render

Boost.Bimap

Matias Capeletto
Copyright © 2006-2012 Matias Capeletto

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1 0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents

1= = o= PP 3
gL oo (1 1 o o PP 4
(@ 0T 01T 0 01 (= (F (o - PP 6
LI L= L0 1o = PPN 12
e e 10 o RSP PPTTTUPPPTRRPPPPIN 12
Discovering the Bimap framEWOTKo.uu i ettt e e e e e e e 12
1600l p1n ol [T aTs Nolol 1= oi o gl 1Y o= SO PPP T UPP PP UPPPTT 16
The COlECION Of FElALIONS LY ettt ettt et ettt et e et e et et e et e b e e e eaa e e ennans 20
DifferencesS With SLANGAIT MBS ittt ettt e et e e ettt e e et et s e e e ettt e e eesbn s e eeeabnaeaeens 25
L0 U I 100 Tox o ST 28
Bimaps With USer defiNE0 NAIMESo ettt e ettt e e et e e e et e e eeba e eeeees 32
UNCONSEFAINEA SELS ...t etieeeti ettt ettt oottt e ettt ettt e et e et et e e et e e et e e e e e e e an e e e et e e et e e et e e e aa e e tn e e et eaeaneaeens 34
Additional TNFOIMELIONo e ettt e e et e e et e e et e et e e e tn e e e st e e et e e et aeeaneeenaaes 35
Complete INSEANLTIAIION SCNEIMIE ettt e et ettt et e et et e et e e e e nne e eennas 38
[Tt o= g To = Te o ST PP UPPPPTRUPPIN 41
Bimap @N0 MUITTTNOEXceeieee ettt ettt e ettt e ettt e e et e bt e e e ebt e e e eetbaeeeerbaeeeen 41
Boost Libraries that work well With BOOSEBIMEDvuiiiiiiiieiiiii ettt e e e e eeena e e 42
(D= o7 0T = o Tol = PP PPPPTPRPPPIN 50
L = 1= 0o = PP 53
[1572 (= £ PPN 53
BIMAD REFEIEICE ...t ettt e e ettt e ettt e et e et e e et e e e e e b e e eer e aee 53
S R S = 1 0 0= T PP 61
unordered St Of REFEIENCE ettt e e et e et e et e e et e e et e e eanaaees 74
TS o = 1 =00 PR 85
AV oo o = 1 = 0ol TSP 96
uUNCONStraiNed _SEt Of REFEIENCEocvi i e et e e et e e et e et e e e ean s 108
L0000l o1 1= g o= o) o S ST PP PP TPPPPTRUPPPN 110
L o 17 o1 S PP PRTPPN 111
= 0110 = PP PO TPPPPTPRPPPIN 112
o= 00T o = T PP PUPPPTI 112
SIMPIE BIMAD ..ttt ettt et et et e et 113
L HT | 1Y =111 0= o E PSP TSPPTTTR 116
Multilndex to Bimap Path - BidireCtional M@c.uuuiiiiiiiiii et e 117
Multilndex to Bimap Path - Hashed INQICESoiiiiee et e 122
= S = PP 127
010 £ o PP 130
S 1= S o) (- PP 131
L [= PP 132
(€1 g Tc = I B L o o PP P PP PUPPPT 132
YN o Lot = (1 =PSRRI 135
Lo o L= P 137
The Student aNd the MENTOT e ettt ettt et et e e e et e et ra e e enaans 137
[11 0 YT PRSP PP 146
The long path from Code ProjeCt 10 BOOSEcceeuuieieiii ettt et ettt e e e e e ae e e enaas 146
1

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

R0 T E o (ot qr= 1o I T3 2= o PP

Acknowledgements

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Preface

Description

boost
€ bimap

Boost.Bimap is a bidirectional maps library for C++. With Boost.Bimap you can create associative containers in which both types
can be used as key. A bi map<X, Y> can be thought of asacombination of ast d: : map<X, Y>and ast d: : map<Y, X>. Thelearning
curve of bimapisamost flat if you know how to use standard containers. A great deal of effort has been put into mapping the naming
scheme of the STL in Boost.Bimap. The library is designed to match the common STL containers.

Influences and Related Work

Thedesign of Boost.Bimap interface followsthe standard template library. It has been strongly influenced by Joaquin Lopez Mufioz's
Boost.Multilndex library (the heart of bimaps) and codeproject::bimap library.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Introduction

How to use this document

This documentation contains a large amount of information. Whereas it may be worth reading it all, this documentation is intended
for programmers with various motives:

| have to finished this today, | just
want a bidirectional map!

| am a serious programmer and want
to learn Boost.Bimap

| just love C++, | want to seethein-
ner workings of Boost.Bimap.

If your bosswill kill you if the project is not finished by the end of the day, just read the One-
minute tutorial. If you have a background in STL, you can be testing a bimap within ten
minutes.

Boost.Bimap has alot to offer if you are prepared to spend some time reading this document-
ation. You will need to read The tutoria and skim through some of the Examples. The best
way to read this documentation isin the order given here. Just click on the arrow at the right
bottom corner as you finish each page. You may skip the reference section, and return to it
later to look up afunction signature or to find a specific metafunction.

If you are alibrary developer, this documentation is the best place to learn how Boost.Bimap
is implemented. It is strongly recommended that you first learn to use the library as if you
were the second type of programmer above. This library was developed in the Google SoC
2006, and the mentor and student generated a great deal of documentation in the building
process. Therationale sectionisvery large and containsalot of information. Thereisahistory
section for those who might find it useful. Finally, in the reference section, each entity of the
library is documented and its source code is presented.

S Note
If anything in the documentation is unclear, please email me at matias{dot} capeletto {at} gmail {dot} com, telling
me which of the three types of programmer above you are and which section needs improvement. Please use the
following notation for the subject: [boost] [bimap] Your problem as this will help me to identify it more easily. If
appropriate, | will act on your advice to improve the documentation. Thanks and enjoy!

2 I mportant
If you should find a bug or would like to see an additional feature in the library, please use the standard Boost
methods of dealing with this kind of issue rather than emailing me directly. Boost has a very good system to track
bugs and features requests, and using it is the best way of dealing with them as soon as possible.

Navigation

Used in combination with the configured browser key (usually Alt), thefollowing keys act as handy shortcuts for common navigation

tasks.
* General
e p - Previous page
* n - Next page
e h-home
e u-Up
« MainTOC

e i -Introduction

httpo://www.renderx.com/

http://www.boost.org/more/bugs.htm
http://www.boost.org/more/bugs.htm
http://www.boost.org/more/requesting_new_features.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

o0 - One minute tutorial
t - Thetutoria

b - Bimap and Boost

r - Reference

¢ - Compiler specifics
v - Performance

e - Examples

s - Test Suite

f - Future work

m- Release notes

w- Rationale

y - History

a - Acknowledgements

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

One minute tutorial

What is a bimap?

A Bimap is adata structure that represents bidirectional relations between elements of two collections. The container is designed to
work as two opposed STL maps. A bimap between a collection X and a collection Y can be viewed as amap from X to Y (this view
will be called the left map view) or as amap from Y to X (known as the right map view). Additionally, the bimap can also be viewed
as a set of relations between X and Y (named the collection of relations view).

The following code creates an empty bimap container:

t ypedef bi map<X, Y> bm type;
bm type bm

Given this code, the following is the compl ete description of the resulting bimap. 1
* bm | eft issignature-compatible with st d: : map<X, Y>
* bmri ght issignature-compatible with st d: : map<Y, X>

* bmissignature-compatible with st d: : set < rel ati on<X, Y> >

bimap<X,Y> bm
bom:.left — om.right
» () <

X bm y

>f<relation<X,Y:

You can see how abimap container offers three views over the same collection of bidirectiona relations.

If we have any generic function that work with maps

Ia type is signature-compatible with other type if it has the same signature for functions and metadata. Preconditions, postconditions and the order of operations
need not be the same.

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

tenpl ate< cl ass MapType >
voi d print_map(const MapType & m

{
t ypedef typenane MapType::const _iterator const_iterator;
for(const_iterator iter = mbegin(), iend = mend(); iter !=iend, ++iter)
{
std::cout << iter->first << "-->" << jter->second << std::endl;
}
}

We can use the left map view and the right map view with it

bi map< int, std::string > bm

print_map(bmleft);
print_map(bmright);

And the output will be

1 --> one
2 -->two

one --> 1
two --> 2
Layout of the relation and the pairs of a bimap

Ther el at i on class represents two related elements. The two values are named left and right to express the symmetry of thistype.
The bimap pair classes are signature-compatible with st d: : pai rs.

bimap<X,Y>
$ right pair @
o s Lo N
= first < S second second £~ first —
relation
./- -\. |/- -\I
M left = “u right —

Step by step
A convinience header is avaiable in the boost directory:

#i ncl ude <boost/ bi map. hpp>

L ets define a bidirectional map between integers and strings:

render

s httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

t ypedef boost::bimap< int, std::string > bmtype;
bm type bm

The collection of relations view

Remember that bmalone can be used as a set of relations. We can insert elements or iterate over them using this view.

bminsert(bmtype::value_type(l, "one"));
bminsert(bmtype::value_type(2, "two"))

std::cout << "There are " << bmsize() << "relations" << std::endl;

for(bmtype::const_iterator iter = bmbegin(), iend = bmend();

iter '=iend; ++iter)
{

/1 iter->left : data : int

/1l iter->right : data : std::string

std::cout << iter->left << " <-->" << jter->right << std::endl;
}

The left map view

bm | eft workslikeastd: : map< int, std::string > Weuseitinthe sameway we will use a standard map.

Ot ypedef bmtype::left_map::const_iterator left_const_iterator;

for(left_const _iterator left_iter = bmleft.begin(), iend = bmleft.end();

left _iter !'=iend;, ++left_iter)
{

Il left_iter->first : key : int

/1 left_iter->second : data : std::string

std::cout << left_iter->first << " -->" << left_iter->second << std::endl;
}

@®bm type: :left_const_iterator left_iter = bmleft.find(2);
assert(left_iter->second == "two");

©Obm left.insert(bmtype::left_value type(3, “three"));

O Thetypeof bmleft isbmtype::left_map andthetypeof bm ri ght isbm type::right_map
® bmtype::|eft_-type can beused asashortcut for the more verbosebm type: : | ef t _map: : -type-
©® Thisline produces the same effect of bm i nsert (bm type: :val ue_type(3,"three"));

The right map view

bm ri ght workslikeastd: : map< std::string, int >. Itisimportantto notethat the key isthefirst type and the dataisthe
second one, exactly as with standard maps.

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

bmtype::right_const_iterator right_iter = bmright.find("two");

/'l right_iter->first : key : std::string
/'l right_iter->second : data : int
assert(right_iter->second == 2);
assert(bmright.at("one") == 1);

bmright.erase("tw");

Obmright.insert(bmtype::right_value_type("four", 4));
© Thisline produces the same effect of bm i nsert (bm type: :val ue_type(4,"four"));

Differences with std::map

The main difference between bimap views and their standard containers counterparts is that, because of the bidirectiona nature of
a bimap, the values stored in it can not be modified directly using iterators. For example, when a st d: : map<X, Y> iterator is
dereferenced thereturntypeisst d: : pai r <const X, Y>, sothefollowingcodeisvalid: m begi n() - >second = new_val ue; .
However dereferencing abi map<X, Y>:: 1 eft _i t erat or returns atype that is signature-compatible with ast d: : pai r <const
X, const Y>

bmleft.find(1)->second = "1"; // Conpilation error

Ifyouinsert(1, "one") and (1, "1") inastd: : map<i nt, std: : st ri ng>thesecond insertionwill haveno effect. Inabi map<X, Y>
both keys have to remain unique. The insertion may fail in other situtionstoo. Lets see an example

bmclear();
bminsert(bmtype::value_type(1, "one"));

bminsert(bmtype::value_type(1, "1")); /1 No effect!
bminsert(bmtype::value_type(2, "one")); // No effect!

assert(bmsize() == 1);

A simple example

Look how you can reuse code that is intend to be used with std::maps, like the print_map function in this example.

Go to source code

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/simple_bimap.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

#i ncl ude <string>
#i ncl ude <i ostreanr

#i ncl ude <boost/ bi map. hpp>

tenpl ate< cl ass MapType >

voi d print_nap(const MapType & map,
const std::string & separator,
std::ostream & os)

{
typedef typenane MapType::const _iterator const_iterator;
for(const_iterator i = map.begin(), iend = map.end(); i !=iend; ++i)
{
0s << i->first << separator << i->second << std::endl;
}
}
int main()
{
/'l Soccer World cup
t ypedef boost:: bi map< std::string, int > results_bi map;
typedef results_bimap::val ue_type position;
results_bimap results;
results.insert(position("Argentina" 1)),
results.insert(position("Spain" ,2)),
results.insert(position("Gernany" ,3)),
results.insert(position("France" 4),
std::cout << "The nunber of countries is " << results.size()
<< std::endl;
std::cout << "The winner is " << results.right.at(1)
<< std::endl
<< std::endl;
std::cout << "Countries nanes ordered by their final position:"
<< std::endl;
/1 results.right works like a std::map< int, std::string >
print_map(results.right, ") ", std::cout);
std::cout << std::endl
<< "Countries nanmes ordered al phabetically along with"
"their final position:"
<< std::endl;
/1 results.left works like a std::map< std::string, int >
print_map(results.left, " ends in position ", std::cout);
return O;
}

The output of this program will be the following:

10

render

Y httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

The nunber of countries is 4
The wi nner is Argentina

Countries nanes ordered by their final position:
1) Argentina

2) Spain

3) Gernany

4) France

Countries nanes ordered al phabetically along with their final position:
Argentina ends in position 1

France ends in position 4

Germany ends in position 3

Spain ends in position 2

Continuing the journey

For information on function signatures, see any standard library documentation or read the reference section of this documentation.

‘@ Caution
Be aware that a bidirectional map is only signature-compatible with standard containers. Some functions may give

different results, such as in the case of inserting a pair into the left map where the second value conflicts with a
stored relation in the container. The functions may be slower in a bimap because of the duplicated constraints. It is
strongly recommended that you read The full tutorial if you intend to use abimap in a serious project.

11

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

The tutorial

Roadmap

1

Boost.Bimap is intuitive because it is based on the standard template library. New concepts are however presented to extend the
standard maps to bidirectional maps. Thefirst step isto gain afirm grasp of the bimap framework. Thefirst section (Discovering
the bimap framework) aims to explain this.

. Boost.Bimap offers much more than just a one-to-one ordered unique bidirectional map. It is possible to control the collection

type of each side of the relationship that the bimap represents, giving one-to-many containers, hashed bidirectional containers
and others that may be more suitable to the the task at hand. The second section (Controlling collection types) explains how to
instantiate a bimap with different collection constraints.

. The section (The "collection of relations" type) explains how to create new types of bidirectional maps using custom collection

types.

. Inthe section Differences with standard mapswe will learn about the subtle differences between a bimap map view and a standard

map.

. The section Useful functions provides information about functions of a bimap that are not found in the STL.

. The types of a bimap can be tagged so that each side is accessible by something closer to the problem than left and right. This

leadsto more readabl e, self-documenting code. The fourth section (Bimapswith user defined names) shows how to use thisfeature.

. The bimap mapping framework allows to disable a view of a bimap, including the standard mapping containers as a particular

case. The section Unconstrained Sets explains how they work.

. The section Additional information explains how to attach information to each relation of a bimap.

. Thefina section (Complete Instantiation Scheme) summarizes bimap instantiation and explains how change the allocator type

to be used.

Discovering the bimap framework

Interpreting bidirectional maps

Oneway tointerpret bidirectional mapsisasafunction between two collections of data, letscall them theleft and the right collection.
An element in thisbimap is arelation between an element from the | eft collection and an element from the right collection. The types
of both collections defines the bimap behaviour. We can view the stored data from the left side, as a mapping between keys from
the left collection and data from the right one, or from the right side, as a mapping between keys from the right collection and data
from the left collection.

Standard mapping framework

Relationships between datain the STL are represented by maps. A standard map is a directed relation of keys from aleft collection
and data from aright unconstrained collection. The following diagram shows the relationship represented and the user's viewpoint.

12

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

std::map_type<X,Y>bm
2 Y 7

Collection Unconstrainded
type of X et of Y

no options avaiable

The l€eft collection type depends on the selected map type. For example if the the map typeisst d: : nul ti map the collection type
of X isanmul ti set _of . Thefollowing table shows the equivalent types for the std associative containers.

Table 1. std associative containers

container left collection type right collection type
map set _of no constraints
mul ti map nmul tiset of no constraints
unor der ed_nap unor der ed_set _of no constraints
unordered_nul ti map unordered_nul tiset _of no constraints

Bimap mapping framework

Boost.Bimap design is based on the STL, and extends the framework in a natural way. The following diagram represents the new
situation.

13

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

bimayp< collection_type of<X>, collection_type_of<Y> > bm

om.right

€

bom.left _i
» (7

—
Collection Collection
type of X type of Y

Noticethat now thest d: : naps areaparticular case of aBoost.Bimap container, where you can view only one side of the relationship
and can control the constraints of only one of the collections. Boost.Bimap allows the user to view the relationship from three
viewpoints. You can view it from one side, obtaining a st d: : map compatible container, or you can work directly with the whole

relation.

The next diagram shows the layout of the relation and pairs of abimap. It is the one from the one minute tutorial

bimap<X,Y>
$ right pair ¢I
} /-)é\' P o Fn
M first =7 S second ™ “second €~ first —
relation
e P 7
T . right ™~

Bimap pairs are signature-compatible with standard pairs but are different from them. As you will seein other sections they can be
tagged with user defined names and additional information can be attached to them. You can convert from st d: : pai r s to bimap
pairs directly but the reverse conversion is not provided. This mean that you can insert elements in a himap using algorithms like
std::copy from containers | i ke std::map, or use std::make_pair to add new elements. However it is best to use
bmleft.insert(bmtype::left_value type(f,s)) instead of bminsert(std::make pair(f,s)) toavoidan
extracall to the copy constructor of each type.

The following code snippet shows the relation between a bimap and standard maps.

14

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

S Note
You have to used referencesto views, and not directly views object. Views cannot be constructed as separate objects
from the container they belong to, so the following:

/1 Wong: we forgot the & after bmtype::left _type
bmtype::left_map Im= bmleft;

does not compile, since it istrying to construct the view object | m Thisisacommon source of errorsin user code.
Go to source code

tenpl at e< cl ass Map, cl ass Conpati bl eKey, cl ass Conpati bl eData >
void use_it(Map & m

const Conpati bl eKey & key,

const Conpati bl eData & data)

{
typedef typenane Map::val ue_type val ue_type;
t ypedef typenanme Map::const_iterator const_iterator;
minsert(value_type(key,data));
const _iterator iter = mfind(key);
if(iter '= mend())
{
assert(iter->first == key);
assert(iter->second == data);
std::cout << iter->first << " -->" << iter->second;
m er ase(key) ;
}
int main()
{

t ypedef bi map< set_of <std::string> set_of<int> > bimp_type;
bi map_type bm

/1 Standard map

{
typedef std::map< std::string, int > map_type;
map_type m
use it(m "one", 1);

}

/1 Left map view

{
t ypedef bimap_type::left_map map_type;
map_type & m= bmleft;
use it(m "one", 1);

}

/'l Reverse standard map

{
typedef std::map< int, std::string > reverse_map_type;
reverse_nap_type rm
use it(rm 1, "one");

}

15

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/standard_map_comparison.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

/1 Right map view

{
t ypedef binmap_type::right_nmap reverse_map_type;
reverse_map_type & rm= bmright;
use_it(rm 1, "one");

}

return O;

Controlling collection types

Freedom of choice

As has aready been said, in STL maps, you can only control the constraints from one of the collections, namely the one that you
areviewing. In Boost.Bimap, you can control both and it is as easy as using the STL.

bimap< collection_type_of<X>, collection_type_ot<Y> > bm

bm.left

om.right
ﬂ
» (o

-

I
Collection Collection
type of X type of Y

Theideaisto usethe same constraint namesthat are used in the standard. If you don't specify the collection type, Boost.Bimap assumes
that the collection is a set. The instantiation of a bimap with custom collection types looks like this:

t ypedef bi map< Col |l ecti onType_of <A>, Col | ecti onType_of > bm type;

Thefollowing isthelist of all supported collection types.

16

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Table 2. Collection of Key Types

name

set _of

mul ti set_of

unor der ed_set _of
unordered_nul tiset _of
list_of

vect or _of

unconstrai ned_set _of

Features
ordered, unique
ordered

hashed, unique
hashed
sequenced
random access

unconstrained

map view type

map

mul ti map
unor der ed_map

unor dered_nmul ti map
list_map

vect or _map

can not be viewed

l'i st_of andvector_of map views are not associated with any existing STL associative containers. They are two examples of
unsorted associative containers. unconst r ai ned_set _of alow the user to ignore aview. Thiswill be explained later.

N

&)
@ >

bimap<set_of<X>unordered sef_of<Y>>

®) %

%)
2

-

»
- o

bimap<vector_of<X> list_of<y>>

The selection of the collection type affects the possible operations that you can perform with each side of the bimap and the time it

takes to do each. If we have:

t ypedef bi map< Col | ecti onType_of <A>,

bm type bm

The following now describes the resulting map views of the bidirectional map.

* bm | ef t issignature-compatible with L eftM apType<A, B>

* bmri ght issignature-compatible with RightMapType<B, A>

Col | ecti onType_of > bm type

render

17

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Configuration parameters

Each collection type template has different parameters to control its behaviour. For example, inset _of specification, you can pass
aFunctor type that comparestwo types. All of these parameters are exactly the same asthose of the standard library container, except
for the alocator type. You will learn later how to change the allocator for abimap.

The following table lists the meanings of each collection type's parameters.

name

set _of <T, KeyConp>

mul ti set _of <T, KeyConp>

unor der ed_set _of <T, HashFunct or, Equal Key>

unor dered_nul ti set _of <T, HashFunct or, Equal Key>

list_of <T>
vect or _of <T>

unconstrai ned_set _of <T>

Examples

Countries Populations

We want to store countries populations. The requeriments are:

1. Get alist of countriesin decresing order of their populations.

2. Given acountrie, get their population.

L ets create the appropiate bimap.

t ypedef bi map<

unor dered_set _of< std::string >,
mul ti set_of < long, std::greater<long> >

> popul ati ons_bi map;

Additional Parameters

KeyComp is aFunctor that compares two types using aless-
than operator. By default, thisisst d: : | ess<T>.

