connect the slotswith si gnal s2: : si gnal : : con-
nect _ext ended(). Thisalso requires adding an additional connection argument to the slot. More information on how and why
to use extended dlotsis available in the tutorial .

Thesi gnal s2: : si gnal classhasanew Mut ex template parameter for specifying the mutex type used internally by the signal
and its connections.

The Mut ex template parameter can be left to its default value of boost : : si gnal s2: : nut ex and should have little effect on
porting. However, if you have asingle-threaded program and are concerned about incuring a performance overhead from unneeded
mutex locking, you may wish to use adifferent mutex for your signalssuch asdummy_nut ex. Seethetutorial for moreinformation
on the Mut ex parameter.

The si gnal : : conbi ner () method, which formerly returned a reference to the signal's combiner has been replaced by si g-
nal s2: : si gnal : : conbi ner (which now returns the combiner by value) and si gnal s2: : si gnal : : set _conbi ner.

During porting it should be straightforward to replace uses of the old reference-returning si gnal : : conbi ner () function with
thenew "by-value' si gnal s2: : si gnal : : conbi ner andsi gnal s2: : si gnal : : set _conbi ner functions. However, you will
need to inspect each call of theconbi ner method in your codeto determineif your program logic has been broken by the changed
return type.

Connections no longer have bl ock() and unbl ock() methods. Blocking of connections is now accomplished by creating
shar ed_connect i on_bl ock objects, which provide RAII-style blocking.

If you have existing Boost.Signals code that blocks, for example:

nanespace bs = boost::signals;

bs::connection my_connecti on;
/[l...

my_connecti on. bl ock();
do_sonet hing() ;
my_connecti on. unbl ock();
O

then the version ported to Boost.Signals2 would look like:

61

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Signals2

nanespace bs2 = boost:: signal s2;

bs2:: connection ny_connecti on;
/...

{

bs2:: shared_connecti on_bl ock bl ocker (my_connecti on);

do_sonet hi ng();
} I/ blocker goes out of scope here and releases its block on my_connection
|

Signhals2 API Development
Version 1.56

Version 1.56 modified the behavior of the signal destructor, in that it no longer explicitly calls disconnect_all_slots. Any signal in-
vocations running concurrently with the signal destructor should now complete normally, rather than skipping all remaining slots.
Once all concurrent signal invocations complete, al connections to the deleted signal will still ultimately be disconnected. This
change brings Boost.Signals2 behavior closer to the behavior of the original Boost.Signals library.

Version 1.45

Version 1.45 added sl ot : : t rack_f or ei gn(). This method allows tracking of objects owned by shar ed_pt r classes other than
boost : : shared_ptr, for examplestd: : shared_ptr.

Version 1.40

Version 1.40 adds afew new featuresto the shar ed_connect i on_bl ock classto makeit more flexible:
» shared_connecti on_bl ock isnow default constructible.
* A shared_connecti on_bl ock may now be constructed without immediately blocking its connection.

e Theshared_connecti on_bl ock: : connect i on() query hasbeen added, to provide accesstotheshar ed_connect i on_bl ocks
associated connection.

Version 1.40 aso introduces a variadic templates implementation of Signals2, which is used when Boost detects compiler support
for variadic templates (variadic templates are a new feature of C++11). This change is mostly transparent to the user, however it
doesintroduce afew visible tweaks to the interface as described in the following.

The following library features are deprecated, and are only available if your compiler is NOT using variadic templates (i.e.
BOOST_NO_CXX11 VARIADIC_TEMPLATES is defined by Boost.Config).

» The"portable syntax" signal and slot classes, i.e. sighals2::signal0, signall, etc.

» Theargl type, arg2_type, etc. member typedefsin the si gnal s2: : si gnal andsi gnal s2: : sl ot classes. They are replaced
by the template member classessi gnal s2: : si gnal : : arg andsi gnal s2: :slot::arg.

Version 1.39

Version 1.39 isthefirst release of Boost to include the Signals2 library.

62

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Signals2

Testsuite

Acceptance tests

Test

connection_test.cpp

dead dlot_test.cpp

deconstruct_test.cpp

deletion_test.cpp
ordering_test.cpp

regression_test.cpp

signal_test.cpp

track_test.cpp

Type

run

run

run

run
run

run

run

run

Description

Test functionality of boost : : si gnal s2: : con-

nection and boost: :sig-
nal s2: : scoped_connect i on objects, includ-
ing release() and swap().

Ensurethat calling connect withadot that has
aready expired does not actually connect to the
dot.

Test postconstruction/predestruction functional -
ity of boost : : si gnal s2: : deconstruct.

Test deletion of dlots.
Test slot group ordering.

Tests for various bugs that have occurred in the
past, to make sure they are fixed and stay fixed.

Basic test of signal/slot connections and invoc-
ation using the boost : : si gnal s2: : si gnal
classtemplate.

Test automatic connection management of sig-
nals and sots.

If failing...