HashFunctor convertsaT objectintoanst d: : si ze_t value.
By default itisboost : : hash<T>.

EqualKey is a Functor that tests two types for equality. By
default, the equality operator isst d: : equal _t o<T>.

No additional parameters.
No additional parameters.

No additional parameters.

First of all countries names are unique identifiers, while two countries may have the same population. This is why we choose

multiset _of for populations.

Usinganul ti set _of for population allow usto iterate over the data. Sincelisting countries ordered by their namesisnot arequisite,
we can use an unor der ed_set _of that allows constant order look up.

And now letsuseit in a complete example

Go to source code

18

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/population_bimap.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

t ypedef bi map<

unordered_set _of< std::string >,
nmul ti set_of < long, std::greater<long> >

> popul ati on_bi map;
t ypedef popul ati on_bi map: : val ue_t ype popul ati on;

popul ati on_bi map pop;

pop.insert(popul ati on("China", 1321000000));
pop.insert(population("India", 1129000000));
pop.insert(population("United States", 301950000));
pop.insert(popul ation("lndonesia", 234950000));
pop.insert(population("Brazil", 186500000));
pop.insert(popul ati on("Paki stan", 163630000));

std::cout << "Countries by their population:" << std::endl;

/'l First requirenent

Of or (popul ati on_bi map: :right_const_iterator
i = pop.right.begin(), iend = pop.right.end();
i '=iend ; ++i)

{
}

std::cout << i->second << " with " << i->first << std::endl;

/1 Second requirenent
@Ostd: i cout << "Popul ation of China: " << pop.left.at("China") << std::endl;

© Theright map view workslikeast d: : mul ti map< | ong, std::string, std::greater<long> >, Wecaniterate over
it to print the results in the required order.

® Theleft map view works like ast d: : unor der ed_map< std::string, |ong >, giventhe name of the country we can
use it to search for the population in constant time

Repetitions counter
We want to count the repetitions for each word in atext and print them in order of appearance.

Go to source code

19

render

s httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/repetitions_counter.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

t ypedef bi map

<
unordered_set _of< std::string >,
list_of< counter > @

> word_counter;
t ypedef boost::tokeni zer<boost: : char_separator <char> > text_tokeni zer;

std::string text=
"Rel ati ons between data in the STL are represented with maps."
"Amap is a directed relation, by using it you are representing "
"a mapping. In this directed relation, the first type is related to "
"the second type but it is not true that the inverse relationship "
"holds. This is useful in a lot of situations, but there are sone "
"rel ationships that are bidirectional by nature.";

/'l feed the text into the container
wor d_count er WC;
text _tokeni zer tok(text,boost::char_separator<char>(" \t\n.,;:!1?2"\"-"));

for(text_tokenizer::const_iterator it = tok.begin(), it_end = tok.end();
it !=it_end; ++it)

{
}

O++ we. left[*it];

/1 list words with counters by order of appearance
©Of or (word_counter::right_const_iterator
wit = we.right.begin(), wit_end = wc.right.end();
wit I'=wt_end; ++wit)

std::cout << wit->second << ": " << wit->first;

© counter isaninteger that isinitialized in zero in the constructor

® Because theright collection typeis| i st _of , the right datais not used a key and can be modified in the same way as with
standard maps.

©® When weinsert the elements using the left map view, the element isinserted at the end of thelist.

The collection of relations type

A new point of view

Being ableto change the collection type of the bimap relation view isanother very important feature. Remember that thisview allows
the user to see the container as a group of the stored relations. This view has set semantics instead of map semantics.

20

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

bimap< X.Y, collection_type of relation > bm

Yx
Ya

Ys

X
om y

< relation<X,Y> >

By default, Boost.Bimap will base the collection type of the relation on the type of the left collection. If the left collection typeisa
set, then the collection type of the relation will be a set with the same order as the | eft view.

In general, Boost.Bimap userswill base the collection type of arelation on the type of the collection on one of the two sides. However
there are times where it is useful to give this collection other constraints or simply to order it differently. The user is allowed to
choose between:

o left_based

* right_based

» set of_relation<>

e multiset_of relation<>
 unordered_set_of relation<>

* unordered_multiset_of relation<>
 list_of relation

 vector_of relation

» unconstrained_set_of_relation

@ Tip

Thefirst two options and the last produce faster bimaps, so prefer these where possible.

21

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

bimap< X, Y, left_based > bimap< X, Y, list_of_relation >

The collection type of relation can be used to create powerful containers. For example, if you need to maximize search speed, then
the best bidirectional map possibleis one that relates elementsfrom an unor der ed_set to another unor der ed_set . The problem
is that this container cannot be iterated. If you need to know the list of relations inside the container, you need another collection
type of relation. In thiscase, al i st _of _rel ati on isagood choice. The resulting container trades insertion and deletion time
against fast search capabilities and the possibility of bidirectional iteration.

Go to source code

22

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/mighty_bimap.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

#i ncl ude <i ostreanr

#i ncl ude <string>

#i ncl ude <boost/ bi map/ bi map. hpp>

#i ncl ude <boost/bi map/list_of . hpp>

#i ncl ude <boost/ bi map/ unordered_set _of . hpp>

struct english {}
struct spanish {}

i nt

{

mai n()
usi ng nanespace boost: : bi maps

t ypedef bi map
<

unor dered_set _of < tagged< std::string, spanish > >
unor dered_set _of < tagged< std::string, english > >

list_of _relation
> transl ator

transl ator trans;

/1 W have to use " push_back™ because the collection of relations is

/1l a "list_of _relation

trans. push_back(transl ator::val ue_type("hol a"
trans. push_back(transl ator::val ue_type("adi os"
trans. push_back(translator::val ue_type("rosa"
trans. push_back(translator::val ue_type("nesa"

std::cout << "enter a word" << std::endl
std::string word;
std::getline(std::cin,word);

"hel | 0"))
"goodbye"))
"rose"))
"tabl e"))

/1 Search the queried word on the fromindex (Spanish)

transl ator:: map_by<spani sh>::const _iterator is
= trans. by<spani sh>().find(word)

if(is !=trans. by<spanish>().end())

{

std::cout << word << " is said "
<< i s->get<english>()
<< " in English" << std::endl
}
el se
{

/1 Word not found in Spanish, try our luck in English

transl ator:: map_by<english>::const_iterator
= trans. by<english>().find(word)

if(ie !=trans. by<english>().end())
{

std::cout << word << " is said"
<< i e->get <spani sh>()
<< " in Spanish" << std::endl
}
el se
{

ie

/1 Word not found, show the possible translations

23

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

std::cout << "No such word in the dictionary"
std::cout << "These are the possible translations"

for(translator::const_iterator
i = trans. begin(),
i_end = trans.end();

i '=i_end ; ++i)

{
std::cout << i->get<spanish>()
<< " <> "
<< i->get<english>()
<< std::endl;
}
}
}
return O;

Configuration parameters

<< std::endl;
<< std::endl;

Each collection type of relation has different parametersto control itsbehaviour. For example, intheset _of _r el at i on specification,
you can pass a Functor type that compares two types. All of the parameters are exactly asin the standard library containers, except
for the type, which is set to the bimap relation and the allocator type. To help users in the creation of each functor, the collection
type of relation templates takes an mpl lambda expression where the relation type will be evaluated later. A placeholder named

_rel ati on isavailableto bimap users.

The following table lists the meaning of the parameters for each collection type of relations.

name

| eft _based

ri ght _based

set _of _rel ati on<KeyConp>

mul ti set_of _rel ati on<KeyConp>

unor der ed_set _of _rel ati on<HashFunct or, Equal Key>

unordered multiset of relation<HashFunc-
t or, Equal Key>

Additional Parameters

Not atemplate.

Not atemplate.

KeyComp isaFunctor that comparestwo typesusing lessthan.

By default, theless-than operator isst d: : | ess<_rel ati on>.

HashFunctor convertstherel ati on intoanstd::size_t
value. By default itisboost : : hash<_rel ati on>.

EqualKey isaFunctor that tests two relations for equality. By
default, theequality operatorisst d: : equal _t o<_rel ati on>.

list_of relation Not atemplate.
vector_of relation Not atemplate.
unconstrai ned_set _of _relation Not atemplate.
Examples
Consider this example:
24

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

tenpl ate< class Rel >
struct Rel Order

{
bool operator()(Rel ra, Rel rb) const
{
return (ra.left+ra.right) < (rb.left+rb.right);
}
b

t ypedef bi map
<

mul tiset_of< int >
mul tiset_of< int >
set_of _relation< Rel Order<_relation> >

> bi map_t ype;

Here the bimap relation view is ordered using the information of both sides. This container will only allow unique relations because
set _of _rel ati on hasbeen used but the elements in each side of the bimap can be repeated.

struct name {}

struct phone_nunber {};

t ypedef bi map

<
t agged< unordered_nul tiset_of < string >, nane >,
t agged< unor dered_set _of < int >, phone_nunber >,

set _of relation<>

> bi map_type;

In this other case the bimap will relate names to phone numbers. Names can be repeated and phone numbers are unique. You can
perform quick searches by name or phone number and the container can be viewed ordered using the relation view.

Differences with standard maps

Insertion

Remember that a map can be interpreted as a relation between two collections. In bimaps we have the freedom to change both col-
lection types, imposing constrains in each of them. Some insertions that we give for granted to success in standard maps fails with
bimaps. For example:

bi map<int,std::string> bm

bmleft.insert(1, "orange");
bmleft.insert(2 "orange"); // No effect! returns nake_pair(iter,fal se)

The insertion will only succeed if it is allowed by all views of the bi map. In the next snippet we define the right collection as a
multiset, when we try to insert the same two elements the second insertion is allowed by the left map view because both values are
different and it is allowed by the right map view because it is a non-unique collection type.

bi map<int, nultiset_of<std::string> > bm

bmleft.insert(1, "orange");
bmleft.insert(2, "orange"); // Insertion succeed!

If we use a custom collection of relation type, the insertion has to be allowed by it too.

25

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

iterator::value_type

The relations stored in the Bimap will not be in most cases modifiable directly by iterators because both sides are used as keys of
key-based sets. When abi map<A, B> left view iterator is dereferenced the return type is signature-compatible with ast d: : pai r <
const A, const B >.However there are some collection types that are not key based, for example list_of. If a Bimap uses one
of these collection types there is no problem with modifying the data of that side. The following code is valid:

typedef bimap< int, list_of< std::string > > bmtype;
bm type bm
bminsert(bmtype::relation(1, "one"));
bmleft.find(1)->second = "1"; // Valid
In this case, when the iterator is dereferenced the return type is signature-compatible with a st d: : pai r<const int,

std::string>.

The following table shows the constness of the dereferenced data of each collection type of:

Side collection type Dereferenced data
set _of constant
mul ti set _of constant
unor der ed_set _of constant
unordered_rmul tiset_of constant
list_of mutable
vect or _of mutable
unconstrai ned_set _of mutable

Here are some examples. When dereferenced the iterators returns a type that is signature-compatible with these types.

26

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Bimap type Signature-compatible types

bi map<A, B> iterator ->rel ation<const A const B>
left_iterator ->pair<const A const B>
right_iterator ->pair<const B,const A>

bi map<nul ti set _of <A>, unorder ed_set _of > iterator ->relation<const A const B>
left _iterator ->pair<const A const B>
right _iterator ->pair<const B,const A>

bi map<set _of <A>, | i st_of > iterator ->relation<const A B>
left _iterator ->pair<const A B>
right_iterator ->pair<B, const A>

bi map<vect or _of <A>, set _of > iterator ->relation<A const B>
left_iterator ->pair<A const B>
right_iterator ->pair<const B, A>

bi map<Ii st_of <A>, unconstr ai ned_set _of > iterator ->relation<A B>
left _iterator ->pair<A B>

right_iterator ->pair<B, A>

operator[] and at()

set _of and unor dered_set _of map views overload oper at or[] to retrieve the associated data of a given key only when the
other collection type is a mutable one. In these cases it works in the same way as the standard.

bi map< unorderd_set_of < std::string> Ilist_of<int> > bm

bmleft["one"] =1; // &
The standard defines an access function for map and unor der ed_nap:

const data_type & at(const key_type & k) const;
data_type & at(const key_type & Kk);

These functions look for akey and returns the associated data value, but throwsast d: : out _of _r ange exception if the key is not
found.

In bimaps the constant version of these functions is given for set _of and unor der d_set _of map views independently of the
other collection type. The mutable version is only provided when the other collection type is mutable.

The following examples shows the behaviour of at (key)

Go to source code

27

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/at_function_examples.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

t ypedef bi map< set_of< std::string > list_of<int > > bmtype
bm type bm

try
{

}

catch(std::out_of _range & e) {}

bmleft.at("one") = 1; // throws std::out_of_range

assert(bmenpty())
bmleft["one"] =1; // &
assert(bmleft.at("one") ==1); //
typedef bimap< nultiset_of<std::string> unordered_set_of<int> > bmtype
bm type bm
bmright[1] = "one"; // conpilation error
bmright.insert(bmtype::right_value_type(1l,"one"))
assert(bmright.at(1) == "one"); // Ck
try
{
std::cout << bmright.at(2); // throws std::out_of_range

catch(std::out_of _range & e) {}

bmright.at(1) = "1"; // conpilation error

Complexity of operations

The complexity of some operationsis different in bimaps. Read the reference to find the complexity of each function.

Useful functions

Projection of iterators

Iterators can be projected to any of the three views of the bimap. A bimap provides three member functions to cope with projection:
project _left,project_right andproj ect_up,with projectsiteratorsto theleft map view, theright map view and the collection
of relations view. These functions take any iterator from the bimap and retrieve an iterator over the projected view pointing to the
same element.

Hereis an example that uses projection:

Go to source code

28

render
httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/projection.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

typedef bimap<std::string, nultiset_of<int,std::greater<int> > > bmtype;
bm type bm

bminsert(bmtype::value_type("John" ,34));

bminsert(bmtype::value_type("Peter", 24));

bminsert(bmtype::value_type("Mary" ,12));

/1 Find the nane of the next younger person after Peter
bmtype::left_const _iterator nane_iter = bmleft.find("Peter");
bmtype::right_const_iterator years_iter = bmproject_right(nane_iter);

++years_iter;

std::cout << "The next younger person after Peter is " << years_iter->second;

replace and modify
These functions are members of the views of a bimap that are not founded in their standard counterparts.
Ther epl ace family member functions performsin-place replacement of a given element as the following example shows:

Go to source code

typedef bimap< int, std::string > bmtype;
bm type bm

bminsert(bmtype::value_type(1,"one"));

/'l Replace (1,"one") with (1,"1") using the right map view

{
bmtype::right_iterator it = bmright.find("one");
bool successful _replace = bmright.replace_key(it, "1");
assert(successful _replace);

}

bminsert(bmtype::value_type(2,"tw"));

/1 Fail to replace (1,"1") with (1,"two") using the left nmap view

{ assert(bmsize() == 2);
bmtype::left_iterator it = bmleft.find(1);
bool successful _replace = bmleft.replace_data(it, "tw");
@Qassert(! successful _replace);
assert(bmsize() == 2);
}

O it isstill valid here, and the bimap was | eft unchanged
r epl ace functions performs this substitution in such a manner that:
» Thecomplexity isconstant timeif the changed element retainsitsoriginal order with respect to all views; it islogarithmic otherwise.

* Iterator and reference validity are preserved.

29

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/tutorial_modify_and_replace.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

» The operation is strongly exception-safe, i.e. the bi map remains unchanged if some exception (originated by the system or the
user's data types) is thrown.

r epl ace functions are powerful operations not provided by standard STL containers, and one that is specially handy when strong
exception-safety is required.

The observant reader might have noticed that the convenience of replace comes at a cost: namely the whole element hasto be copied
twice to do the updating (when retrieving it and inside r epl ace). If elements are expensive to copy, this may be quite a computa-
tional cost for the modification of just atiny part of the object. To cope with this situation, Boost.Bimap provides an alternative up-
dating mechanism: nodi f y functions.

modi fy functions accepts a functor (or pointer to function) taking a reference to the data to be changed, thus eliminating the need
for spurious copies. Liker epl ace functions, modi f y functions does preserve the internal orderings of all theindices of the bi map.
However, the semantics of modify functions are not entirely equivalent to replace functions. Consider what happens if a collision
occurs as aresult of modifying the element, i.e. the modified element clashes with another with respect to some unique view. In the
case of r epl ace functions, the original value is kept and the method returns without altering the container, but nodi f y functions
cannot afford such an approach, since the modifying functor leaves no trace of the previous value of the element. Integrity constraints
thus lead to the following policy: when a collision happens in the process of calling a modify functions, the element is erased and
the method returnsfalse. Thisdifferencein behavior betweenr epl ace and nodi f y functions hasto be considered by the programmer
on a case-by-case basis.

Boost.Bimap defines new placeholders named _key and _data to alow a sounder solution. You have to include
<boost / bi map/ support/ | anbda. hpp> to use them.

Go to source code

typedef bimap< int, std::string > bmtype;
bm type bm
bminsert(bmtype::value_type(l, "one"));

/'l Modify (1,"one") to (1,"1") using the right map view

{
bmtype::right_iterator it = bmright.find("one");
bool successful _nodify = bmright.nodify _key(it , _key = "1")
assert(successful _nmodify);

}

bminsert(bmtype::value_type(2,"tw"));

/1 Fail to nodify (1,"1") to (1,"two") using the left nap view

{ assert(bmsize() == 2);
bmtype::left_iterator it = bmleft.find(1);
bool successful _nodify = bmleft.nodify_data(it, _data = "two");
Qassert(! successful _modify);
assert(bmsize() ==);
}

© it isnotlongervaidand(1,"1") isremoved from the bimap

Retrieval of ranges
Standard | ower _bound and upper _bound functions can be used to lookup for all the elementsin a given range.

Suppose we want to retrieve the elements from abi map<i nt, st d: : st ri ng> wheretheleft valueisin therange[20, 50]

30

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/tutorial_modify_and_replace.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

t ypedef bi map<int,std::string> bmtype;
bm type bm

/1

bmtype::left_iterator iter_first
bmtype::left_iterator iter_second

bm | eft. | ower _bound(20);
bm | ef t. upper _bound(50);

/'l range [iter_first,iter_second) contains the elenents in [20,50]

Subtle changes to the code are required when strict inequalities are considered. To retrieve the elements greater than 20 and less than
50, the code hasto be rewritten as

bmtype::left_iterator iter_first
bmtype::left_iterator iter_second

bm | ef t . upper _bound(20) ;
bm I eft. | ower_bound(50);

/1 range [iter_first,iter_second) contains the elenents in (20,50)

To add to this complexity, the careful programmer has to take into account that the lower and upper bounds of the interval searched
be compatible: for instance, if the lower bound is 50 and the upper bound is 20, theiteratorsi t er _fi rst andi t er _second produced
by the code above will be in reverse order, with possibly catastrophic results if atraversal fromiter_first toiter_secondis
tried. All these details make range searching atedious and error prone task.

The range member function, often in combination with |lambda expressions, can greatly help alleviate this situation:

t ypedef bi map<int,std::string> bmtype;
bm type bm

I
Obm type: :left_range_type r;

@r = bmleft.range(20 <= _key, _key <= 50); // [20,50]

r bmleft.range(20 < _key, _key < 50); // (20,50)

r bmleft.range(20 <= _key, _key < 50); // [20,50)

O range_type isahandy typedef equal tostd: : pair<iterator,iterator>. const_range_type isprovided too, and it
isequal tost d: : pai r<const _iterator, const _iterator>
® key isaBoost.Lambda placeholder. To use it you have to include <boost / bi map/ suppor t/ | anbda. hpp>

r ange simply accepts predicates specifying the lower and upper bounds of the interval searched. Please consult the reference for a
detailed explanation of the permissible predicates passed to range.

One or both bounds can be omitted with the special unbounded marker:

r = bmleft.range(20 <= _key, unbounded); // [20,inf)
r = bmleft.range(unbounded , _key < 50); // (-inf,50)

@r = bmleft.range(unbounded , unbounded); // (-inf,inf)

O Thisisequivalent to std::make_pair(s.begin(),s.end())

Go to source code

31

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/tutorial_range.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Bimaps with user defined names

In the following example, the library user inserted comments to guide future programmers.

Go to source code

t ypedef bi map

<
mul ti set_of <std::string>
i nt

> Peopl e;

Peopl e peopl e
I

int user_id;
std::cin >> user_id

/'l people.right : map<id, name>

Peopl e: :right_const _iterator id_iter = people.right.find(user_id)
if(id_iter !'= people.right.end())

{
/1 first @ id
/'l second : nane
std::cout << "nane: " << id_.iter->second << std::end
<< "id: " << id.iter->first << std::endl
}
el se
{
std::cout << "Unknown id, users are:" << std::endl
/'l people.left : map<nane,id>
for(People::left_const_iterator
name_iter = people.left.begin(),
i end = people.left.end();
nanme_iter != iend; ++name_iter)
{
/1l first : nane
/'l second : id
std::cout << "nane: " << name_iter->first << std::end
<< "id: " << name_iter->second << std::endl
}
}

In Boost.Bimap thereis a better way to document the code and in the meantime hel ping you to write more mantainable and readable
code. You can tag the two collections of the bimap so they can be accessed by more descriptive names.

32

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/user_defined_names.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

' VdUEJVpe.

tag

tagged type

A tagged type is atype that has been labelled using atag. A tag is any valid C++ type. In abimap, the types are always tagged. If
you do not specify your own tag, the container usesnenber _at : : | eft and menber _at: : ri ght totag theleft and right sidesre-
spectively. In order to specify a custom tag, the type of each side hasto be tagged. Tagging atypeisvery smple:

typedef tagged< int, a_tag > tagged_int;

Now we can rewrite the example:

Go to source code

struct id {}; /Il Tag for the identification nunber
struct nane {}; // Tag for the nane of the person

t ypedef bi map

) tagged< int , id >
mul ti set _of < tagged< std::string, name > >

> Peopl e;

Peopl e peopl e

I

int user_id;
std::cin >> user_id

Peopl e: : map_by<i d>::const _iterator id_iter = people.by<id>().find(user_id)
if(id_iter !'= people.by<id>().end())

{
std::cout << "nanme: " << id_iter->get<nane>() << std::end
<< "id: " << id_iter->get<id>() << std::endl
}
el se
{
std::cout << "Unknown id, users are:" << std::endl
for(People:: map_by<nanme>::const_iterator
name_i ter = peopl e. by<nane>(). begin(),
i end = peopl e. by<name>().end();
nane_iter != iend; ++nane_iter)
{
std::cout << "nane: " << name_iter->get<name>() << std::endl
<< "id: " << pame_iter->get<id>() << std::endl
}
}
33

render

s httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/user_defined_names.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Hereisalist of common structures in both tagged and untagged versions. Remember that when the bimap has user defined tags you

can still use the untagged version structures.

struct Left {};
struct Right {};
t ypedef bi map<

mul tiset_of < tagged< int,
unor der ed_set _of < tagged< int,

> bm type;

bm type bm

/...

bmtype::iterator iter
bmtype::left_iterator left_iter

bmtype::right_iterator right_iter

Left > >,
R ght > >

bm begi n();
bm I eft. begin();
bm ri ght. begin();

Table 3. Equivalence of expresions using user defined names

Untagged version

bmleft

bm ri ght
bmtype::left_map

bm type::right_val ue_type
bmtype::left_iterator
bmtype::right_const_iterator
iter->left

iter->right

left iter->first

|l eft _iter->second
right_iter->first
right_iter->second

bm project_left(iter)

bm project _right(iter)

Unconstrained Sets

Unconstrained sets allow the user to disable one of the views of a bimap. Doing so makes the bimap operations execute faster and
reduces memory consumption. This completes the bidirectional mapping framework by including unidirectional mappings as a par-

ticular case.

Unconstrained sets are useful for the following reasons:

Tagged version

bm by<Left>()

bm by<Ri ght >()

bm : map_by<Left>::type

bm : map_by<Ri ght >: : val ue_t ype
bm : map_by<Left>::iterator

bm : map_by<Ri ght >: : const _i terator
iter->get<Left>()

i ter->get<Right>()

left iter->get<Left>()
left_iter->get<Right>()
right_iter->get <Ri ght>()

right _iter->get<Left>()

bm proj ect <Left>(iter)

bm proj ect <Ri ght >(iter)

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

A bhimap type has stronger guarantees than its standard equivalent, and includes some useful functions (replace, modify) that the
standard does not have.

 You can view the mapping as a collection of relations.

 Using thiskind of map makes the code very extensible. If, at any moment of the development, the need to perform searches from
the right side of the mapping arises, the only necessary changeisto thet ypedef .

Given this bimap instance,

t ypedef bi map< std::string, unconstrained_set_of<int> > bmtype;
typedef bmtype::left_map map_type;

bmtype bm
map_type & m= bmleft;

or this standard map one

typedef std::map< std::string, int > map_type;
map_type m
The following code snippet isvalid
nf "one"] = 1;
assert(mfind("one") !'= mend());
for(map_type::iterator i = mbegin(), iend = mend(); i !=iend; ++)

@++(i ->second) ;

}

m erase("one");

© Theright collection of the bimap is mutable so its elements can be modified using iterators.

But using a bimap has some benefits

typedef nmap_type::const_iterator const_iterator;
typedef std::pair<const_iterator,const_iterator> const_range;

@const _range r = mrange("one" <= _key, _key <= "two");

for(const_iterator i =r.first; i !=r.second; ++i)
{

std::cout << i->first << "-->" << j->second << std::endl;
}

m nmodi fy_key(mbegin(), _key = "1");

© Thisrangeisamodel of Bidirectional Range, read the docs of Boost.Range for more information.

Go to source code

Additional information

Bidirectional maps may have associated information about each relation. Suppose we want to represent a books and author bidirec-
tional map.

35

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/unconstrained_collection.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

t ypedef bi map<

mul tiset_of< std::string >, // author
set_of< std::string > // title

> bm type;

typedef bm type::val ue_type book;

bm type bm

bminsert(book("Bjarne Stroustrup" , "The C++ Programm ng Language"));
bminsert(book("Scott Meyers" , "Effective C++"));
bminsert(book("Andrei Al exandrescu" , "Mdern C++ Design"));

/!l Print the author of Mdern C++
std::cout << bmright.at("Mdern C++ Design");

Suppose now that we want to store abstract of each book. We have two options:

1. Books name are unique identifiers, so we can create aseparate st d: : map< string, string > that relatesbooks nameswith
abstracts.

2. We can use Boost.Multil ndex for the new beast.

Option 1 isthe wrong approach, if we go this path we lost what bimap has won us. We now have to maintain the logic of two inter-
dependent containers, there is an extra string stored for each book name, and the performance will be worse. Thisis far away from
being a good solution.

Option 2 is correct. We start thinking books as entriesin atable. So it makes sense to start using Boost.Multilndex. We can then add
theyear of publication, the price, etc... and we can index this new itemstoo. So Boost.Multilndex isasound solution for our problem.

Thething isthat there are cases where we want to maintain bimap semantics (useat () to find an author given abook name and the
other way around) and add information about the rel ations that we are sure we will not want to index later (like the abstracts). Option
1lisnot possible, option 2 neither.

Boost.Bimap provides support for this kind of situations by means of an embedded information member. You can pass an extra
parameter to abimap: wi t h_i nf o< I nf oType > and ani nf o member of type | nf oType will appear in the relation and bimap
pairs.

bimap<X,Y,with_info<Z>>

E& right pair @

Favs F A S, o
=~ first = second — ~sacond € T~ first —
- M
info info
-y -~ a4 ay
(1) relation (7)

A '_ _/'

Ly !
M left o A right —
L 4
info
(1)
Ly
36

httpo://www.renderx.com/

http://www.boost.org/libs/multi_index/doc/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Relations and bimap pairs constructorswill take an extraargument. If only two arguments are used, theinformation will beinitialized
with their default constructor.

t ypedef bi map<

mul tiset_of< std::string > // author
set_of < std::string >, // title

with_info< std::string > // abstract

> bm type;
typedef bm type::val ue_type book;

bm type bm
bm i nsert (
book("Bjarne Stroustrup"” , "The C++ Programmi ng Language",

"For C++ old-tiners, the first edition of this book is"
"the one that started it all—+he font of our know edge.")

/1 Print the author of the bible
std::cout << bmright.at("The C++ Progranm ng Language");

/1 Print the abstract of this book
bmtype::left_iterator i = bmleft.find("Bjarne Stroustrup");
std::cout << i->info;

Contrary to the two key types, the information will be mutable using iterators.
i->info += "More details about this book";

A new function isincluded in unique map views: i nf o_at (key) , that mimics the standard at (key) function but returned the as-
sociated information instead of the data.

/1 Print the new abstract
std::cout << bmright.info_at("The C++ Programm ng Language");

The info member can be tagged just as the left or the right member. The following is a rewrite of the above example using user
defined names:

37

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

t ypedef bi map<

mul ti set _of < tagged< std::string, author > >
set _of < tagged< std::string, title > >

wi th_i nfo< tagged< std::string, abstract > >

> bm type;
typedef bm type::val ue_type book;
bm type bm
bminsert(
book("Bjarne Stroustrup” , "The C++ Programmi ng Language",

"For C++ old-tinmers, the first edition of this book is"
"the one that started it all—the font of our know edge.")

)

/1 Print the author of the bible
std::cout << bmby<title>().at("The C++ Programm ng Language");

/'l Print the abstract of this book
bm type: : map_by<author>::iterator i = bm by<author>().find("Bjarne Stroustrup");
std::cout << i->get<abstract>();

/1l Contrary to the two key types, the information will be nutable
/1 using iterators.

i ->get<abstract>() += "More details about this book";

/'l Print the new abstract
std::cout << bmby<title>().info_at("The C++ Programmi ng Language");

Go to source code

Complete instantiation scheme

To summarize, thisisthe complete instantiation scheme.

t ypedef bi map

<

Left Col | ecti onType, Ri ghtCollectionType

[, SetTypeO'Relation | // Default to |left_based

[, with_info< Info > | // Default to no info

[, Allocator] // Default to std::allocator<>
> bm

{Si de} Col | ecti onType can directly be atype. This defaults to set _of <Type>, or can be a{ Col | ecti onType} _of <Type>
specification. Additionally, the type of this two parameters can be tagged to specify user defined names instead of the usual mem
ber _at::-Si de- tags.

The possibles way to use the first parameter are:
bi mp< Type, R >

» Left type: Type

38

render

> httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/tutorial_info_hook.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

 Left collectiontype: set _of < Type >

o Lefttag: menber _at::left
bi map< {Col | ecti onType}_of < Type > R >

» Lefttype: Type
 Left collectiontype: { Col | ecti onType} _of < Left Type >

o Lefttag: menber _at::left
bi map< tagged< Type, Tag > R >

» Lefttype: Type
» Left collectiontype: set _of < Left Type >

o Lefttag: Tag
bi map< {Col | ecti onType}_of < tagged< Type, Tag > > R >

o Lefttype: Type

 Left collectiontype: { Col | ecti onType} _of < Left Type >

» Lefttag: Tag

The same options are available for the second parameter.

The last three parameters are used to specify the collection type of the relation, the information member and the allocator type.

If you want to specify a custom alocator type while relying on the default value of CollectionTypeOfRelation, you can do so by
simply writing bi map<Left KeyType, Ri ght KeyType, Al | ocat or>. Boost.Bimap'sinternal machinery detects that the third
parameter in this case does not refer to the relation type but rather to an allocator.

The following are the possible ways of instantiating the last three parameters of abimap. You can ignore some of the parameter but
the order must be respected.

bi mp< L, R >

» set_of_relation_type: based on the left key type
* info: noinfo

« allocator: std::allocator
bi mp< L, R, Set O Rel ati onType>

» set of_relation_type: SetOfRelationType
* info: noinfo

 dlocator: std::allocator

bimap< L, R, SetORel ationType, w th_info<lnfo> >

39

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

e set of relation_type: SetOfRelationType
* info: Info
 dlocator: std::allocator

bimp< L, R, SetORelationType, w th_info<lnfo> Allocator>

» set of relation_type: SetOfRelationType
* info: Info
« alocator: Allocator

bimp< L, R, SetORelationType, Allocator>

» set of relation_type: SetOfRelationType
e info: noinfo
« adlocator: Allocator

bimp< L, R, with_info<Info> >

» set of relation_type: based on the left key type
* info: Info

« adlocator: std::allocator
bi mp< L, R, with_info<lnfo> Allocator>

» set of relation_type: based on the left key type

 dlocator: Allocator
bimp< L, R, Allocator>

» set of_relation_type: based on the left key type
* info: noinfo

 dlocator: Allocator

40

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Bimap and Boost

Bimap and Multilndex

MISC - M ulti-Index Specialized Containers
Let's be generic, construct frameworks, describe the world in an unified way...
No!, it is better to be specialized, design easy-to-use components, offer plug-and-play objects...

Why not take advantage of the best of both worlds?

vV V¥

Boost.mru | Boost.Bimap

Boost.Multiindex

multi index containers framework

With Boost.Bimap, you can build associative containers in which both types can be used as key. There is a library in Boost that
already allows the creation of this kind of container: Boost.Multilndex. It offers great flexibility and lets you construct almost any
container that you could dream of . The framework isvery clean. You migh want to read thislibrary'stutorial to learn about the power
that has been achieved.

But generality comes at a price: the interface that results might not be the best for every specialization. People may end up wrapping
aB.MI container in its own class every time they want to use it as a bidirectional map. Boost.Bimap takes advantage of the narrower
scope to produce a better interface for bidirectional maps 2 Thereis no learni ng curve if you know how to use standard containers.
Great effort was put into mapping the naming scheme of the STL to Boost.Bimap. The library is designed to match the common

STL containers.
Boost.Multilndex is, in fact, the core of the bimap container.

However, Boost.Bimap do not aim to tackle every problem with two indexed types. There exist some problemsthat are better modelled
with Boost.Multilndex.

Praoblem | - An employee register
Sorean ID and a name for an employee, with fast search on each member.

This type of problem is better modelled as a database table, and Boost.M ultilndex is the preferred choice. It is possible that
other data will need to be indexed later.

2 In the same fashion, Boost.MRU will allow the creation of most recent updated aware containers, hiding the complexity of Boost.Multilndex.

41

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Problem Il - A partners container

Sore the names of couples and be able to get the name of a person's partner.

This problem is better modelled as a collection of relations, and Boost.Bimap fits nicely here.

You can also read Additional Information for more information about the relation of thistwo libraries.

Boost Libraries that work well with Boost.Bimap

Introduction

Name

Boost.Serialization

Boost.Assign

Boost.Hash

Boost.L ambda

Boost.Range

Boost.Foreach

Boost. Typeof

Boost.Xpressive

Boost.PropertyMap

Boost.Serialization

Description

Serialization for persistence
and marshalling

Filling containers with con-
stant or generated data has
never been easier

A TR1 hash function object
that can be extended to hash
user defined types

Define small unnamed func-
tion objects at the actual call
site, and more

A new infrastructurefor gener-
ic algorithmsthat buildson top
of the new iterator concepts

BOOST_FOREACH macro
for easily iterating over the
elements of a sequence

Typeof operator emulation

Regular expressions that can
be written as strings or as ex-
pression templates

Concepts defining interfaces
which map key objects to
value objects

author

Robert Ramey

Thorsten Ottosen

Danigl James

from Jaakko Jarvi, Gary Pow-

ell

Thorsten Ottosen

Eric Niebler

Arkadiy Vertleyb, Peder Holt

Eric Niebler

Jeremy Siek

Purpose

Serialization support for bimap
containers and iterators

Help to fill a bimap or views
of it

Default hashing function

Functors for modify, range,
lower_bound and upper_bound

Range based algorithms

Iteration

Using BOOST_AUTO while
we wait for C++0x

Help to fill a bimap from a
string

Integration with BGL

A bimap can be archived and retrieved by means of the Boost.Serialization Library. Both regular and XML archives are supported.
The usage is straightforward and does not differ from that of any other serializable type. For instance:

Go to source code

42

httpo://www.renderx.com/

http://www.boost.org/libs/serialization/doc/index.html
http://www.boost.org/libs/assign/doc/index.html
http://www.boost.org/doc/html/hash.html
http://www.boost.org/doc/html/lambda.html
http://www.boost.org/doc/html/range.html
http://www.boost.org/doc/html/foreach.html
http://www.boost.org/libs/typeof/doc/index.html
http://www.boost.org/libs/xpressive/doc/index.html
http://www.boost.org/doc/html/property_map.html
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/bimap_and_boost/serialization.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

t ypedef bimap< std::string, int > bmtype;

/1l Create a bimap and serialize it to a file

{
bm type bm
bminsert(bmtype::value_type("one", 1));
bminsert(bmtype::value_type("tw",2));
std::of stream of s("data");
boost: :archive::text_oarchive oa(ofs);
oa << const_cast <const bm type&>(bm; ©
@Oconst bmtype::left iterator left iter = bmleft.find("tw");
oa << left_iter;
const bmtype::right_iterator right _iter = bmright.find(1);
oa << right _iter;

}

/1 Load the binmap back

{
bm type bm
std::ifstreamifs("data", std::ios::binary);
boost::archive::text_iarchive ia(ifs);
ia >> bm
assert(bmsize() ==);
bmtype::left_iterator left_iter;
ia >> left_iter;
assert(left_iter->first == "two");
bmtype::right _iterator right _iter;
ia >> right _iter;
assert(right _iter->first == 1);

}

© Wemust do aconst cast because Boost.Serialization archives only save const objects. Read Boost.Serializartion docs for the
rationale behind this decision

® Wecanonly seridizeiteratorsif the bimap was serialized first. Note that the const cast is not requiered here because we create
our iterators as const.

Serialization capabilities are automatically provided by just linking with the appropriate Boost.Seriaization library module: it is not
necessary to explicitly include any header from Boost.Serialization, apart from those declaring the type of archive used in the process.
If not used, however, serialization support can be disabled by globally defining the macro BOOST_BIMAP_DISABLE_SERIALIZ-
ATION. Disabling serialization for Boost.Multilndex can yield a small improvement in build times, and may be necessary in those
defective compilers that fail to correctly process Boost.Serialization headers.

O Warning
Boost.Bimap and Boost.Multilndex sharealot of serialization code. The macro BOOST_BI MAP_DI SABLE_SERI AL -
| ZATI ONdisablesserializationin both libraries. The same happenswhen BOOST_MULTI _I NDEX_DI SABLE_SERI -
ALI ZATI ONis defined.

43

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Retrieving an archived bimap restores not only the elements, but also the order they were arranged in the views of the container.
Thereisan exception to thisrule, though: for unordered sets, no guarantee is made about the order in which elementswill beiterated
intherestored container; in general, it isunwiseto rely on the ordering of elements of a hashed view, sinceit can changein arbitrary
ways during insertion or rehashing --this is precisely the reason why hashed indices and TR1 unordered associative containers do
not define an equality operator.

Iterators of abimap can also be seridized. Serialization of an iterator must be done only after serializing its corresponding container.
Boost.Assign

The purpose of thislibrary isto makeit easy to fill containers with data by overloading operator,() and operator()(). These two oper-
ators make it possible to construct lists of values that are then copied into a container.

Theselistsare particularly useful in learning, testing, and prototyping situations, but can also be handy otherwise. The library comes
with predefined operators for the containers of the standard library, but most functionality will work with any standard compliant
container. The library also makes it possible to extend user defined types so for example a member function can be called for alist
of valuesinstead of its normal arguments.

Boost.Assign can be used with bimap containers. The views of a bimap are signature-compatible with their standard counterparts,
S0 we can use other Boost.Assign utilities with them.

Go to source code

typedef bimap< nmultiset_of< int > Ilist_of< std::string > > bmtype;
/1 W can use assign::list_of to initialize the container.
bmtype bm = assign::list_of< bmtype::relation > @

(1, "one")

(2, "two")
(3, "three");

/1 The left map viewis a nultiset, again we use insert

assign::insert(bmleft)
(4, "four")
(5 "five")
(6, "six");

/1 The right map viewis a list so we use push_back here
/1 Note the order of the elenents in the |ist!

assign: : push_back(bmright)
("seven" , 7))
("eight" , 8);

assign::push_front(bmright)
("nine" , 9)
("ten" , 10)
("eleven", 11);

/1 Since it is left _based the main viewis a nultiset, so we use insert
assign::insert(bm)

(12, "twelve")
(13, "thirteen");

O Notethat bm type: : rel ati on has to be used instead of bm t ype: : val ue_t ype. Contrary to val ue_t ype, rel ati on
type stores the elements as non const, arequirement of assi gn: : | i st _of

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/bimap_and_boost/assign.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Boost.Hash

The hash function is the very core of the fast lookup capabilities of the unordered sets: a hasher is just a Unary Function returning
an std::size t value for any given key. In general, it isimpossible that every key map to a different hash value, for the space of keys
can be greater than the number of permissible hash codes: what makes for a good hasher is that the probability of a collision (two
different keys with the same hash value) is as close to zero as possible.

Thisisastatistical property depending on thetypical distribution of keysin agiven application, so it isnot feasible to have ageneral-
purpose hash function with excellent results in every possible scenario; the default value for this parameter uses Boost.Hash, which
often provides good enough results.

Boost.Hash can be extended for custom data types, enabling to use the default parameter of the unordered set types with any user
types.

Boost.Lambda

The Boost Lambda Library (BLL in the sequel) is a C++ template library, which implements form of lambda abstractions for C++.
The term originates from functional programming and lambda calculus, where a lambda abstraction defines an unnamed function.
Lambda expressions are very useful to construct the function objects required by some of the functionsin abimap view.

Boost.Bimap defines new placeholdersin <boost / bi map/ support /| anbda. hpp> to allow a sounder solution. The placeholders
arenamed _key and _data and both are equivalent to boost::lambda::_1. There are two reasons to include this placehol ders: the code
looks better with them and they avoid the clash problem between lambda::_1 and boost::_1 from Boost.Bind.

Go to source code

t ypedef bimap< std::string, int > bmtype;

bmtype bm

bminsert(bmtype::value_type("one", 1));

bminsert(bmtype::value_type("tw",2));
bmright.range(5 < _key, _key < 10);

bmleft. modify_key(bmleft.find("one"), _key = "1");

bmleft. modify_data(bmleft.begin(), _data *= 10);

Boost.Range

Boost.Range is acollection of concepts and utilitiesthat are particularly useful for specifying and implementing generic algorithms.
Generic algorithms have so far been specified in terms of two or more iterators. Two iterators would together form arange of values
that the algorithm could work on. This leads to a very general interface, but also to a somewhat clumsy use of the algorithms with
redundant specification of container names. Therefore we would like to raise the abstraction level for algorithms so they specify
their interface in terms of Ranges as much as possible.

As Boost.Bimap views are signature-compatible with their standard container counterparts, they are compatible with the concept of
arange. As an additional feature, ordered bimap views offer afunction named r ange that allows arange of values to be obtained.

If we have some generic functions that accepts ranges:

45

httpo://www.renderx.com/

http://www.boost.org/doc/html/hash/custom.html
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/bimap_and_boost/lambda.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

tenpl at e< cl ass Forwar dReadabl eRange, cl ass UnaryFunctor >
Unar yFunct or for_each(const ForwardReadabl eRange & r, UnaryFunctor func)

{
t ypedef typenane
boost: :range_const _iterator <Forwar dReadabl eRange>: : type const _iterator

for(const _iterator i= boost::begin(r), iend= boost::end(r); i!=iend;, ++i)

{
}

func(*i)

return func

}

tenpl at e< cl ass Forwar dReadabl eRange, cl ass Predicate >
t ypenane boost::range_difference<Forwar dReadabl eRange>: : type
count _i f (const Forwar dReadabl eRange & r, Predicate pred)

{
t ypedef typenane
boost: :range_const _iterat or <Forwar dReadabl eRange>: : type const _iterator

t ypenane boost::range_difference<Forwar dReadabl eRange>: :type ¢ = 0

for(const_iterator i = boost::begin(r), iend = boost::end(r); i !'=iend; ++i)

{
}

if(pred(*i)) ++c;

return c;

We can use them with Boost.Bimap with the help of ther ange function.