63

httpo://www.renderx.com/

../../libs/signals2/test/connection_test.cpp
../../libs/signals2/test/dead_slot_test.cpp
../../libs/signals2/test/deconstruct_test.cpp
../../libs/signals2/test/deletion_test.cpp
../../libs/signals2/test/ordering_test.cpp
../../libs/signals2/test/regression_test.cpp
../../libs/signals2/test/signal_test.cpp
../../libs/signals2/test/track_test.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Signals2
	Table of Contents
	Introduction
	Signals2

	Tutorial
	How to Read this Tutorial
	Hello, World! (Beginner)
	Calling Multiple Slots
	Connecting Multiple Slots (Beginner)
	Ordering Slot Call Groups (Intermediate)

	Passing Values to and from Slots
	Slot Arguments (Beginner)
	Signal Return Values (Advanced)

	Connection Management
	Disconnecting Slots (Beginner)
	Blocking Slots (Beginner)
	Scoped Connections (Intermediate)
	Disconnecting Equivalent Slots (Intermediate)
	Automatic Connection Management (Intermediate)
	Postconstructors and Predestructors (Advanced)
	When Can Disconnections Occur? (Intermediate)
	Passing Slots (Intermediate)

	Example: Document-View
	Giving a Slot Access to its Connection (Advanced)
	Changing the Mutex Type of a Signal (Advanced).
	Linking against the Signals2 library

	Example programs
	Miscellaneous Tutorial Examples
	hello_world_slot
	hello_world_multi_slot
	ordering_slots
	slot_arguments
	signal_return_value
	custom_combiners
	disconnect_and_block
	passing_slots
	extended_slot

	Document-View
	doc_view
	doc_view_acm
	doc_view_acm_deconstruct

	Postconstructors and Predestructors with deconstruct()
	postconstructor_ex1
	postconstructor_ex2
	predestructor_example

	Reference
	Header <boost/signals2.hpp>
	Header <boost/signals2/connection.hpp>
	Class connection
	Synopsis
	Description
	Thread Safety
	connection public construct/copy/destruct
	connection connection management
	connection blocking
	connection modifiers
	connection comparisons
	connection specialized algorithms

	Class scoped_connection
	Synopsis
	Description
	Thread Safety
	scoped_connection public construct/copy/destruct
	scoped_connection public methods
	scoped_connection private construct/copy/destruct

	Header <boost/signals2/deconstruct.hpp>
	Function deconstruct
	Synopsis
	Description

	Class deconstruct_access
	Synopsis
	Description

	Class postconstructor_invoker
	Synopsis
	Description
	postconstructor_invoker public methods

	Header <boost/signals2/dummy_mutex.hpp>
	Class dummy_mutex
	Synopsis
	Description

	Header <boost/signals2/last_value.hpp>
	Class template last_value
	Synopsis
	Description
	last_value invocation
	Specializations

	Class last_value<void>
	Synopsis
	Description
	last_value invocation

	Class no_slots_error
	Synopsis
	Description

	Header <boost/signals2/mutex.hpp>
	Class mutex
	Synopsis
	Description

	Header <boost/signals2/optional_last_value.hpp>
	Class template optional_last_value
	Synopsis
	Description
	optional_last_value invocation
	Specializations

	Class optional_last_value<void>
	Synopsis
	Description
	optional_last_value invocation

	Header <boost/signals2/shared_connection_block.hpp>
	Class shared_connection_block
	Synopsis
	Description
	shared_connection_block public construct/copy/destruct
	shared_connection_block connection blocking
	shared_connection_block miscellaneous methods

	Header <boost/signals2/signal.hpp>
	Class template signal
	Synopsis
	Description
	Template Parameters
	signal public types
	signal public construct/copy/destruct
	signal connection management
	signal invocation
	signal combiner access
	signal modifiers
	Class template arg
	Synopsis

	signal specialized algorithms

	Header <boost/signals2/signal_base.hpp>
	Class signal_base
	Synopsis
	Description
	signal_base public construct/copy/destruct

	Header <boost/signals2/signal_type.hpp>
	Class template signature_type
	Synopsis
	Description

	Class template combiner_type
	Synopsis
	Description

	Class template group_type
	Synopsis
	Description

	Class template group_compare_type
	Synopsis
	Description

	Class template slot_function_type
	Synopsis
	Description

	Class template extended_slot_function_type
	Synopsis
	Description

	Class template mutex_type
	Synopsis
	Description

	Class template signal_type
	Synopsis
	Description

	Header <boost/signals2/slot.hpp>
	Class template slot
	Synopsis
	Description
	Template Parameters
	slot public construct/copy/destruct
	slot invocation
	slot tracking
	slot slot function access
	Class template arg
	Synopsis

	Header <boost/signals2/slot_base.hpp>
	Class slot_base
	Synopsis
	Description
	slot_base tracking

	Class expired_slot
	Synopsis
	Description

	Header <boost/signals2/trackable.hpp>
	Class trackable
	Synopsis
	Description
	trackable public construct/copy/destruct

	Thread-Safety
	Introduction
	Signals and combiners
	Connections and other classes

	Frequently Asked Questions
	Design Rationale
	User-level Connection Management
	Automatic Connection Management
	optional_last_value as the Default Combiner
	Combiner Interface
	Connection Interfaces: += operator
	Signals2 Mutex Classes
	Comparison with other Signal/Slot implementations
	libsigc++
	.NET delegates

	Signals2 API Changes
	Porting from Boost.Signals to Boost.Signals2
	Signals2 API Development
	Version 1.56
	Version 1.45
	Version 1.40
	Version 1.39

	Testsuite
	Acceptance tests