46

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

struct pair_printer

{
pair_printer(std::ostream& o) : os(o) {}
tenpl ate< class Pair >
voi d operator()(const Pair & p)
{
0s << "(" << p.first << ", " << p.second << ")"
}
private:
std::ostream & os;
b
struct second_extractor
{
tenpl ate< class Pair >
const typenane Pair::second_type & operator()(const Pair & p)
{
return p.second,
}
b
int main()
{
t ypedef bi map< double, nultiset_of<int> > bmtype;
bm type bm
bminsert(bmtype::value_type(2.5, 1));
bminsert(bmtype::value_type(3.1, 2));
/...
bminsert(bmtype::value_type(6.4 , 4));
bminsert(bmtype::value_type(1l.7 2));
/'l Print all the elenments of the left nap view
for_each(bmleft, pair_printer(std::cout));
/'l Print a range of elenents of the right map view
for_each(bmright.range(2 <= _key, _key < 6), pair_printer(std::cout));
/1 Count the nunber of elenments where the data is equal to 2 froma
/'l range of elenents of the left map view
count _if(bmleft.range(2.3 < _key, _key < 5.4),
bi nd<i nt >(second_extractor(), _1) ==2);
return O;
}

Go to source code

Boost.Foreach

In C++, writing aloop that iterates over a sequence istedious. We can either use iterators, which requires a considerable amount of
boiler-plate, or we can usethe std::for_each() algorithm and move our loop body into a predicate, which requires no less boiler-plate
and forces us to move our logic far from where it will be used. In contrast, some other languages, like Perl, provide a dedicated
"foreach" construct that automates this process. BOOST_FOREACH isjust such a construct for C++. It iterates over sequences for
us, freeing us from having to deal directly with iterators or write predicates.

You can use BOOST FOREACH macro with Boost.Bimap views. The generated code will be asefficient asastd::for_eachiteration.
Here are some examples:

47

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/bimap_and_boost/range.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

typedef bimap< std::string, list_of<int> > bmtype;

bm type bm

bminsert(bmtype::val ue_type
bminsert(bmtype::val ue_type
bminsert(bmtype::val ue_type
bminsert(bmtype::val ue_type

("1,
("2",
("3,
("4

N BN
—_ = —
— — — —

BOOST_FOREACH(bmtype::left_reference p, bmleft)

{

++p. second; @
}
BOOST_FOREACH(bm type::right_const_reference p, bmright)
{

std::cout << p.first << "-->" << p.second << std::endl;
}

O Wecan modify the right element because we have use a mutable collection type in the right side.

You can useit directly with ranges too:

BOOST_FOREACH(bm type::left_reference p,
(bmleft.range(std::string("1") <= _key, _key < std::string("3"))))
{

}

BOOST_FOREACH(bm type:: | eft_const_reference p,
(bmleft.range(std::string("1") <= _key, _key < std::string("3"))))

++p. second;

{
std::cout << p.first << "-->" << p.second << std::endl;
}
Go to source code

Boost.Typeof

Once C++0x is out we are going to be able to write code like:
auto iter = bm by<nane>().find("john");
instead of the more verbose
bm type: : map_by<nane>::iterator iter = bm by<name>().find("john");

Boost. Typeof defines amacro BOOST_AUTO that can be used as alibrary solution to the auto keyword while we wait for the next
standard.

If we have

t ypedef bi map< tagged<std::string, nane>, tagged<int, nunber> > bmtype;

bm type bm
bminsert(bmtype::value_type("one" ,1));
bminsert(bmtype::value_type("two" ,2));

The following code snippet

48

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/bimap_and_boost/foreach.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

for(bmtype:: map_by<nane>::iterator iter = bm by<name>().begin();
iter! =bm by<name>().end(); ++iter)

{
}

std::cout << iter->first << " -->" << jter->second << std::endl;

bm type: : map_by<nunber>::iterator iter = bm by<nunber>().find(2);
std::cout << "2: " << iter->get<name>();

can be rewrited as

for(BOOST_AUTQ(iter, bm by<nane>().begin()); iter!=bm by<name>().end(); ++iter)
{

std::cout << iter->first << " -->" << jter->second << std::endl;
}
BOOST_AUTQ(iter, bm by<number>().find(2));
std::cout << "2: " << iter->get<nanme>();
Go to source code

Boost.Xpressive

Using Boost. X pressive we can parse afile and insert the relations in a bimap in the same step. It is just amazing the power of four
lines of code. Hereisan example (it isjust beatifull)

t ypedef bimap< std::string, int > bmtype;

bm type bm
std::string rel _str("one <-->1 two <--> 2 three <--> 3");
sregex rel = ((s1l= +_w >>" <-->" >> (s2= +.d))

[
l;

xp::ref(bm->*insert(xp::construct<bmtype::value_type>(sl, as<int>(s2)))

sregex relations = rel >> *(+_s >> rel);
regex_match(rel _str, relations);

assert(bmsize() == 3);

Go to source code

Boost.Property_map

The Boost Property Map Library consists mainly of interface specifications in the form of concepts (similar to the iterator concepts
inthe STL). These interface specifications are intended for use by implementers of generic librariesin communicating requirements
on template parametersto their users. In particular, the Boost Property Map concepts define ageneral purpose interface for mapping
key objects to corresponding value objects, thereby hiding the details of how the mapping isimplemented from algorithms.

The need for the property map interface came from the Boost Graph Library (BGL), which contains many examples of algorithms
that use the property map concepts to specify their interface. For an example, note the ColorMap template parameter of the
breadth first_search. In addition, the BGL contains many examples of concrete types that implement the property map interface.
The adjacency_list class implements property maps for accessing objects (properties) that are attached to vertices and edges of the
graph.

49

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/bimap_and_boost/typeof.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/bimap_and_boost/xpressive.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

The counterparts of two of the views of Boost.Bimap map, theset and unor der ed_set , are read-write property maps. In order to
use these, you need to include one of the following headers:

#i ncl ude <boost/ bi map/ property_map/ set _support. hpp>
#i ncl ude <boost/ bi map/ property_map/ unordered_set _support. hpp>

The following is adapted from the example in the Boost.PropertyMap documentation.

Go to source code

tenpl ate <typenane AddressMap>
voi d foo(AddressMap & address_nap)

{
t ypedef typenanme boost:: property_traits<AddressMap>::val ue_type val ue_type;
typedef typenane boost::property_traits<AddressMap>:: key type key_type;
val ue_type address;
key type fred = "Fred";
std::cout << get(address_map, fred);
}
int main()
{
t ypedef bi map<std::string, multiset_of<std::string> > Nanme2Address;
t ypedef Nane2Address::val ue_type |ocation;
Name2Addr ess nane2addr ess;
name2address.insert(location("Fred", "710 West 13th Street"));
name2address.insert(location("Joe", "710 West 13th Street"));
foo(nanme2address.left);
return O;
}

Dependencies

Boost.Bimap is built on top of several Boost libraries. The rationale behind this decision is keeping the Boost code base small by
reusing existent code. The libraries used are well-established and have been tested extensively, making thislibrary easy to port since
all the hard work has already been done. The glue that holds everything together is Boost.MPL. Clearly Boost.Multilndex is the
heart of thislibrary.

50

render
httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/bimap_and_boost/property_map.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Table 4. Boost Libraries needed by Boost.Bimap

Name

Boost.M ultil ndex

Boost.M PL

Boost.TypeTraits

Boost.enable if

Boost.Iterators

Boost.call_traits

Description

Containerswith multiple STL-compatible
access interfaces

Template metaprogramming framework
of compile-time agorithms, sequences
and metafunction classes

Templates for fundamental properties of
types.

Selective inclusion of function template
overloads

Iterator construction framework, adaptors,
concepts, and more.

Defines types for passing parameters.

author

Joaquin M Lépez Mufioz

Aleksey Gurtovoy

John Maddock, Steve Cleary
Jaakko Jarvi, Jeremiah Willcock, Andrew
Lumsdaine

Dave Abrahams, Jeremy Siek, Thomas
Witt

John Maddock, Howard Hinnant

Boost.StaticAssert Stetic assertions (compiletime assertions). John Maddock
Table 5. Optional Boost Libraries
Name Description author Purpose
Boost.Serialization Seriadlization for persistence Robert Ramey Serialization support for bimap
and marshalling containers and iterators
Boost.Assign Filling containers with con- Thorsten Ottosen Help to fill a bimap or views
stant or generated data has of it
never been easier
Boost.Hash A TR1 hash function object Daniel James Default hashing function
that can be extended to hash
user defined types
Boost.Lambda Define small unnamed func- from Jaakko Jarvi, Gary Pow- Functors for modify, range,
tion objects at the actual cal €l lower_bound and upper_bound
site, and more
Boost.Range A new infrastructurefor gener- Thorsten Ottosen Range based algorithms
ic algorithmsthat buildson top
of the new iterator concepts
Boost.PropertyMap Concepts defining interfaces Jeremy Siek Integration with BGL
which map key objects to
value objects
51

render

httpo://www.renderx.com/

http://www.boost.org/libs/multi_index/doc/index.html
http://www.boost.org/libs/mpl/doc/index.html
http://www.boost.org/doc/html/boost_typetraits.html
http://www.boost.org/libs/utility/enable_if.html
http://www.boost.org/libs/iterator/doc/index.html
http://www.boost.org/libs/utility/call_traits.htm
http://www.boost.org/doc/html/boost_staticassert.html
http://www.boost.org/libs/serialization/doc/index.html
http://www.boost.org/libs/assign/doc/index.html
http://www.boost.org/doc/html/hash.html
http://www.boost.org/doc/html/lambda.html
http://www.boost.org/doc/html/range.html
http://www.boost.org/doc/html/property_map.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Table 6. Additional Boost Libraries needed to run the test-suite

Name Description author
Boost.Test Support for simple program testing, full Gennadiy Rozental
unit testing, and for program execution
monitoring.
52

render

httpo://www.renderx.com/

http://www.boost.org/libs/test/doc/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Reference

Headers

The following are the interface headers of Boost.Bimap:

Convenience

* "boost/bimap.hpp" (includes "boost/bimap/bimap.hpp" and imports the bimap class to boost namespace)
Container

* "boost/bimap/bimap.hpp” (includes "boost/bimap/set_of.hpp" and "boost/bimap/unconstrained_set_of.hpp")
Set Types

* "boost/bimap/set_of.hpp"

* "boost/bimap/multiset_of.hpp"

* "boost/bimap/unordered set_of .hpp"

"boost/bimap/unordered_multiset_of.hpp"
 "boost/bimap/list_of.hpp"

* "boost/bimap/vector_of.hpp"

* "boost/bimap/unconstrained _set_of.hpp"

Boost I ntegration

* "boost/bimap/support/lambda.hpp”

* "boost/bimap/property_map/set_support.hpp"

* "boost/bimap/property_map/unordered set_support.hpp"

A program using Boost.Bimap must therefore include "boost/bimap/bimap.hpp" and the headers defining the collection typesto be
used.

Additional headers allow the integration of Boost.Bimap with other boost libraries, like Boost.Lambda and Boost.Property _map.

In order to use the serialization capabilities of Boost.Bimap, the appropriate Boost.Serialization library module must be linked.
Other than that, Boost.Bimap is a header-only library, requiring no additional object modules.

Bimap Reference

View concepts

bi map instantiations comprise two side views and an view of the relation specified at compile time. Each view allows read-write
access to the elements contained in a definite manner, mathing an STL container signature.

Views are not isolated objects and so cannot be constructed on their own; rather they are an integral part of abi map. The name of
the view classimplementation proper is never directly exposed to the user, who has access only to the associated view type specifier.

Insertion and deletion of elements are always performed through the appropriate interface of any of the three views of the bi map;
these operations do, however, have an impact on al other viewsaswell: for instance, insertion through agiven view may fail because

53

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

there exists another view that forbids the operation in order to preserve its invariant (such as uniqueness of elements). The global
operations performed jointly in the any view can be reduced to six primitives:

* copying

* insertion of an element

« hinted insertion, where a pre-existing element is suggested in order to improve the efficiency of the operation
* deletion of an element

* replacement of the value of an element, which may trigger the rearrangement of this element in one or more views, or may forbid
the replacement

» modification of an element, and its subsequent rearrangement/banning by the various views

The last two primitives deserve some further explanation: in order to guarantee the invariants associated to each view (e.g. some
definite ordering) elements of abi map are not mutable. To overcomethisrestriction, the views expose member functionsfor updating
and modifying, which allows for the mutation of elementsin a controlled fashion.

Complexity signature

Some member functions of aview interface are implemented by global primitives from the above list. The complexity of these op-
erations thus depends on al views of agiven bi map, not just the currently used view.

In order to establish complexity estimates, aview is characterised by its complexity signature, consisting of the following associated
functions on the number of elements:

* c(n):copying

e i(n):insertion

* h(n): hinted insertion
» d(n):deletion

e r(n): replacement

* m(n) : modifying

If the collection type of therelation is| ef t _based or ri ght _based, and we use an | subscript to denote the left view and an r
for theright view, then the insertion of an element in such a container is of complexity Q(i _I (n) +i _r (n)), where nisthe number
of elements. If the collection type of relation is not side-based, then thereis an additional term to add that is contributed by the col-
lection type of relation view. Using a to denote the above view, the complexity of insertionwill now beQ(i _I (n)+i _r(n)+i _a(n)).
To abbreviate the notation, we adopt the following definitions:

* Qn) =c_l(n) +c_r(n [+c_a(n)]
e 1(n) =i_l(n)y +i_r(n) [+i_a(n)]
e Hn) =h_l(n) + h_r(n) [+ h_a(n)]
* X(n) =dI(n) +dr(n [+d.a(n)]
* R(n) =r_I(n) +r_r(n) [+r_a(n)]
* Mn) =ml(n) + mr(n) [+ ma(n)]

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Set type specification

Set type specifiers are passed asinstantiation argumentsto bi nap and provide theinformation needed to incorporate the corresponding
views. Currently, Boost.Bimap provides the collection type specifiers. The side collection type specifiers define the constraints of

the two map views of the bimap. The collection type of relation specifier defines the main set view constraints. If | ef t _based (the
default parameter) or ri ght _based is used, then the collection type of relation will be based on the left or right collection type

correspondingly.

Side collection type
set _of
mul ti set _of

unor der ed_set _of
unordered_rmul tiset_of

l'ist_of
vect or _of

unconstrai ned_set _of

Tags

Collection type of relation Include

set _of _relation boost / bi map/ set _of . hpp

mul tiset_of _relation boost/ bi map/ mul ti set _of . hpp
unordered_set_of _relation boost/ bi map/ un-

ordered_set _of. hpp

unordered_nul tiset_of _relation boost/bimp/unordered_multis-

et _of . hpp
list_of _relation boost / bi map/ |i st_of . hpp
vector_of _rel ation boost / bi map/ vect or _of . hpp

unconstrai ned_set _of relation boost/ bi map/uncon-
strai ned_set _of. hpp

| eft _based boost / bi map/ bi map. hpp

ri ght _based boost / bi map/ bi map. hpp

Tags are just conventional types used as mnemonics for the types stored in abi map. Boost.Bimap uses the tagged idiom to let the

user specify thistags.

55

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Header "boost/bimap/bimap.hpp"” synopsis

namespace boost {
namespace bi maps {

tenpl ate< cl ass Type, typenanme Tag >
struct tagged;

/1 bimap tenplate class

tenpl ate

<

class LeftCol |l ectionType, class RightCollectionType,

cl ass Additional Paraneter_1 = detail::not_specified,

cl ass Additional Paraneter_2 = detail::not_specified
>
class bimap - inplementation defined { : public SetView} -
{

publi c:

/1 Met adat a

t ypedef -unspecified- |eft_tag;
t ypedef -unspecified- |eft_map;

t ypedef -unspecified- right_tag;
t ypedef -unspecified- right_map;

/1 Shortcuts
/'l typedef -side-_nap::-type- -side-_-type-;

t ypedef -unspecified- info_type;
/1 Map views

left_map left;
right_map right;

// Constructors
bi map() ;

tenmpl ate< class Inputlterator >
bi map(Inputlterator first,Inputlterator |ast);

bi map(const bimap &) ;
bi map& operat or =(const bi map& b);
/1 Projection of iterators

tenpl ate< cl ass IteratorType >
left _iterator project_left(lteratorType iter);

tenpl ate< cl ass IteratorType >
left _const_iterator project_left(lteratorType iter) const;

tenpl ate< cl ass IteratorType >
right_iterator project_right(lteratorType iter);

tenpl ate< cl ass IteratorType >
right_const_iterator project_right(lteratorType iter) const;

56

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

tenpl ate< class IteratorType >
iterator project_up(lteratorType iter)

tenpl ate< class IteratorType >
const _iterator project_up(lteratorType iter) const;

/1 Support for tags

tenpl ate< cl ass Tag >
struct map_by;

tenpl ate< cl ass Tag >
map_by<Tag>::type by()

tenpl ate< cl ass Tag >
const nmap_by<Tag>::type & by() const;

tenpl ate< class Tag, class lteratorType >
map_by<Tag>::iterator project(lteratorType iter);

tenpl ate< class Tag, class lteratorType >
map_by<Tag>::const __iterator project(lteratorType iter) const

} I/ nanmespace bi map
} I/ nanmespace boost

Class template bimap

Thisisthe main component of Boost.Bimap.

Complexity

In the descriptions of the operations of bi map, we adopt the scheme outlined in the complexity signature section.
Instantiation types

bi map isinstantiated with the following types:

1. LeftCollectionType and RightCollectionType are collection type specifications optionally tagged, or any type optionally tagged,
in which case that side acts as a set.

2. Additional Parameter_{1/2} can be any ordered subset of:
* CollectionTypeOfRel ation specification

» Allocator

Nested types
left _tag, right_tag

Tags for each side of the bimap. If the user has not specified any tag the tags default to menber _at:: 1 eft and
menber _at::right.

| eft_key_type, right_key_type

57

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Key type of each side. In abi map<A, B> left_key typeisAandright _key_ type isB. If there aretags, it
is better to use: Bi map: : map_by<Tag>: : key_type.

left_data_type, right_data_type

Data type of each side. In abimap<A,B> left_key typeisB and right_key typeisA. If there aretags, it is better
touse: Bi map: : map_by<Tag>: : dat a_t ype.

| eft_value_type, right_value_type
Value type used for the views. If there are tags, it is better to use: Bi map: : map_by<Tag>: : val ue_t ype.

left iterator, right_iterator
left _const_iterator, right_const_iterator

Iterators of the views. If there are tags, it is better to use: Bi map:: map_by<Tag>::iterator and
Bi map: : map_by<Tag>:: const _i terator

| eft _map, right_map
Map view type of each side. If there are tags, it is better to use: Bi map: : map_by<Tag>: : t ype.
Constructors, copy and assignment
bi map() ;

» Effects: Constructs an empty bi map.

e Complexity: Constant.

t enpl at e<t ypenane | nputlterator>
bi mp(Inputlterator first,Inputlterator |ast);

* Requires: I nputlterator isamodd of Input Iterator over elements of typer el ati on or atype convertibletorel ati on.
last isreachable fromfirst.

» Effects: Constructs an empty bi map and fillsit with the elementsintherange([first, | ast) . Insertion of each element may or
may not succeed depending on acceptance by the collection types of the bi map.

+ Complexity: O(m*H(m)), where m is the number of elementsin[first, | ast).

bi map(const bimap & x);

Effects: Constructs acopy of x, copying its elements aswell asitsinternal objects (key extractors, comparison objects, allocator.)

Postconditions: *t hi s == x. The order of the views of the bi map is preserved as well.

Complexity: O(x.size()*log(x.size()) + C(x.siz&()))

~bi map()

Effects: Destroysthe bi map and al the elements contained. The order in which the elements are destroyed is not specified.

Complexity: O(n).

58

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

bi map& operat or=(const bi map& x);

 Effects: Replaces the elements and internal objects of the bi map with copies from x.

» Postconditions: *t hi s==x. The order on the views of the bi map is preserved aswell.

* Returns: *this.

e Complexity: O(n + x.size()*log(x.size()) + C(x.siz&())).

» Exception safety: Strong, provided the copy and assignment operations of the typesof ct or _ar gs_| i st do not throw.
Projection operations

Given abi map with views vl and v2, we say than an v1-iterator itl and an v2-iterator it2 are equivalent if:

e itl ==il.end() ANDit2 == i2.end(),

* ORit1andit2 point tothe same element.

tenpl ate< class IteratorType >
left _iterator project_left(lteratorType iter);

tenpl ate< class IteratorType >
| eft_const_iterator project_left(lteratorType iter) const;

» Requires: I terat or Type isabimap view iterator. it isavalid iterator of someview of *t hi s (i.e. does not refer to some other
bi map.)

» Effects: Returns aleft map view iterator equivalent toi t .
» Complexity: Constant.

» Exception safety: nothrow.

tenpl ate< cl ass IteratorType >
right _iterator project_right(lteratorType iter);

tenpl ate< cl ass IteratorType >
right_const_iterator project_right(lteratorType iter) const;

* Requires: I ter at or Type isabimap view iterator. it isavalid iterator of some view of *t hi s (i.e. does not refer to some other
bi map.)

» Effects. Returnsaright map view iterator equivalent toi t .
» Complexity: Constant.

» Exception safety: nothrow.

tenpl ate< class IlteratorType >
iterator project_up(lteratorType iter);

tenpl ate< class IlteratorType >
const _iterator project_up(lteratorType iter) const;

* Requires: I terat or Type isabimap view iterator. it isavalid iterator of some view of *t hi s (i.e. does not refer to some other
bi map.)

59

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

 Effects: Returns a collection of relations view iterator equivalenttoi t .
» Complexity: Constant.

» Exception safety: nothrow.

Support for user defined names

tenpl ate< cl ass Tag >
struct map_by;

* map_by<Tag>: : type yields the type of the map view tagged with Tag. map_by<Tag>: : -type name- is the same as
map_by<Tag>: : t ype: : -type name-

* Requires: Tag isavalid user defined name of the bimap.

tenpl ate< cl ass Tag >
map_by<Tag>: :type by();

tenpl ate< cl ass Tag >
const nmap_by<Tag>::type & by() const;

* Requires: Tag isavalid user defined name of the bimap.

Effects: Returns areference to the map view tagged with Tag held by *t hi s.
e Complexity: Constant.

» Exception safety: nothrow.

tenpl ate< cl ass Tag, class IteratorType >
map_by<Tag>::iterator project(lteratorType iter);

tenpl ate< cl ass Tag, class IteratorType >
map_by<Tag>::const _iterator project(lteratorType iter) const

* Requires: Tag isavalid user defined name of the bimap. | t er at or Type isabimap view iterator. it isavalid iterator of some
view of *t hi s (i.e. does not refer to some other bi map.)

 Effects: Returns areference to the map view tagged with Tag held by *t hi s.
» Complexity: Constant.

» Exception safety: nothrow.
Serialization

A bi map can bearchived and retrieved by means of Boost.Serialization. Boost.Bimap does ot expose apublic serialisation interface,
asthisis provided by Boost.Seridization itself. Both regular and XML archives are supported.

Each of the set specifications comprising a given bi map contributes its own preconditions as well as guarantees on the retrieved
containers. In describing these, the following concepts are used. A type T is serializable (resp. XML-seridizable) if any object of
type T can be saved to an output archive (XML archive) and later retrieved from an input archive (XML archive) associated to the
same storage. If x' of type T is loaded from the serialization information saved from another object x, we say that X' is a restored
copy of x. Given aBinary Predicate Pr ed over (T, T), and objectsp and g of type Pr ed, we say that q is serialization-compatible
with p if

* p(x,y) == q(x,y)

60

render

httpo://www.renderx.com/

http://www.boost.org/libs/serialization/doc/index.html
http://www.sgi.com/tech/stl/BinaryPredicate.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

for every x andy of type T and x' and y' being restored copies of x and y, respectively.

Operation: saving of abi map b to an output archive (XML archive) ar.

Requires: Vaueis seriadlizable (XML-serializable). Additionally, each of the views of b can impose other requirements.

» Exception safety: Strong with respect to b. If an exception is thrown, ar may be left in an inconsistent state.

Operation: loading of abi map m' from an input archive (XML archive) ar.

* Requires: Valueis serializable (XML-serializable). Additionally, each of the views of b' can impose other requirements.

» Exception safety: Basic. If an exception isthrown, ar may be left in an inconsistent state.

set_of Reference
Header "boost/bimap/set_of.hpp" synopsis

nanespace boost {
nanmespace bi maps {

tenpl ate
<
cl ass KeyType,
cl ass KeyConpare = std::|ess< KeyType >
>
struct set_of;

tenpl ate
<
cl ass KeyConpare = std::less< _relation >
>
struct set_of relation;

} I/ nanmespace bi map
} I/ nanmespace boost

61

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Header "boost/bimap/multiset_of.hpp" synopsis

namespace boost {
namespace bi maps {

tenpl ate
<
cl ass KeyType,
cl ass KeyConpare = std::|ess< KeyType >
>
struct nmultiset of;

tenpl ate
<

cl ass KeyConpare = std::less< _relation >
>

struct nmultiset_of relation;

} I/ namespace bi map
} I/ namespace boost

Collection type specifiers set_of and multiset_of

These collection type specifiers allow for insertion of sets disallowing or allowing duplicate elements, respectively. The syntaxes of
set _of andnul ti set _of coincide, so they are described together.

[multi]set_of Views
A [multi]set_of set view isastd::[multi]set signature-compatible interface to the underlying heap of elements contained in abi nap.

There are two variants: set_of, which does not alow duplicate elements (with respect to its associated comparison predicate) and
multiset_of, which does accept those duplicates. The interface of these two variantsis largely the same, so they are documented to-
gether with their differences explicitly noted where they exist.

If you look the bimap from a side, you will use amap view, and if you look at it as awhole, you will be using a set view.

62

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

nanespace boost {
namespace bi maps {
nanespace views {

tenpl ate< -inplenentation defined paraneter list- >
class -inplenentation defined view namne-

{

public:

t ypedef -unspecified- key_type;

t ypedef -unspecified- val ue_type;

t ypedef -unspecified- key_conpare;

t ypedef -unspecified- val ue_conpare;

t ypedef -unspecified- allocator_type;

t ypedef -unspecified- reference;

t ypedef -unspecified- const_reference;
t ypedef -unspecified- iterator;

t ypedef -unspecified- const_iterator;

t ypedef -unspecified- size_type;

t ypedef -unspecified- difference_type;
t ypedef -unspecified- pointer;

t ypedef -unspecified- const_pointer;
typedef -unspecified- reverse_iterator;
t ypedef -unspecified- const_reverse_iterator;

t ypedef -unspecified- info_type;
this_type & operator=(const this_type & x);
al l ocator _type get_allocator() const;

/] iterators

iterator begin();
const _iterator begi n() const;
iterator end();

const _iterator end() const;
reverse_iterator rbegin();

const_reverse_iterator rbegin() const;

reverse_iterator rend();
const_reverse_iterator rend() const;

/1 capacity

bool enmpty() const;

size_type size() const;

size_type max_size() const;

/1 modifiers

std::pair<iterator, bool > insert(const value_type & X);
iterator insert(iterator position, const value_type & X);

tenpl ate< class Inputlterator>
void insert(lnputlterator first, Inputlterator |ast);

iterator erase(iterator position);

63

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

tenpl at e< cl ass Conpati bl ekey >
size_type erase(const Conpatibl eKey & Xx);

iterator erase(iterator first, iterator l|ast);
bool replace(iterator position, const value_type& Xx);

/1 Only in map views
I {

tenpl at e< cl ass Conpati bl ekey >
bool replace_key(iterator position, const ConpatibleKey & Xx);

tenpl ate< cl ass Conpati bl eData >
bool replace_data(iterator position, const ConpatibleData & x);

tenpl ate< cl ass KeyModifier >
bool nodify_key(iterator position, KeyhMdifier nod);

tenpl ate< cl ass DataMwodifier >
bool nodify_data(iterator position, DataMdifier nod);

/1 }

voi d swap(this_type & x);

void clear();

/'l observers

key_conpare key_conp() const;
val ue_conpare val ue_conp() const;
/1 set operations

tenpl at e< cl ass Conpati bl ekey >
iterator find(const Conpatibl eKey & x);

tenpl at e< cl ass Conpati bl ekey >

const _iterator find(const Conpatibl eKey & x) const;

tenpl at e< cl ass Conpati bl ekey >
size_type count(const Conpatibl eKey & x) const;

tenpl at e< cl ass Conpati bl ekey >

iterator |ower_bound(const Conpatibl eKey & X);

tenpl at e< cl ass Conpati bl ekey >

const _iterator |ower_bound(const Conpatibl eKey & x) const;
tenpl at e< cl ass Conpati bl ekey >

iterator upper_bound(const Conpati bl eKey & X);

tenpl at e< cl ass Conpati bl ekey >

const _iterator upper_bound(const Conpati bl eKey & x) const;

tenpl at e< cl ass Conpati bl ekey >

render

s httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

std::pair<iterator,iterator>
equal _range(const Conpati bl eKey & x);

tenpl at e< cl ass Conpati bl ekey >
std::pair<const_iterator, const_iterator>
equal _range(const Conpati bl eKey & x) const;

/1 Only in naps views
I {

tenpl at e< cl ass Lower Bounder, class Upper Bounder >

std::pair<iterator,iterator> range(
Lower Bounder | ower, UpperBounder upper)

tenpl at e< cl ass Lower Bounder, class Upper Bounder >
std::pair<const_iterator, const_iterator> range(
Lower Bounder | ower, UpperBounder upper) const

t ypedef -unspecified- nmapped_type;
typedef -unspecified- data_type; // Equal to nmapped_type

/1 Only in for “set_of collection type
I {

tenpl at e< cl ass Conpati bl ekey >
const napped_type & at(const Conpati bl eKey & k) const;

/1 Only if the other collection type is nutable
I {

tenpl at e< cl ass Conpati bl ekey >
mapped_type & operator[](const Conpati bl eKey & k)

tenpl at e< cl ass Conpati bl ekey >
nmapped_type & at(const Conpati bl eKey & k);

1)

/1 Only if info_hook is used
I {

tenpl at e< cl ass Conpati bl ekey >
info_type & info_at(const Conpatibl eKey & k)

tenpl at e< cl ass Conpati bl eKey >
const info_type & info_at(const Conpatibl eKey & k) const;

1)
1)

!
};

/'l view conparison

bool operator==(const this_type & vl, const this_type & v2)
bool operator< (const this_type & vl, const this_type & v2)
bool operator!=(const this_type & vl, const this_type & v2)
bool operator> (const this_type & vl, const this_type & v2)

65

render

s httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

bool operator>=(const this_type & vl, const this_type & v2);
bool operator<=(const this_type & vl, const this_type & v2);

} I/ nanmespace views
} I/ nanmespace bi map
} I/ nanmespace boost

Inthe caseof abi map< {nul ti}set of <Left>, ... >
In the set view:
t ypedef signature-conpatible with relation< Left, ... > key_type;
t ypedef signature-conpatible with relation< const Left, ... > value_type;

In the left map view:

typedef Left Kkey_type;
typedef ... mapped_t ype;

t ypedef signature-conpatible with std::pair< const Left, ... > value_type;
In the right map view:

typedef ... Kkey_type;
typedef Left mapped_type;

typedef signature-conpatible with std::pair< ... ,const Left > value_type;

Complexity signature

Here and in the descriptions of operations of this view, we adopt the scheme outlined in the complexity signature section. The
complexity signature of [multi]set_of view is:

e copying:c(n) = n * log(n),
e insertion:i (n) = log(n),

» hinted insertion: h(n) = 1 (constant) if the hint element precedes the point of insertion, h(n) = 1 og(n) otherwise,

deletion: d(n) = 1 (amortized constant),

 replacement: r (n) = 1 (constant) if the element position does not change, r (n) = 1 og(n) otherwise,

modifying: m(n) = 1 (constant) if the element position does not change, m(n) = | og(n) otherwise.
Instantiation types

Set views are instantiated internally to abi map. Instantiations are dependent on the following types:

* Val ue from the set specifier,

e Al'l ocator from bi map,

» Conpar e from the set specifier.

Conpar e isa Strict Weak Ordering on elements of Val ue.

66

render
httpo://www.renderx.com/

http://www.sgi.com/tech/stl/StrictWeakOrdering.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Constructors, copy and assignment

Set views do not have public constructors or destructors. Assignment, on the other hand, is provided.

this_type & operator=(const this_type & x);

Effects. a = b; whereaand b are the bi map objectsto which *t hi s and x belong, respectively.

Returns. *this.

Modifiers

std::pair<iterator, bool > insert(const value_type & X);

Effects: Inserts x into the bi map to which the set view belongs if
« the set view is non-unique OR no other element with equivalent key exists,
* AND insertion is allowed by the other set specifications the bi map.

Returns: The return value is a pair p. p. second istrue if and only if insertion took place. On successful insertion, p. fi r st
points to the element inserted; otherwise, p. fi rst pointsto an element that caused the insertion to be banned. Note that more
than one element can be causing insertion not to be allowed.

Complexity: O(I(n)).

Exception safety: Strong.
iterator insert(iterator position, const value_type & x);

Requires: positionisavaliditerator of theview.

Effects: posi ti on isused asahint toimprove the efficiency of the operation. Insertsx into thebi map to which the view belongs
if

« the set view is non-unique OR no other element with equivalent key exists,
« AND insertionisalowed by al other views of the bi map.

Returns: On successful insertion, an iterator to the newly inserted element. Otherwise, an iterator to an element that caused the
insertion to be banned. Note that more than one element can be causing insertion not to be allowed.

Complexity: O(H(n)).

Exception safety: Strong.

tenpl ate< class Inputlterator >
void insert(lnputlterator first, Inputlterator last);

Requires: I nput Iterator isamodel of Input Iterator over elements of typeval ue_t ype or atype convertible to value_type.
first andl ast are not iteratorsinto any view of the bi map to which thisindex belongs. | ast isreachablefromfirst.

Effects: iterator hint = end();while(first !=1last) hint = insert(hint, *first++);
Complexity: O(m*H(n+m)), where mis the number of elementsin[first, last).

Exception safety: Basic.

67

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/InputIterator.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

iterator erase(iterator position);

» Requires: positionisavalid dereferenceableiterator if the set view.

» Effects: Deletes the element pointed to by posi ti on.

» Returns: Aniterator pointing to the element immediately following the one that was deleted, or end() if no such element exists.
o Complexity: O(D(n)).

» Exception safety: nothrow.

t enpl at e< cl ass Conpati bl eKey >
size_type erase(const Conpatibl eKey & x);

* Requires: Compati bl eKey isacompatible key of key_conpar e.

Effects: Deletes the elements with key equivalent to x.

* Returns: Number of elements deleted.

Complexity: O(log(n) + m*D(n)), where m is the number of elements deleted.

» Exception safety: Basic.
iterator erase(iterator first, iterator last);

* Requires: [first,|ast) isavalidrange of theview.

» Effects. Deletestheelementsin[first, |l ast).

* Returns: last.

» Complexity: O(log(n) + m*D(n)), where m isthe number of elementsin[first, | ast).

» Exception safety: nothrow.
bool replace(iterator position, const value_type& X);

* Requires: positionisavalid dereferenceableiterator of the set view.

» Effects: Assignsthe value x to the element pointed to by posi t i on intothebi map to which the set view belongsif, for the value
X

« the set view is non-unique OR no other element with equivalent key exists (except possibly * posi ti on),
* AND replacing is alowed by all other views of the bi map.

» Postconditions: Validity of position is preserved in all cases.

e Returns: true if the replacement took place, f al se otherwise.

» Complexity: O(R(n)).

» Exception safety: Strong. If an exception is thrown by some user-provided operation, the bi map to which the set view belongs
remainsin itsorigina state.

68

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

tenpl at e< cl ass Conpati bl ekey >
bool replace_key(iterator position, const ConpatibleKey & Xx);

Requires: positionisavalid dereferenceableiterator of the set view. Conpat i bl eKey can be assigned to key _t ype.

Effects: Assignsthevauex toe. fi rst, wheree isthe element pointed to by posi ti on into the bi map to which the set view
belongsiif,

 the map view is non-unique OR no other element with equivalent key exists (except possibly * posi ti on),
* AND replacing is alowed by all other views of the bi map.

Postconditions: Validity of position is preserved in all cases.

Returns: true if the replacement took place, f al se otherwise.

Complexity: O(R(n)).

Exception safety: Strong. If an exception is thrown by some user-provided operation, the bi map to which the set view belongs
remainsin itsoriginal state.

tenpl at e< cl ass Conpati bl eData >
bool replace_data(iterator position, const ConpatibleData & x);

Requires: positi onisavalid dereferenceableiterator of the set view. Conpat i bl eKey can be assigned to mapped_t ype.

Effects: Assignsthe value x to e. second, where e isthe element pointed to by posi ti on into the bi map to which the set view
belongsiif,

« the map view is non-unique OR no other element with equivalent key exists (except possibly * posi ti on),
* AND replacing is allowed by all other views of the bi map.

Postconditions: Validity of position is preserved in all cases.

Returns: true if the replacement took place, f al se otherwise.

Complexity: O(R(n)).

Exception safety: Strong. If an exception is thrown by some user-provided operation, the bi map to which the set view belongs
remainsinitsorigina state.

tenpl at e< cl ass KeyModifier >
bool nodify_key(iterator position, Keyhodifier nod);

Requires: KeyModi fi er is a model of Unary Function accepting arguments of type: key_t ype&; position is a valid
dereferenceable iterator of the view.

Effects. Calsnod(e. first) whereeisthe element pointed to by position and rearranges * posi t i on into al the views of the
bi map. If the rearrangement fails, the element is erased. Rearrangement is successful if

* the map view is non-unigue OR no other element with equivalent key exists,
* AND rearrangement is allowed by all other views of the bi map.
Postconditions: Validity of posi ti on ispreserved if the operation succeeds.

Returns: true if the operation succeeded, f al se otherwise.

69

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/UnaryFunction.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

e Complexity: O(M(n)).

» Exception safety: Basic. If an exception is thrown by some user-provided operation (except possibly mod), then the element
pointed to by position is erased.

* Note: Only provided for map views.

tenpl ate< cl ass DataMwodifier >
bool nodify_data(iterator position, DataMdifier nod);

» Requires: Dat aMdi fi er isamodel of Unary Function accepting arguments of type: mapped_t ype&; positi on isavalid
dereferenceable iterator of the view.

» Effects: Callsnod(e. second) whereeisthe element pointed to by position and rearranges* posi t i on into all the views of the
bi map. If the rearrangement fails, the element is erased. Rearrangement is successful if

« the oppositte map view is non-unique OR no other element with equivalent key in that view exists,
« AND rearrangement is allowed by all other views of the bi map.

» Postconditions: Validity of posi ti on ispreserved if the operation succeeds.

* Returns: true if the operation succeeded, f al se otherwise.

» Complexity: O(M(n)).

» Exception safety: Basic. If an exception is thrown by some user-provided operation (except possibly mod), then the element
pointed to by position is erased.

* Note: Only provided for map views.

Set operations

[mul ti]set_of views provide the full lookup functionality required by Sorted Associative Container and Unique Associative
Container, namely fi nd, count, | ower _bound, upper _bound and equal _r ange. Additionaly, these member functions are
templatized to allow for non-standard arguments, so extending the types of search operations allowed.

A type Conpat i bl eKey issaid to be acompatible key of Conpar e if (Conpat i bl eKey, Conpare) isacompatible extension of
Conpar e. Thisimplies that Conpar e, as well as being a strict weak ordering, accepts arguments of type Conpat i bl eKey, which
usually meansit has several overloads of oper at or () .

tenpl at e< cl ass Conpati bl eKey >
iterator find(const Conpatibl eKey & x);

tenpl at e< cl ass Conpati bl eKey >
const _iterator find(const Conpatibl eKey & x) const;

» Requires. Conpati bl eKey isacompatible key of key_conpar e.
» Effects: Returns a pointer to an element whose key is equivalent to x, or end() if such an element does not exist.

e Complexity: O(log(n)).

tenpl at e< cl ass Conpati bl ekey >
size_type count(const key_type & X) const;

* Requires: Conpati bl eKey isacompatible key of key_conpar e.

» Effects: Returns the number of elements with key equivalent to x.

70

render

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/UnaryFunction.html
http://www.sgi.com/tech/stl/SortedAssociativeContainer.html
http://www.sgi.com/tech/stl/UniqueAssociativeContainer.html
http://www.sgi.com/tech/stl/UniqueAssociativeContainer.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

e Complexity: O(log(n) + count(x)).

tenpl at e< cl ass Conpati bl eKey >
iterator |ower_bound(const key_type & Xx);

tenpl at e< cl ass Conpati bl eKey >
const _iterator |ower_bound(const key_type & Xx) const;

* Requires: Conpati bl eKey isacompatible key of key_conpar e.
» Effects: Returns an iterator pointing to the first element with key not less than x, or end() if such an element does not exist.

» Complexity: O(log(n)).

tenpl at e< cl ass Conpati bl eKey >
iterator upper_bound(const key_type & Xx);

tenpl at e< cl ass Conpati bl eKey >
const _iterator upper_bound(const key_ type & x) const;

* Requires: Conpati bl eKey isacompatible key of key_conpar e.
» Effects: Returns an iterator pointing to the first element with key greater than x, or end() if such an element does not exist.

» Complexity: O(log(n)).

tenpl at e< cl ass Conpati bl eKey >
std::pair<iterator,iterator>

equal _range(const key_type & X);
tenpl at e< cl ass Conpati bl eKey >

std:: pair<const_iterator, const_iterator>
equal _range(const key_type & Xx) const;

* Requires: Conpati bl eKey isacompatible key of key_conpar e.

» Effects: Equivalent to make_pai r (1 ower _bound(x), upper _bound(x)).
» Complexity: O(log(n)).

Range operations

The member function rangeis not defined for sorted associative containers, but [mul ti] set _of map viewsprovideit asaconvenient
utility. A range or interval is defined by two conditions for the lower and upper bounds, which are modelled after the following
concepts.

Consider a Strict Weak Ordering Conpar e over values of type Key. A type Lower Bounder issaid to be alower bounder of Conpar e
if

* Lower Bounder isaPredi cat e over Key,
e iflower (k1) and! conp(k2, k1) thenl ower (k2),

for every | ower of type Lower Bounder , conp of type Conpar e, and k1, k2 of type Key. Similarly, an upper bounder is a type
Upper Bounder such that

» Upper Bounder isaPr edi cat e over Key,

 if upper (k1) and! conp(k1, k2) thenupper (k2),

71

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/StrictWeakOrdering.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

for every upper of type Upper Bounder , conp of type Conpar e, and k1, k2 of type Key.

tenpl at e< cl ass Lower Bounder, class Upper Bounder >
std:: pair<const_iterator, const_iterator> range(
Lower Bounder | ower, UpperBounder upper) const;

* Requires: Lower Bounder and Upper Bounder are alower and upper bounder of key_conpar e, respectively.

» Effects: Returnsapair of iterators pointing to the beginning and one past the end of the subsequence of elements satisfying lower
and upper simultaneously. If no such elements exi<t, the iterators both point to the first element satisfying lower, or else are equal
toend() if thislatter element does not exist.

» Complexity: O(log(n)).

» Variants: In place of lower or upper (or both), the singular value boost : : bi map: : unbounded can be provided. Thisactsas a
predicate which all values of type key_t ype satisfy.

» Note: Only provided for map views.

at(), info_at() and operator|[] - set_of only

t enpl at e< cl ass Conpati bl eKey >
const mapped_type & at(const Conpati bl eKey & k) const;

* Requires: Conpati bl eKey isacompatible key of key_conpar e.

Effects: Returnsthemapped_t ype referencethat isassociated with k, or throwsst d: : out _of _r ange if such key doesnot exist.

Complexity: O(log(n)).
* Note: Only provided when set _of is used.

The symmetry of bimap imposes some constraints on oper at or [] and the non constant version of at() that are not found in
st d: : maps. Tey are only provided if the other collection typeis mutable (1 i st _of , vect or _of and unconst rai ned_set _of).

tenpl at e< cl ass Conpati bl eKey >
mapped_type & operator[](const Comnpati bl eKey & k) ;

* Requires: Conpati bl eKey isacompatible key of key_conpar e.

» Effects. return insert(val ue_type(k, mapped_type()))->second;

Complexity: O(log(n)).

Note: Only provided when set _of isused and the other collection type is mutable.

tenpl at e< cl ass Conpati bl ekey >
mapped_type & at(const Conpati bl eKey & k) ;

» Requires: Conpati bl eKey isacompatible key of key_conpar e.

» Effects: Returnsthe mapped_t ype reference that is associated with k, or throws st d: : out _of _r ange if such key does not
exist.

» Complexity: O(log(n)).

» Note: Only provided when set _of isused and the other collection type is mutable.

72

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

tenpl at e< cl ass Conpati bl ekey >
info_type & info_at(const Conpatibl ekey & k)

tenpl at e< cl ass Conpati bl ekey >
const info_type & info_at(const Conpatibl eKey & k) const;

Requires: Conpat i bl eKey isacompatible key of key_conpar e.
Effects: Returnsthei nf o_t ype reference that is associated with k, or throws st d: : out _of _r ange if such key does not exist.
Complexity: O(log(n)).

Note: Only provided when set _of andi nf o_hook are used

Serialization

Views cannot be serialized on their own, but only as part of the bi map into which they are embedded. In describing the additional
preconditions and guarantees associated to [mul ti] set _of views with respect to serialization of their embedding containers, we
use the concepts defined in the bi map serialization section.

Operation: saving of abi map m to an output archive (XML archive) ar.

Requires: No additional requirements to those imposed by the container.

Operation: loading of abi map m' from an input archive (XML archive) ar.

Requires: In addition to the genera requirements, val ue_conp() must be seridization-compatible with
m get <i >(). val ue_conp(), wherei isthe position of the ordered view in the container.

Postconditions: On successful loading, each of the elements of [begi n(), end()) isarestored copy of the corresponding
elementin[m get <i >().begin(), mget<i>().end()).

Operation: saving of an iterator or const _i t er at or it to an output archive (XML archive) ar.

Requires: it isavalid iterator of the view. The associated bi map has been previously saved.

Operation: loading of ani t erat or orconst _i terator it'fromaninput archive (XML archive) ar.

Postconditions. On successful loading, if it was dereferenceablethen*i t 'istherestored copy of *i t , otherwisei t' == end() .

Note: Itisalowed that it beaconst it erat or andtherestoredi t ' aniterator, or viceversa.

73

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

unordered_set_of Reference
Header "boost/bimap/unordered_set of.hpp" synopsis

namespace boost {
namespace bi maps {

tenpl ate

<
cl ass KeyType
cl ass HashFunct or
cl ass Equal Key

hash< KeyType >
std:: equal _to< KeyType >

>
struct unordered_set_of;

tenpl ate

<
cl ass HashFunct or
cl ass Equal Key

hash< _relation >
std::equal _to< _relation >

>
struct unordered_set_of relation

} I/ namespace bi map
} I/ namespace boost

Header "boost/bimap/unordered _multiset_of.hpp" synopsis

nanespace boost {
namespace bi maps {

tenpl ate

<
cl ass KeyType
cl ass HashFunct or
cl ass Equal Key

= hash< KeyType >,
= std::equal _to< KeyType >

>
struct unordered_nultiset_of;

tenpl ate

<
cl ass HashFunct or
cl ass Equal Key

hash< _relation >
std::equal _to< _relation >

>
struct unordered_nultiset_of _relation

} I/ nanmespace bi map
} I/ nanmespace boost

Collection type specifiers unordered_set of and unordered_multiset_of

These collection types specifiers allow for set views without and with allowance of duplicate elements, respectively. The syntax of
set _of andnul ti set_of coincide, thuswe describe them in agrouped manner.

74

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

unordered [multi]set_of Views

Anunordered [multi]set_of set view isatrl::unordered[multi]set signature compatible interface to the underlying heap of elements
contained in abi map.

Theinterfaceand semanticsof unor der ed_[nmul ti] set _of viewsare modeled according to the proposal for unordered associative
containers given in the C++ Standard Library Technical Report, also known as TR1. An unordered_[nul ti]set _of view is
particularized according to a given Hash function object which returns hash values for the keys and a binary predicate Pr ed acting
as an equivalence relation on values of Key.

Therearetwo variants: unordered set of, which do not allow duplicate elements (with respect to its associated comparison predicate)
and unordered_multiset_of, which accept those duplicates. The interface of these two variants is the same to a great extent, so they
are documented together with their differences explicitly noted when they exist.

If you look the bimap by a side, you will use amap view and if you looked it as awhole you will be using a set view.

Except where noted, unor dered_[nul ti] set _of views(both unique and non-unique) are modelsof Unor der ed Associ ati ve
Cont ai ner . Validity of iterators and references to elementsis preserved in all cases. Occasionally, the exception safety guarantees
provided are actually stronger than required by the extension draft. We only provide descriptions of those types and operations that
are either not present in the concepts modeled or do not exactly conform to the requirements for unordered associative containers.

nanespace boost {
nanespace bi map {
nanespace views {

tenpl ate< -inplenentation defined paraneter list- >
class -inplenentation defined view name-

{
publi c:

/'l types

t ypedef -unspecified- key_type;

t ypedef -unspecified- val ue_type;

t ypedef -unspecified- key_conpare;

t ypedef -unspecified- val ue_conpare;
typedef -unspecified- hasher;

typedef -unspecified- key_equal;
typedef -unspecified- allocator_type;
t ypedef -unspecified- reference;

t ypedef -unspecified- const_reference;
t ypedef -unspecified- iterator;
typedef -unspecified- const_iterator;
typedef -unspecified- size_type;
typedef -unspecified- difference_type;
typedef -unspecified- pointer;

t ypedef -unspecified- const_pointer;
typedef -unspecified- |ocal _iterator;
t ypedef -unspecified- const_local _iterator;

t ypedef -unspecified- info_type;

/'l construct/destroy/ copy:

this_type & operator=(const this_type & x);
al l ocator_type get_allocator() const;

/'l size and capacity

bool enmpty() const;

75

httpo://www.renderx.com/

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

size_type size() const;
size_type nmax_size() const;

/] iterators

iterator begin();
const _iterator begin() const;
iterator end();

const _iterator end() const;

/1 modifiers

std::pair< iterator, bool > insert(const value_type & Xx);
iterator insert(iterator position, const value_type & X);

tenpl ate< class Inputlterator >
void insert(lnputlterator first, Inputlterator |ast);

iterator erase(iterator position);

tenpl at e< cl ass Conpati bl eKey >
size_type erase(const Conpatibl eKey & Xx);

iterator erase(iterator first, iterator last);
bool replace(iterator position, const value_type & X);

/1 Only in map views
I {

t ypedef -unspecified- nmapped_type;
typedef -unspecified- data_type; // Equal to nmapped_type

tenpl at e< cl ass Conpati bl ekey >
bool replace_key(iterator position, const ConpatibleKey & Xx);

tenpl ate< cl ass Conpati bl eData >
bool replace_data(iterator position, const ConpatibleData & x);

tenpl ate< cl ass KeyModifier >
bool nodify_key(iterator position, KeyhMdifier nod);

tenpl ate< cl ass DataMwodifier >
bool nodify_data(iterator position, DataMdifier nod);

1)

void clear();
/1 observers

key_fromval ue key_extractor() const;

hasher hash_function() const;
key_equal key_eq() const;
/'l 1 ookup

tenpl at e< cl ass Conpati bl ekey >
iterator find(const Conpatibl eKey & Xx);

tenpl at e< cl ass Conpati bl ekey >

76

render

s httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

const _iterator find(const Conpatibl eKey & x) const;

tenpl at e< cl ass Conpati bl ekey >
size_type count(const Conpatibl eKey & x) const;

tenpl at e< cl ass Conpati bl ekey >
std::pair<iterator,iterator>
equal _range(const Conpati bl eKey & x);

tenpl at e< cl ass Conpati bl ekey >
std::pair<const_iterator, const_iterator>
equal _range(const Conpati bl eKey & x) const;

/1 bucket interface

si ze_type bucket _count() const;

si ze_type max_bucket _count () const;

si ze_type bucket _size(size_type n) const;
si ze_type bucket (const key_type & k) const;

| ocal _iterator begi n(si ze_type n)
const _local _iterator begin(size_type n) const
| ocal _iterator end(size_type n)

const _local _iterator end(size_type n) const
/'l hash policy

float | oad_factor() const;

float max_| oad_factor() const;

void nmax_|oad_factor(float z);

void rehash(size_type n)

/1 Only in naps views
I {

t ypedef -unspecified- nmapped_type;

/1 Only in for “unordered_set_of" collection type
I {

t enpl at e<cl ass Conpati bl eKey>
const napped_type & at(const Conpati bl eKey & k) const;

/1 Only if the other collection type is nutable
I {

t enpl at e<cl ass Conpati bl eKey>
mapped_type & operator[](const Conpati bl eKey & k)

t enpl at e<cl ass Conpati bl eKey>
nmapped_type & at(const Conpati bl eKey & k) ;

1)

/1 Only if info_hook is used
I {

tenpl at e< cl ass Conpati bl ekey >
info_type & info_at(const Conpatibl eKey & k)

tenpl at e< cl ass Conpati bl ekey >
const info_type & info_at(const Conpatibl eKey & k) const;

77

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

/1 }
/1 }
b
} I/ nanmespace views

} I/ nanmespace bi map
} I/ nanmespace boost

Inthe case of abi map< unordered {multi}set of<Left> ... >
In the set view:
t ypedef signature-conpatible with relation< Left, ... > key_type;
t ypedef signature-conpatible with relation< const Left, ... > value_type;

In the left map view:

typedef Left Kkey_type;
typedef ... mapped_t ype;

t ypedef signature-conpatible with std::pair< const Left, ... > value_type;
In the right map view:

typedef ... Kkey_type;
typedef Left mapped_type;

typedef signature-conpatible with std::pair< ... ,const Left > value_type;

Complexity signature

Here and in the descriptions of operations of unor dered_[mul ti] set _of views, we adopt the scheme outlined in the complexity
signature section. The complexity signature of unor dered_[nul ti] set _of viewis:

e copying:c(n) = n * log(n),
* insertion: averagecasei (n) = 1 (constant), worst casei (n) = n,
* hinted insertion: average case h(n) = 1 (constant), worst caseh(n) = n,
» deletion: average cased(n) = 1 (constant), worst cased(n) = n,
* replacement;
« if the new element key is equivalent to the original, r (n) = 1 (constant),
» otherwise, averagecaser (n) = 1 (constant), worst caser (n) = n,
» modifying: average casem(n) = 1 (constant), worst casem(n) = n.
Instantiation types

unordered_[nul ti]set_of viewsareinstantiated internally to bi map specified by means of the collection type specifiers and
the bi map itself. Instantiations are dependent on the following types:

* Val ue from bi map,

78

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

* Al'l ocator from bi map,
» Hash from the collection type specifier,
* Pr ed from the collection type specifier.

Hash isaUnary Function taking a single argument of typekey _t ype and returning avalue of typest d: : si ze_t intherange][0,
std::numeric_limts<std::size_t>::max()).PredisaBinary Predicate inducing an equivalence relation on elements of
key_type. Itisrequired that the Hash object return the same value for keys equivalent under Pr ed.

Nested types

iterator

const _iterator

| ocal _iterator
const _local _iterator

These types are models of Forward Iterator.

Constructors, copy and assignment

Asexplained in the concepts section, views do not have public constructors or destructors. Assignment, on the other hand, is provided.
Upon construction, max_| oad_f act or () is1.0.

this_type & operator=(const this_type & x);

» Effects: a = b; whereaand b arethe bi map objectsto which *t hi s and x belong, respectively.

* Returns. *this.

Modifiers

std::pair<iterator, bool > insert(const value_type & x);

Effects: Inserts x into the bi map to which the view belongs if
« theview is non-unique OR no other element with equivalent key exists,

* AND insertionisallowed by al other views of the bi map.

Returns: The return value is a pair p. p. second istrue if and only if insertion took place. On successful insertion, p. fi r st
points to the element inserted; otherwise, p. fi r st pointsto an element that caused the insertion to be banned. Note that more
than one element can be causing insertion not to be allowed.

Complexity: O(l(n)).

» Exception safety: Strong.
iterator insert(iterator position, const value_type & X);

* Requires: positionisavaliditerator of the view.

» Effects: positi onisused asahint toimprovethe efficiency of the operation. Insertsx into the bi map to which the view belongs
if

« theview is non-unique OR no other element with equivalent key exists,

* AND insertion is alowed by al other views of the bi map.

79

render

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/UnaryFunction.html
http://www.sgi.com/tech/stl/BinaryPredicate.html
http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

» Returns: On successful insertion, an iterator to the newly inserted element. Otherwise, an iterator to an element that caused the
insertion to be banned. Note that more than one element can be causing insertion not to be allowed.

o Complexity: O(H(n)).

» Exception safety: Strong.

tenpl ate< class Inputlterator>
void insert(lnputlterator first, Inputlterator |ast);

* Requires: I nputlterator isamodel of Input Iterator over elements of typeval ue_type.first andl ast arenot iterators
into any views of the bi map to which thisview belongs. | ast isreachable from first.

o Effects: iterator hint = end(); while(first !=1last) hint = insert(hint, *first++);
» Complexity: O(m*H(n+m)), where m is the number of elementsin[first, |ast).

» Exception safety: Basic.
iterator erase(iterator position);

* Requires: positionisavalid dereferenceablei t er at or of the view.
 Effects: Deletes the element pointed to by posi ti on.

» Returns: Aniterator pointing to the element immediately following the one that was deleted, or end() if no such element
exists.

o Complexity: O(D(n)).

» Exception safety: nothrow.

tenpl at e< cl ass Conpati bl ekey >
size_type erase(const Conpatibl eKey & Xx);

Effects: Deletes the elements with key equivalent to x.
» Returns: Number of elements deleted.
» Complexity: Average case, O(1 + m*D(n)), worst case O(n + m* D(n)), where m is the number of elements deleted.
» Exception safety: Basic.
iterator erase(iterator first, iterator last);
* Requires: [first,|ast) isavalidrange of the view.
o Effects. Deletesthe elementsin[first, | ast).
* Returns: | ast.

o Complexity: O(m*D(n)), where m isthe number of elementsin[first, | ast).

» Exception safety: nothrow.

bool replace(iterator position, const value_type & X);

80

render

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/InputIterator.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

» Requires: positionisavalid dereferenceablei t er at or of the view.

» Effects: Assignsthe value x to the element pointed to by posi t i on into the bi map to which the view belongs if, for the value x
« theview is non-unique OR no other element with equivalent key exists (except possibly * posi ti on),
* AND replacing is alowed by all other views of the bi map.

» Postconditions: Validity of position is preserved in all cases.

* Returns: true if the replacement took place, f al se otherwise.

e Complexity: O(R(n)).

» Exception safety: Strong. If an exception isthrown by some user-provided operation the bi map to which the view belongsremains
initsorigina state.

tenpl at e< cl ass Conpati bl eKey >
bool replace_key(iterator position, const CompatibleKey & x);

* Requires: positionisavalid dereferenceableiterator of the set view. Conpat i bl eKey can be assigned to key_t ype.

» Effects: Assignsthevaluex toe. first, wheree isthe element pointed to by posi ti on into the bi map to which the set view
belongsiif,

« the map view is non-unique OR no other element with equivalent key exists (except possibly * posi ti on),
* AND replacing is allowed by all other views of the bi map.

 Postconditions: Validity of position is preserved in all cases.

* Returns: true if the replacement took place, f al se otherwise.

» Complexity: O(R(n)).

» Exception safety: Strong. If an exception is thrown by some user-provided operation, the bi map to which the set view belongs
remainsinitsorigina state.

tenpl at e< cl ass Conpati bl eData >
bool replace_data(iterator position, const ConpatibleData & x);

* Requires: positionisavalid dereferenceableiterator of the set view. Conpat i bl eKey can be assigned to napped_t ype.

» Effects: Assignsthevaluex to e. second, where e isthe element pointed to by posi ti on into the bi map to which the set view
belongsiif,

« the map view is non-unique OR no other element with equivalent key exists (except possibly * posi ti on),
* AND replacing is alowed by all other views of the bi map.

» Postconditions: Validity of position is preserved in all cases.

» Returns: true if the replacement took place, f al se otherwise.

» Complexity: O(R(n)).

» Exception safety: Strong. If an exception is thrown by some user-provided operation, the bi map to which the set view belongs
remainsin itsorigina state.

81

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

tenpl ate< cl ass KeyModifier >
bool nodify_key(iterator position, KeyhModifier nod);

* Requires: KeyModifier isamodel of Unary Function accepting arguments of type: key_type&; position is a vaid
dereferenceable iterator of the view.

» Effects: Cdlsnod(e. first) whereeisthe element pointed to by position and rearranges * posi t i on into al the views of the
bi map. If the rearrangement fails, the element is erased. Rearrangement is successful if

« the map view is non-unique OR no other element with equivalent key exists,
« AND rearrangement is allowed by all other views of the bi map.
» Postconditions: Validity of posi ti on ispreserved if the operation succeeds.
* Returns: true if the operation succeeded, f al se otherwise.
» Complexity: O(M(n)).

» Exception safety: Basic. If an exception is thrown by some user-provided operation (except possibly mod), then the element
pointed to by position is erased.

* Note: Only provided for map views.

tenpl ate< cl ass DataMwodifier >
bool nodify_data(iterator position, DataMdifier nod);

» Requires: Dat aModi fi er isamodel of Unary Function accepting arguments of type: mapped_t ype&; posi ti on isavalid
dereferenceableiterator of the view.

» Effects: Callsnod(e. second) whereeisthe element pointed to by position and rearranges* posi t i on into all the views of the
bi map. If the rearrangement fails, the element is erased. Rearrangement is successful if

* the oppositte map view is non-unigue OR no other element with equivalent key in that view exists,
« AND rearrangement is allowed by all other views of the bi map.

» Postconditions: Validity of posi ti on ispreserved if the operation succeeds.

* Returns: true if the operation succeeded, f al se otherwise.

» Complexity: O(M(n)).

» Exception safety: Basic. If an exception is thrown by some user-provided operation (except possibly mod), then the element
pointed to by position is erased.

* Note: Only provided for map views.

Lookup

unordered_[nul ti]set_of views provide the full lookup functionality required by unordered associative containers, namely
find, count, and equal _r ange. Additionally, these member functions are templatized to alow for non-standard arguments, so
extending the types of search operations allowed. The kind of arguments permissible when invoking the lookup member functions
is defined by the following concept.

A type Conpat i bl eKey is said to be a compatible key of (Hash, Pred) if (Conpati bl eKey, Hash, Pred) isacompatible
extension of (Hash, Pred). Thisimpliesthat Hash and Pr ed accept arguments of type Conpat i bl eKey, which usualy means
they have several overloads of their corresponding oper at or () member functions.

82

render

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/UnaryFunction.html
http://www.sgi.com/tech/stl/UnaryFunction.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

tenpl at e< cl ass Conpati bl ekey >
iterator find(const Conpatibl eKey & Xx);

tenpl at e< cl ass Conpati bl ekey >
const _iterator find(const Conpatibl eKey & x) const;

 Effects: Returns a pointer to an element whose key is equivalent to x, or end() if such an element does not exist.

» Complexity: Average case O(1) (constant), worst case O(n).

t enpl at e< cl ass Conpati bl eKey >
si ze_type count (const Conpati bl eKey & x) const;

» Effects: Returns the number of elements with key equivalent to x.

» Complexity: Average case O(count(x)), worst case O(n).

tenpl at e< cl ass Conpati bl eKey >
std::pair<iterator,iterator>

equal _range(const Conpati bl eKey & x);
tenpl at e< cl ass Conpati bl eKey >

std::pair<const_iterator, const_iterator>
equal _range(const Conpati bl eKey & x) const;

» Effects: Returns arange containing al elements with keys equivaent to x (and only those).
» Complexity: Average case O(count(x)), worst case O(n).

at(), info_at() and operator|[] - set_of only

t enpl at e< cl ass Conpati bl eKey >
const mapped_type & at(const Conpati bl eKey & k) const;

* Requires: Conpati bl eKey isacompatible key of key_conpar e.

Effects: Returnsthemapped_t ype referencethat isassociated with k, or throwsst d: : out _of _r ange if such key doesnot exist.

Complexity: Average case O(1) (constant), worst case O(n).
* Note: Only provided when unor der ed_set _of isused.

The symmetry of bimap imposes some constraints on oper at or [] and the non constant version of at() that are not found in
st d: : maps. Tey are only provided if the other collection typeis mutable (1 i st _of , vect or _of andunconstrai ned_set _of).

tenpl at e< cl ass Conpati bl eKey >
mapped_type & operator[](const Compati bl eKey & k) ;

* Requires: Conpati bl eKey isacompatible key of key_conpar e.
o Effects. return insert(val ue_type(k, mapped_type()))->second;

» Complexity: If theinsertion is performed O(I(n)), else: Average case O(1) (constant), worst case O(n).

Note: Only provided when unor der ed_set _of isused and the other collection type is mutable.

83

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

tenpl at e< cl ass Conpati bl ekey >
nmapped_type & at(const Conpati bl eKey & k);

» Requires: Conpati bl eKey isacompatible key of key_conpar e.

» Effects: Returnsthe mapped_t ype reference that is associated with k, or throws st d: : out _of _r ange if such key does not
exist.

» Complexity: Average case O(1) (constant), worst case O(n).

* Note: Only provided when unor der ed_set _of isused and the other collection type is mutable.

tenpl at e< cl ass Conpati bl eKey >
info_type & info_at(const Conpatibl eKey & Kk);

tenpl at e< cl ass Conpati bl eKey >
const info_type & info_at(const Conpatibl eKey & k) const;

* Requires: Conpati bl eKey isacompatible key of key_conpar e.

Effects: Returnsthei nf o_t ype reference that is associated with k, or throws st d: : out _of _r ange if such key does not exist.
» Complexity: Average case O(1) (constant), worst case O(n).
* Note: Only provided when unor der ed_set _of andi nf o_hook are used

Hash policy

voi d rehash(size_type n);

Effects: Increasesif necessary the number of internal buckets so that si ze() / bucket _count () does not exceed the maximum
load factor, and bucket _count () >=n.

Postconditions: Validity of iterators and references to the elements contained is preserved.
e Complexity: Average case O(size()), worst case O(size(n)2).

» Exception safety: Strong.

Serialization

Views cannot be serialized on their own, but only as part of the bi map into which they are embedded. In describing the additional
preconditions and guarantees associated to unor dered_[nmul ti] set _of views with respect to serialization of their embedding
containers, we use the concepts defined in the bi map serialization section.

Operation: saving of abi map b to an output archive (XML archive) ar.

» Requires: No additional requirements to those imposed by the container.

Operation: loading of abi map b' from an input archive (XML archive) ar.

» Requires: Additionally to the general requirements, key_eq() must be serialization-compatible with m get <i >() . key_eq(),
wherei isthe position of theunor dered_[mul ti] set _of view in the container.

» Postconditions: On successful loading, the range [begin(), end()) contains restored copies of every element in
[mget<i>().begin(), mget<i>().end()),though not necessarily in the same order.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Operation: saving of ani terat or or const _i terator it toan output archive (XML archive) ar.

Requires: it isavaliditerat or of theview. The associated bi map has been previously saved.

Operation: loading of an iterator or const _i t erat or it'from aninput archive (XML archive) ar.

Postconditions. On successful loading, if i t wasdereferenceablethen*i t 'istherestored copy of *i t , otherwiseit' == end() .

Note: Itisalowedthatit beaconst _iterator andtherestoredit'aniterator, or viceversa

Operation: saving of alocal_iterator or const_local_iterator it to an output archive (XML archive) ar.

Requires: it isavalidlocal iterator of the view. The associated bi map has been previously saved.

Operation: loading of al ocal _i terator orconst | ocal _iterator it'fromaninputarchive (XML archive) ar.

Postconditions: On successful loading, if it was dereferenceable then *it' is the restored copy of *it; if it was
m get <i >() . end(n) for somen,thenit' == nl. get <i >().end(n) (whereb isthe origina bi map, b' its restored copy and
i istheordina of theindex.)

Note: Itisalowedthatit beaconst | ocal _iterator andtherestoredit'al ocal _iterator, orviceversa

list_of Reference

Header "boost/bimap/list_of.hpp" synopsis

namespace boost {
namespace bi maps {

tenpl at e< cl ass KeyType >
struct list_of;
struct list_of_relation;

} I/ namespace bi map
} I/ namespace boost

list_of Views

A list_of set view isastd::list signature compatible interface to the underlying heap of elements contained in abi map.

If you look the bimap by a side, you will use amap view and if you looked it as awhole you will be using a set view.

Elementsin alist_of view are by default sorted according to their order of insertion: this means that new elements inserted through
adifferent view of thebi map are appended to the end of thelist_of view. Additionally, the view allowsfor free reordering of elements
inthesameveinasst d: : | i st does. Validity of iterators and referencesto elementsis preserved in al operations.

There are a number of differenceswithrespecttostd: : i sts:

« list_of viewsare not Assignable (like any other view.)

* Unlikeasinstd: : i st,insertionsinto alist_of view may fail due to clashingswith other views. This alters the semantics of the

operations provided with respect to their analoguesinstd: : | i st .

render

85

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/Assignable.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

e Elementsinalist_of view are not mutable, and can only be changed by means of r epl ace and nodi f y member functions.

Having these restrictionsinto account, list_of viewsaremodels of Reversible Container, Front Insertion Sequence and Back Insertion
Sequence. We only provide descriptions of those types and operations that are either not present in the concepts modeled or do not
exactly conform to the requirements for these types of containers.

nanespace boost {
nanespace bi maps {
nanespace views {

tenpl ate< -inplenentation defined paraneter list- >
class -inplenentation defined view nane-

{
public:

/'l types

typedef -unspecified- value_type;
typedef -unspecified- allocator_type;
typedef -unspecified- reference;

t ypedef -unspecified- const_reference;
typedef -unspecified- iterator;

typedef -unspecified- const_iterator;
typedef -unspecified- size_type;
typedef -unspecified- difference_type;
t ypedef -unspecified- pointer;

typedef -unspecified- const_pointer;
typedef -unspecified- reverse_iterator;
typedef -unspecified- const _reverse_ iterator;

typedef -unspecified- info_type;
/1 construct/copy/ destroy
this_type & operator=(const this_type & x);

tenpl ate< class Inputlterator >
void assign(lnputlterator first, Inputlterator |ast);

voi d assign(size_type n, const value_type & val ue);
al l ocator _type get_allocator() const;

/'l iterators

iterator begin();
const _iterator begi n() const;
iterator end();

const _iterator end() const;
reverse_iterator rbegin();

const_reverse_iterator rbegin() const;

reverse_iterator rend();
const _reverse_iterator rend() const;

/] capacity
bool enmpty() const;

size_type size() const;

86

render

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/ReversibleContainer.html
http://www.sgi.com/tech/stl/FrontInsertionSequence.html
http://www.sgi.com/tech/stl/BackInsertionSequence.html
http://www.sgi.com/tech/stl/BackInsertionSequence.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

size_type nmax_size() const;
voi d resize(size_type n, const value_type & x = value_type());
/| access

const _reference front() const;
const _reference back() const;

/1l nodifiers

std::pair<iterator, bool > push_front (const value_type & X);
voi d pop_front();

std::pair<iterator, bool > push_back(const val ue_type & x);
voi d pop_back() ;

std::pair<iterator,bool> insert(iterator position, const value_type & X);
void insert(iterator position, size_type n, const value_type & X);

tenpl ate< class Inputlterator >
void insert(iterator position, Inputlterator first, Inputlterator |ast);

iterator erase(iterator position);
iterator erase(iterator first, iterator last);

bool replace(iterator position, const value_type & X);

/1 Only in map views
I {

t ypedef -unspecified- key_type;
t ypedef -unspecified- nmapped_type;
t ypedef -unspecified- nmapped_type; // Equal to napped_type

tenpl at e< cl ass Conpati bl ekey >
bool replace_key(iterator position, const ConpatibleKey & Xx);

tenpl ate< cl ass Conpati bl eData >
bool replace_data(iterator position, const ConpatibleData & x);

tenpl ate< cl ass KeyModifier >
bool nodify_key(iterator position, KeyhMdifier nod);

tenpl ate< cl ass DataMwodifier >
bool nodify_data(iterator position, DataMdifier nod);

1)

void clear();
/1 list operations
void splice(iterator position, this_type & x);
void splice(iterator position, this_type & x, iterator i);
voi d splice(
iterator position, this_type & x, iterator first, iterator |last);

voi d renove(const val ue_type & val ue);

tenpl ate< cl ass Predicate >

87

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

}

voi d renove_if(Predicate pred);

voi d uni que();

tenpl ate< cl ass Bi naryPredicate >

voi d uni que(Bi naryPredi cate binary_pred);

void nerge(this_type & x);

tenpl ate< cl ass Conpare >
void nerge(this_type & x, Conpare conp);

void sort();

tenpl ate< cl ass Conpare >
voi d sort (Conpare conp);

voi d reverse();

/'l rearrange operations

void relocate(iterator position,
void relocate(iterator position,

/'l view conparison

bool
bool
bool
bool
bool
bool

1y
Yo
Yo

oper at or ==(const
operat or< (const
oper at or! =(const
oper at or> (const
oper at or >=(const
oper at or <=(const

nanespace Vi ews
nanespace bi map
nanespace boost

this_type
this_type
this_type
this_type
this_type
this_type

R0 R0 Ro Ro Ro Qo

Inthe case of abi map< |ist_of <Left>,

In the set view:

typedef signature-conpatible with
typedef signature-conpatible with

In the left map view:

typedef Left Kkey_type;

t ypedef

mapped_t ype;

t ypedef signature-conpatible with

In the right map view:

t ypedef

key_type;

typedef Left mapped_type;

t ypedef signature-conpatible with

vl,
vl,
vl,
vl,
vl,
vl,

const
const
const
const
const
const

iterator i);
iterator first,

this_type
this_type
this_type
this_type
this_type
this_type

rel ation< Left,
rel ation< Left,

std::pair< Left,

std::pair< ...

v2
v2
v2
v2
v2
v2

R0 R0 Ro Ro Ro Qo

iterator |ast);

— N N N N N

> key_type;
> val ue_type;

> val ue_type;

Left > val ue_type;

88

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Complexity signature

Here and in the descriptions of operations of | i st _of views, we adopt the scheme outlined in the complexity signature section.
The complexity signature of al i st _of viewis:

e copying:c(n) = n * log(n),
e insertion:i (n) = 1 (constant),

 hinted insertion: h(n) = 1 (constant),

deletion: d(n) = 1 (constant),

e replacement: r (n) = 1 (constant),
* modifying: m(n) = 1 (constant).
Instantiation types

| i st_of viewsareinstantiated internally to bi map and specified by means of the collection type specifiers and the bimap itself.
I nstantiations are dependent on the following types:

e Val ue fromlist_of,
* Al'l ocator from bi map,
Constructors, copy and assignment

As explained in the view concepts section, views do not have public constructors or destructors. Assignment, on the other hand, is
provided.

this_type & operator=(const this_type & x);

» Effects. a = b; whereaand b arethe bi map objectsto which *t hi s and x belong, respectively.

e Returns. *this.

tenmpl ate< class Inputlterator >
void assign(lnputlterator first, Inputlterator |ast);

* Requires: I nput | t er at or isamodel of Input Iterator over elementsof typeval ue_t ype or atypeconvertibletoval ue_t ype.
first and last are not iterators into any views of the bi map to which thisview belongs. | ast isreachablefromfirst.

» Effects: clear(); insert(end(),first,last);

voi d assign(size_type n, const value_type & val ue);
» Effects: clear(); for(size type i =0; i < n; ++n) push_back(v);
Capacity operations

voi d resize(size_type n,const val ue_type& x=val ue_type());

o Effects. if(n > size()) insert(end(), n - size(), x); else if(n<size()) { iterator it = be-
gin(); std::advance(it, n); erase(it, end()); }

* Note: If an expansionisrequested, the size of the view isnot guaranteed to be n after this operation (other views may ban insertions.)

89

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/InputIterator.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Modifiers

std::pair<iterator, bool > push_front(const val ue_type& x);

» Effects: Insertsx at the beginning of the sequence if no other views of the bi nap bans the insertion.

* Returns: Thereturn valueisapair p. p. second ist rue if and only if insertion took place. On successful insertion, p. fi r st

points to the element inserted; otherwise, p. fi rst pointsto an element that caused the insertion to be banned. Note that more
than one element can be causing insertion not to be allowed.

» Complexity: O(I(n)).

» Exception safety: Strong.

std::pair<iterator, bool > push_back(const val ue_type & x);

» Effects: Insertsx at the end of the sequence if no other views of the bi nap bans the insertion.

» Returns: The return value is a pair p. p. second istrue if and only if insertion took place. On successful insertion, p. fi r st

points to the element inserted; otherwise, p. fi r st pointsto an element that caused the insertion to be banned. Note that more
than one element can be causing insertion not to be allowed.

o Complexity: O(I(n)).

» Exception safety: Strong.

std::pair<iterator,bool > insert(iterator position, const value_type & X);

* Requires: positionisavaiditerator of theview.
» Effects: Inserts x before position if insertion is allowed by all other views of the bi nap.

e Returns: The return valueis a pair p. p. second istrue if and only if insertion took place. On successful insertion, p. fi rst

points to the element inserted; otherwise, p. fi rst pointsto an element that caused the insertion to be banned. Note that more
than one element can be causing insertion not to be allowed.

o Complexity: O(I(n)).

» Exception safety: Strong.

void insert(iterator position, size_type n, const value_type & X);

* Requires: positionisavaliditerator of theview.

» Effects: for(size_type i = 0; i < n; ++i) insert(position, x);

tenpl ate< class Inputlterator>
void insert(iterator position,lnputlterator first,Inputlterator |ast);

* Requires: positionisavaliditerator of theview. I nputlterator isamodd of Input lterator over elements of type

val ue_type.first andl ast arenot iteratorsinto any view of the bi map to which thisview belongs. | ast isreachable from
first.

o Effects: while(first !'=last) insert(position, *first++);

o Complexity: O(m*I(n+m)), where m is the number of elementsin[first, | ast).

90

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/InputIterator.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Exception safety: Basic.
iterator erase(iterator position);

Requires: positionisavalid dereferenceablei t er at or of the view.

Effects: Deletes the element pointed to by posi ti on.

Returns: An iterator pointing to the element immediately following the one that was deleted, or end() if no such element exists.
Complexity: O(D(n)).

Exception safety: nothrow.
iterator erase(iterator first, iterator |ast);

Requires: [first,|ast) isavalidrange of theview.

Effects. Deletesthe elementsin[first, | ast).

Returns: | ast.

Complexity: O(m*D(n)), where m isthe number of elementsin[first, | ast).

Exception safety: nothrow.
bool replace(iterator position, const value_type& x);

Requires. positi onisavalid dereferenceable iterator of the view.

Effects: Assignsthe valuex to the element pointed to by posi t i on intothebi map to which the view belongsif replacing isallowed
by al other views of the bi map.

Postconditions: Validity of posi ti on ispreserved in all cases.
Returns: true if the replacement took place, f al se otherwise.
Complexity: O(R(n)).

Exception safety: Strong. If an exception isthrown by some user-provided operation the bi map to which the view belongsremains
initsorigina state.

tenpl at e< cl ass Conpati bl ekey >
bool replace_key(iterator position, const ConpatibleKey & x);

Requires: positionisavalid dereferenceableiterator of the set view. Conpat i bl eKey can be assigned to key _t ype.

Effects: Assignsthevauex toe. fi rst, wheree isthe element pointed to by posi ti on into the bi map to which the set view
belongsif replacing is allowed by al other views of the bi map.

Postconditions: Validity of position is preserved in all cases.
Returns: true if the replacement took place, f al se otherwise.
Complexity: O(R(n)).

Exception safety: Strong. If an exception is thrown by some user-provided operation, the bi map to which the set view belongs
remainsinitsorigina state.

91

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

tenpl ate< cl ass Conpati bl eData >
bool replace_data(iterator position, const ConpatibleData & x);

Requires: positi onisavalid dereferenceableiterator of the set view. Conpat i bl eKey can be assigned to napped_t ype.

Effects: Assignsthe value x to e. second, where e isthe element pointed to by posi ti on into the bi map to which the set view
belongsif replacing is allowed by al other views of the bi map.

Postconditions: Validity of position is preserved in all cases.
Returns: true if the replacement took place, f al se otherwise.
Complexity: O(R(n)).

Exception safety: Strong. If an exception is thrown by some user-provided operation, the bi map to which the set view belongs
remainsin itsorigina state.

tenpl ate< cl ass KeyModifier >
bool nodify_key(iterator position, Keyhdifier nod);

Requires: KeyModi fier is a model of Unary Function accepting arguments of type: key_type&; position is a vaid
dereferenceable iterator of the view.

Effects: Calsnod(e. first) whereeisthe element pointed to by position and rearranges * posi t i on into al the views of the
bi map. If the rearrangement fails, the element is erased. It is successful if the rearrangement is alowed by all other views of the
bi map.

Postconditions: Validity of posi ti on ispreserved if the operation succeeds.
Returns: true if the operation succeeded, f al se otherwise.
Complexity: O(M(n)).

Exception safety: Basic. If an exception is thrown by some user-provided operation (except possibly mod), then the element
pointed to by position is erased.

Note: Only provided for map views.

tenpl at e< cl ass DataMwbdifier >
bool nodify_data(iterator position, DataModifier nod);

Requires: Dat aModi fi er isamodel of Unary Function accepting arguments of type: mapped_t ype&; posi ti on isavalid
dereferenceable iterator of the view.

Effects. Callsnod(e. second) whereeisthe element pointed to by position and rearranges * posi t i on into all the views of the
bi map. If the rearrangement fails, the element is erased. It is successful if the rearrangement is allowed by all other views of the
bi map.

Postconditions: Validity of posi ti on ispreserved if the operation succeeds.
Returns: true if the operation succeeded, f al se otherwise.
Complexity: O(M(n)).

Exception safety: Basic. If an exception is thrown by some user-provided operation (except possibly mod), then the element
pointed to by position is erased.

Note: Only provided for map views.

92

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/UnaryFunction.html
http://www.sgi.com/tech/stl/UnaryFunction.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

List operations

I'i st_of viewsprovidethefull set of list operationsfoundinst d: : | i st ; the semantics of these member functions, however, differ
fromthat of st d: : | i st in some cases as insertions might not succeed due to banning by other views. Similarly, the complexity of
the operations may depend on the other views belonging to the same bi map.

void splice(iterator position, this_type & x);

* Requires: positionisavaliditerator of the view. &! =t hi s.

» Effects: Inserts the contents of x before position, in the same order as they were in x. Those elements successfully inserted are
erased from x.

o Complexity: O(x. si ze() *I(n+x. si ze()) +x. si ze() *D(x. si ze())).

» Exception safety: Basic.
void splice(iterator position, this_type & x,iterator i);

» Requires: positionisavaliditerator of theview. i isavalid dereferenceableiterator x.

» Effects: Insertsthe element pointed to by i before position: if insertion is successful, the element is erased from x. In the special
case & ==t hi s, no copy or deletion is performed, and the operation is aways successful. If posi ti on==i , no operation is per-
formed.

» Postconditions: If &==t hi s, no iterator or reference isinvalidated.

o Complexity: If &==t hi s, constant; otherwise O(I(n) + D(n)).

» Exception safety: If &==t hi s, nothrow; otherwise, strong.
void splice(iterator position, this_type & x, iterator first, iterator last);

» Requires: positionisavaiditerator of theview.first andl ast arevaliditeratorsof x. lastisreachablefromfi r st . position
isnotintherange[first,|ast).

» Effects: Foreachelementintherange[first, | ast),insertionistried before position; if the operation is successful, the element
iserased from x. In the special case & ==t hi s, no copy or deletion is performed, and insertions are always successful.

» Postconditions: If & ==t hi s, no iterator or reference is invalidated.
» Complexity: If &==t hi s, constant; otherwise O(m*I(n+m) + m* D(x.siz&())) wheremisthe number of dementsin[first, | ast).

» Exception safety: If & ==t hi s, nothrow; otherwise, basic.
voi d renove(const value_type & value);

 Effects: Erases al elements of the view which compare equal to val ue.
» Complexity: O(n+ m*D(n)), where m is the number of elements erased.

» Exception safety: Basic.

tenpl ate< cl ass Predicate >
voi d renove_if(Predicate pred);

» Effects: Erasesal elements x of the view for which pr ed(x) holds.

93

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

» Complexity: O(n + m*D(n)), where m is the number of elements erased.

» Exception safety: Basic.
voi d uni que();

» Effects: Eliminates all but the first element from every consecutive group of equal elements referred to by the iterator i in the
range[first+1,1ast) forwhich*i==*(i-1).

» Complexity: O(n + m*D(n)), where m is the number of elements erased.

» Exception safety: Basic.

tenpl at e< cl ass Bi naryPredicate >
voi d uni que(Bi naryPredi cate binary_pred);

» Effects: Eliminates all but the first element from every consecutive group of elements referred to by the iterator i in the range
[first+1,last) for which bi nary_pred(*i, *(i-1)) holds.

» Complexity: O(n + m*D(n)), where m is the number of elements erased.

» Exception safety: Basic.
void nerge(this_type & x);

* Requires: std::|ess<val ue_type> isaStrict Weak Ordering over val ue_t ype. Both the view and x are sorted according
tostd: : | ess<val ue_t ype>.

» Effects: Attempts to insert every element of x into the corresponding position of the view (according to the order). Elements
successfully inserted are erased from x. The resulting sequenceis stable, i.e. equivalent elements of either container preserve their
relative position. In the special case & ==t hi s, no operation is performed.

* Postconditions: Elementsin the view and remaining elementsin x are sorted. Validity of iteratorsto the view and of non-erased
elements of x referencesis preserved.

» Complexity: If &==t hi s, constant; otherwise O(n + x. si ze() *I(n+x. si ze()) + x. si ze() *D(x. si ze())).

» Exception safety: If & ==t hi s, nothrow; otherwise, basic.

tenpl at e< cl ass Conpare >
void nmerge(this_type & x, Conpare conp);

* Requires: Compareisa Strict Weak Ordering over val ue_t ype. Both the view and x are sorted according to conp.

» Effects: Attemptstoinsert every element of x into the corresponding position of the view (according to conp). Elements successfully
inserted are erased from x. The resulting sequence is stable, i.e. equivalent elements of either container preserve their relative
position. In the special case & ==t hi s, no operation is performed.

» Postconditions: Elementsin the view and remaining elementsin x are sorted according to conp. Validity of iterators to the view
and of non-erased elements of x referencesis preserved.

» Complexity: If &==t hi s, constant; otherwise O(n + x. si ze() *I(n+x. si ze()) +x. si ze() *D(x. si ze())).

» Exception safety: If & ==t hi s, nothrow; otherwise, basic.

void sort();

94

render

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/StrictWeakOrdering.html
http://www.sgi.com/tech/stl/StrictWeakOrdering.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

e Requires: std:: | ess<val ue_type>isaStrict Weak Ordering over value type.

» Effects: Sortstheview accordingtost d: : | ess<val ue_t ype>. The sorting is stable, i.e. equivalent elements preserve their re-
|ative position.

» Postconditions: Validity of iterators and references is preserved.
e Complexity: O(n*log(n)).

» Exception safety: nothrow if st d: : | ess<val ue_t ype> does not throw; otherwise, basic.

tenpl at e< typenane Conpare >
voi d sort (Conpare conp);

* Requires: Compareisa Strict Weak Ordering over value_type.

 Effects: Sortsthe view according to comp. The sorting is stable, i.e. equivalent elements preserve their relative position.
» Postconditions: Validity of iterators and referencesis preserved.

» Complexity: O(n*log(n)).

» Exception safety: nothrow if comp does not throw; otherwise, basic.

void reverse();

Effects: Reversesthe order of the elementsin the view.

Postconditions: Validity of iterators and references is preserved.

Complexity: O(n).
» Exception safety: nothrow.
Rearrange operations

These operations, without counterpart in std: : 1i st (although splice provides partially overlapping functionality), perform indi-
vidual and global repositioning of elements inside the index.

void relocate(iterator position, iterator i);

* Requires: positionisavaliditerator of theview. i isavalid dereferenceable iterator of the view.
 Effects: Insertsthe element pointed to by i before posi ti on. If posi ti on==i , no operation is performed.
» Postconditions: No iterator or reference isinvalidated.

» Complexity: Constant.

» Exception safety: nothrow.
void relocate(iterator position, iterator first, iterator |ast);

* Requires: position isavalid iterator of the view. first and | ast arevalid iterators of the view. | ast is reachable from
first.positionisnotintherange[first,|ast).

» Effects: Therange of elements[first, | ast) isrepositioned just before posi ti on.

95

render

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/StrictWeakOrdering.html
http://www.sgi.com/tech/stl/StrictWeakOrdering.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

+ Postconditions: No iterator or reference isinvalidated.
» Complexity: Constant.

» Exception safety: nothrow.

Serialization

Views cannot be serialized on their own, but only as part of the bi map into which they are embedded. In describing the additional
preconditions and guarantees associated to | i st _of views with respect to serialization of their embedding containers, we use the
concepts defined in the bi map serialization section.

Operation: saving of abi nap b to an output archive (XML archive) ar.

» Requires: No additional requirements to those imposed by the container.

Operation: loading of abi map b' from an input archive (XML archive) ar.

» Requires: No additional requirements to those imposed by the container. Postconditions: On successful loading, each of the
dements of [begin(), end()) is a restored copy of the corresponding element in [m get<i>(). begin(),
m get <i >().end()),wherei istheposition of thel i st _of view in the container.

Operation: saving of ani terat or or const _i t er at or it to an output archive (XML archive) ar.

* Requires: it isavaliditerator of the view. The associated bi map has been previously saved.

Operation: loading of ani t er at or or const _i terator it'fromaninput archive (XML archive) ar.

Postconditions: On successful loading, if it was dereferenceablethen *i t ' istherestored copy of *i t , otherwisei t' == end() .

» Note: Itisalowedthatit beaconst iterator andtherestoredit'aniterator, or viceversa.

vector_of Reference
Header "boost/bimap/vector_of.hpp" synopsis

namespace boost {
namespace bi maps {

tenpl at e< cl ass KeyType >
struct vector_of;

struct vector_of relation;

} /'l nanespace bi nmap
} I/ nanmespace boost

vector_of views

vector_of views are free-order sequences with constant time positional access and random access iterators. Elementsin avector_of
view are by default sorted according to their order of insertion: this means that new elements inserted through a different view of
thebi map are appended to the end of the vector_of view; additionally, facilities are provided for further rearrangement of the elements.

96

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

The publicinterface of vector_of viewsincludesthat of list_of views, with differencesin the complexity of the operations, plus extra
operations for positional access (oper ator[] andat ()) and for capacity handling. Validity of iterators and references to elements
ispreserved in al operations, regardless of the capacity status.

Asisthe case with list_of views, vector_of views have the following limitations with respect to STL sequence containers:
* vector_of views are not Assignable (like any other view.)

* Insertionsinto a vector_of view may fail due to clashings with other views. This alters the semantics of the operations provided
with respect to their analoguesin STL sequence containers.

» Elementsin avector_of view are not mutable, and can only be changed by means of replace and modify member functions.

Having these restrictionsinto account, vector of views are models of Random A ccess Container and Back Insertion Sequence. Although
these views do not model Front Insertion Sequence, because front insertion and deletion take linear time, front operations are non-
etheless provided to match the interface of list_of views. We only describe those types and operations that are either not present in
the concepts modeled or do not exactly conform to the requirements for these types of containers.

nanespace boost {
namespace bi maps {
nanespace views {

tenpl ate< -inplenentation defined paraneter list- >
class -inplenentation defined view name-

{
publi c:

/'l types

typedef -unspecified- val ue_type;
typedef -unspecified- allocator_type;
typedef -unspecified- reference;
typedef -unspecified- const_reference;
t ypedef -unspecified- iterator;

typedef -unspecified- const_iterator;
typedef -unspecified- size_type;
typedef -unspecified- difference_type;
typedef -unspecified- pointer;

t ypedef -unspecified- const_pointer;
typedef -unspecified- reverse_iterator;
t ypedef -unspecified- const_reverse_iterator;

typedef -unspecified- info_type;
/'l construct / copy / destroy
this_type & operator=(this_type & x);

tenpl ate< class Inputlterator >
void assign(lnputlterator first, Inputlterator |ast);

voi d assign(size_type n, const value_type & val ue);
al l ocator_type get_allocator() const;

/] iterators

iterator begin();
const _iterator begi n() const;
iterator end();

const _iterator end() const;

97

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/RandomAccessContainer.html
http://www.sgi.com/tech/stl/BackInsertionSequence.html
http://www.sgi.com/tech/stl/FrontInsertionSequence.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

reverse_iterator rend();
const_reverse_iterator rend() const;

/1 capacity

bool enmpty() const;

size_type size() const;

size_type nmax_size() const;

size_type capacity() const;

voi d reserve(size_type m;

voi d resize(size_type n, const value_type & x = value_type());
/| access

const _reference operator[](size_type n) const;
const _reference at(size_type n) const;

const _reference front() const;

const _reference back() const;

/1 modifiers

std::pair<iterator, bool > push_front (const value_type & X);
voi d pop_front();

std::pair<iterator, bool > push_back(const val ue_type & x);
voi d pop_back();

std::pair<iterator,bool> insert(iterator position, const value_type & X);
void insert(iterator position, size_type m const value_type & X);

tenpl ate< class Inputlterator>
void insert(iterator position, Inputlterator first, Inputlterator |ast);

iterator erase(iterator position);
iterator erase(iterator first, iterator last);

bool replace(iterator position, const value_type & X);

/1 Only in map views
I {
t ypedef -unspecified- key_type;
t ypedef -unspecified- nmapped_type;
typedef -unspecified- data_type; // Equal to nmapped_type

tenpl at e< cl ass Conpati bl ekey >
bool replace_key(iterator position, const ConpatibleKey & Xx);

tenpl ate< cl ass Conpati bl eData >
bool replace_data(iterator position, const ConpatibleData & x);

98

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

tenpl ate< cl ass KeyModi fier

bool nodify_key(iterator position,

>

tenpl ate< cl ass DataMwodifier >

bool nodify_data(iterator position,

1)

void clear();

I

st operations

void splice(iterator position,
void splice(iterator position,
voi d splice(

this_type & x);

this_type & x,

terator position, this_type & x,

voi d renove(const val ue_type & val ue);

tenpl ate< cl ass Predicate >

voi d renove_if(Predicate pred);

voi d uni que();

tenpl ate< cl ass Bi naryPredicate >

voi d uni que(Bi naryPredi cate binary_pred);

void nerge(this_type & x);

t enpl at e< typenane Conpare >

void nerge(this_type & x, Conpare conp);

void sort();

tenpl at e< typenane Conpare >
voi d sort (Conpare conp);

voi d reverse();

/'l rearrange operations

void relocate(iterator position,
void relocate(iterator position,

};

/'l view conparison

iterator i);
iterator first,

KeyModi fi er nod);

iterator first,

Dat aModi fi er nod) ;

iterator i);

iterator |ast);

iterator |ast);

bool operator==(const this_type & vl, const this_type & v2);
bool operator< (const this_type & vl, const this_type & v2);
bool operator!=(const this_type & vl, const this_type & v2);
bool operator> (const this_type & vl, const this_type & v2);
bool operator>=(const this_type & vl, const this_type & v2);
bool operator<=(const this_type & vl, const this_type & v2);
} I/ nanmespace views
} I/ nanmespace bi map
} I/ nanmespace boost
In the case of abi map< vector _of <Left >, >
In the set view:

99

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

typedef signature-conpatible with relation< Left, ... > key_type;
t ypedef signature-conpatible with relation< Left, ... > value_type;

In the left map view:

typedef Left Kkey_type;
typedef ... mapped_t ype;

t ypedef signature-conpatible with std::pair< Left, ... > value_type;

In the right map view:

typedef ... key_type;
typedef Left mapped_type;

typedef signature-conmpatible with std::pair< ... , Left > value_type;

Complexity signature

Here and in the descriptions of operations of vect or _of views, we adopt the scheme outlined in the complexity signature section.
The complexity signature of vect or _of view is:

e copying:c(n) = n * log(n),

 insertion:i (n) = 1 (amortized constant),

* hinted insertion: h(n) = 1 (amortized constant),

» deletion: d(n) = m where misthe distance from the deleted element to the end of the sequence,
 replacement: r (n) = 1 (constant),

* modifying: n(n) = 1 (constant).

The following expressions are also used as a convenience for writing down some of the complexity formulas:

shl (a, b) = a+b if aisnonzero, O otherwise.rel (a, b, c) =if a<b, c-a, elsea- b,

(shl andrel stand for shift left and relocate, respectively.)

Instantiation types

vect or _of viewsareinstantiated internally to bi map and specified by means of the collection type specifiers and the bimap itself.
I nstantiations are dependent on the following types:

* Val ue fromvect or _of,
* Al'l ocator frombi map,
Constructors, copy and assignment

Asexplained in the views concepts section, views do not have public constructors or destructors. Assignment, on the other hand, is
provided.

this_type & operator=(const this_type & x);

» Effects: a=b; whereaand b are the bi map objectsto which *t hi s and x belong, respectively.

100

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

e Returns. *this.

tenpl ate< class Inputlterator >
void assign(lnputlterator first, Inputlterator last);

* Requires: I nput | t er at or isamodel of Input Iterator over elementsof typeval ue_t ype or atypeconvertibletoval ue_t ype.
first andl ast are notiteratorsinto any view of the bi map to which thisview belongs. | ast isreachablefromfirst.

+ Effects: clear(); insert(end(),first,last);

voi d assign(size_type n, const value_type & val ue);
o Effects. clear(); for(size type i = 0; i < n; ++n) push_back(v);
Capacity operations

size_type capacity() const;

» Returns: Thetotal number of elementsc such that, whensi ze() < c, back insertions happen in constant time (the general case
as described by i(n) is amortized constant time.)

» Note: Validity of iterators and references to elementsis preserved in all insertions, regardless of the capacity status.
voi d reserve(size_type m;

» Effects: If the previous value of capaci t y() was greater than or equal to m nothing is done; otherwise, the internal capacity is
changed so that capaci t y() >=m

» Complexity: If the capacity is not changed, constant; otherwise O(n).

» Exception safety: If the capacity is not changed, nothrow; otherwise, strong.
voi d resize(size_type n, const value_type & x = value_type());

o Effects: if(n > size()) insert(end(), n-size(), x); else if(n<size()) erase(begin()+n,end());

» Note: If an expansionisrequested, the size of theview isnot guaranteed to be n after this operation (other views may ban insertions.)

Modifiers
std::pair<iterator, bool > push_front (const value_type & X);

» Effects: Inserts x at the beginning of the sequence if no other view of the bi map bans the insertion.

* Returns: Thereturn valueisapair p. p. second istrue if and only if insertion took place. On successful insertion, p. fi r st
points to the element inserted; otherwise, p. fi r st pointsto an element that caused the insertion to be banned. Note that more
than one element can be causing insertion not to be allowed.

» Complexity: O(n+l(n)).

» Exception safety: Strong.
std:: pair<iterator, bool > push_back(const val ue_type & x);

» Effects: Insertsx at the end of the sequence if no other view of the bi map bans the insertion.

101

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/InputIterator.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

e Returns: The return value is a pair p. p. second istrue if and only if insertion took place. On successful insertion, p. fi rst
points to the element inserted; otherwise, p. fi rst pointsto an element that caused the insertion to be banned. Note that more
than one element can be causing insertion not to be allowed.

o Complexity: O(I(n)).

* Exception safety: Strong.
std::pair<iterator,bool> insert(iterator position, const value_type & X);

* Requires: positionisavaliditerator of the view.
» Effects: Insertsx before position if insertion is alowed by all other views of the bi map.

» Returns: The return valueis a pair p. p. second istrue if and only if insertion took place. On successful insertion, p. fi r st
points to the element inserted; otherwise, p. fi rst pointsto an element that caused the insertion to be banned. Note that more
than one element can be causing insertion not to be allowed.

e Complexity: O(shl(end()-position,1) + I(n)).

» Exception safety: Strong.
void insert(iterator position, size type m const value_type & X);

* Requires: positionisavaliditerator of the view.
o Effects. for(size type i =0; i <m ++i) insert(position, x);

» Complexity: O(shl(end()-position,m) + m*I(n+m)).

tenpl ate< class Inputlterator >
void insert(iterator position, Inputlterator first, Inputlterator |ast);

* Requires. posi ti onisavaiditerator of theview. | nput | t er at or isamodd of Input Iterator over elementsof typeval ue_t ype
or atype convertibletoval ue_type.first andl ast are not iteratorsinto any view of the bi map to which this view belongs.
| ast isreachablefromfirst.

o Effects. while(first!=last)insert(position,*first++);
» Complexity: O(shl(end()-position,m) + m*I(n+m)), where m isthe number of elementsin[first, | ast).
» Exception safety: Basic.
iterator erase(iterator position);
* Requires: positionisavalid dereferenceableiterator of the view.
» Effects: Deletes the element pointed to by posi ti on.
» Returns: Aniterator pointing to the element immediately following the one that was deleted, or end() if no such element exists.
o Complexity: O(D(n)).

» Exception safety: nothrow.

iterator erase(iterator first, iterator |last);

102

render

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/InputIterator.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Requires: [first,|ast) isavalidrange of theview.

Effects. Deletesthe elementsin[first, | ast).

Returns: last.

Complexity: O(m*D(n)), where m isthe number of elementsin[first, | ast).

Exception safety: nothrow.
bool replace(iterator position, const value_type & X);

Requires: positi onisavalid dereferenceableiterator of the view.

Effects: Assignsthe value x to the element pointed to by positioninto the bi map to which the view belongsif replacing isallowed
by al other views of the bi map.

Postconditions: Validity of position is preserved in all cases.
Returns: true if the replacement took place, f al se otherwise.
Complexity: O(R(n)).

Exception safety: Strong. If an exception isthrown by some user-provided operation the bi map to which the view belongsremains
initsorigina state.

t enpl at e< cl ass Conpati bl eKey >
bool replace_key(iterator position, const Conpatibl eKey & x);

Requires: positi onisavalid dereferenceableiterator of the set view. Conpat i bl eKey can be assigned to key_t ype.

Effects: Assignsthevauex toe. fi rst, wheree isthe element pointed to by posi ti on into the bi map to which the set view
belongsif replacing is allowed by al other views of the bi map.

Postconditions: Validity of position is preserved in all cases.
Returns: true if the replacement took place, f al se otherwise.
Complexity: O(R(n)).

Exception safety: Strong. If an exception is thrown by some user-provided operation, the bi map to which the set view belongs
remainsin itsorigina state.

tenpl ate< cl ass Conpati bl eData >
bool replace data(iterator position, const ConpatibleData & x);

Requires. posi ti on isavalid dereferenceable iterator of the set view. Conpat i bl eKey can be assigned to mapped_t ype.

Effects: Assignsthe value x to e. second, where e isthe element pointed to by posi ti on into the bi map to which the set view
belongsif replacing is allowed by al other views of the bi map.

Postconditions: Validity of position is preserved in all cases.
Returns: true if the replacement took place, f al se otherwise.
Complexity: O(R(n)).

Exception safety: Strong. If an exception is thrown by some user-provided operation, the bi map to which the set view belongs
remainsin itsoriginal state.

103

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

tenpl ate< cl ass KeyModifier >
bool nodify_key(iterator position, KeyhModifier nod);

Requires: KeyModi fier is a model of Unary Function accepting arguments of type: key type&; position is a vaid
dereferenceable iterator of the view.

Effects: Calsnod(e. first) whereeisthe element pointed to by position and rearranges * posi t i on into al the views of the
bi map. If the rearrangement fails, the element is erased. It is successful if the rearrangement is alowed by all other views of the
bi map.

Postconditions: Validity of posi ti on ispreserved if the operation succeeds.
Returns: true if the operation succeeded, f al se otherwise.
Complexity: O(M(n)).

Exception safety: Basic. If an exception is thrown by some user-provided operation (except possibly mod), then the element
pointed to by position is erased.

Note: Only provided for map views.

tenpl at e< cl ass DataMWbdi fier >
bool nodify_data(iterator position, DataModifier nod);

Requires: Dat aModi fi er isamodel of Unary Function accepting arguments of type: mapped_t ype&; posi ti on isavalid
dereferenceable iterator of the view.

Effects: Callsnod(e. second) whereeisthe element pointed to by position and rearranges* posi t i on into all the views of the
bi map. If the rearrangement fails, the element is erased. It is successful if the rearrangement is allowed by all other views of the
bi map.

Postconditions: Validity of posi ti on ispreserved if the operation succeeds.
Returns: true if the operation succeeded, f al se otherwise.
Complexity: O(M(n)).

Exception safety: Basic. If an exception is thrown by some user-provided operation (except possibly mod), then the element
pointed to by position is erased.

Note: Only provided for map views.

List operations

vect or _of viewsreplicatetheinterfaceof | i st _of views, whichinturnincludesthelist operationsprovided by st d: : I i st. The
syntax and behavior of these operations exactly matches those of | i st _of views, but the associated complexity bounds differ in
general.

void splice(iterator position, this_type & X);

Requires: positionisavaliditerator of theview. &! =t hi s.

Effects: Inserts the contents of x before position, in the same order as they were in x. Those elements successfully inserted are
erased from x.

Complexity: O(shl(end()-position,x.size()) + x.size()* | (n+x.siz&()) + x.size()* D(x.siz&())).

Exception safety: Basic.

104

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/UnaryFunction.html
http://www.sgi.com/tech/stl/UnaryFunction.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

void splice(iterator position, this_type & x,iterator i);

» Requires: positionisavaliditerator of theview. i isavalid dereferenceableiterator x.

» Effects: Insertstheelement pointedtoby i beforeposi ti on:if insertionissuccessful, the element iserased from x. Inthe specia
case & ==t hi s, no copy or deletion is performed, and the operation is aways successful. If posi ti on==i , no operation is per-
formed.

» Postconditions: If & ==t hi s, no iterator or reference isinvalidated.
+ Complexity: If &==t hi s, O(rel(position,i,i+1)); otherwise O(shl(end()-position,1) + I(n) + D(n)).

» Exception safety: If &==t hi s, hothrow; otherwise, strong.
void splice(iterator position, this_type & x, iterator first, iterator last);

* Requires: position isavalid iterator of the view. fi rst and | ast are valid iterators of x. | ast isreachable fromfirst.
positionisnotintherange[first,last).

» Effects: For each element intherange [first, | ast), insertion is tried before posi t i on; if the operation is successful, the
element is erased from x. In the special case & ==t hi s, no copy or deletion is performed, and insertions are always successful.

» Postconditions; If & ==t hi s, no iterator or reference isinvalidated.

« Complexity: If &==t hi s, O(rel (position,first,last)); otherwise O(shl(end()-position,m) + m*I(n+m) + m*D(x.size&())) where m
isthe number of elementsin[first, | ast).

» Exception safety: If & ==t hi s, nothrow; otherwise, basic.
voi d renove(const val ue_type & val ue);

» Effects: Erasesal elements of the view which compare equal to val ue.
» Complexity: O(n + m*D(n)), where m is the number of elements erased.

» Exception safety: Basic.

tenpl ate< cl ass Predicate >
void renove_if(Predicate pred);

» Effects: Erasesal elementsx of the view for which pr ed(x) holds.
» Complexity: O(n + m*D(n)), where m is the number of elements erased.

» Exception safety: Basic.
voi d unique();

» Effects: Eliminates all but the first element from every consecutive group of equal elements referred to by the iterator i in the
range[first+1,1ast) forwhich*i==*(i-1).

» Complexity: O(n + m*D(n)), where m is the number of elements erased.

» Exception safety: Basic.

105

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

tenpl ate< cl ass Bi naryPredicate >
voi d uni que(Bi naryPredi cate binary_pred);

» Effects: Eliminates all but the first element from every consecutive group of elements referred to by the iterator i in the range
[first+1,last) forwhichbinary pred(*i, *(i-1)) holds.

+ Complexity: O(n + m*D(n)), where m is the number of elements erased.

» Exception safety: Basic.
void merge(this_type & x);

* Requires: std::|ess<val ue_t ype> isa Strict Weak Ordering over val ue_t ype. Both the view and x are sorted according
tostd: : | ess<val ue_t ype>.

» Effects: Attempts to insert every element of x into the corresponding position of the view (according to the order). Elements
successfully inserted are erased from x. The resulting sequenceis stable, i.e. equivalent elements of either container preserve their
relative position. In the special case & ==t hi s, no operation is performed.

» Postconditions: Elementsin the view and remaining elementsin x are sorted. Validity of iterators to the view and of non-erased
elements of x referencesis preserved.

» Complexity: If &==t hi s, constant; otherwise O(n + x.size()* | (n+x.siz&()) + x.size()* D(x.siz&())).

» Exception safety: If & ==t hi s, nothrow; otherwise, basic.

tenpl ate< cl ass Conpare >
void nerge(this_type & x, Conpare conp);

* Requires: Conpar e isaStrict Weak Ordering over val ue_t ype. Both the view and x are sorted according to comp.

» Effects: Attemptstoinsert every element of x into the corresponding position of the view (according to conp). Elements successfully
inserted are erased from x. The resulting sequence is stable, i.e. equivalent elements of either container preserve their relative
position. In the specia case & ==t hi s, no operation is performed.

* Postconditions: Elementsin the view and remaining elementsin x are sorted according to conp. Validity of iterators to the view
and of non-erased elements of x referencesis preserved.

o Complexity: If &==t hi s, constant; otherwise O(n + x.size()* [(n+x.siz&()) + X.size()* D(x.siz&())).

» Exception safety: If & ==t hi s, nothrow; otherwise, basic.
void sort();

* Requires: std:: | ess<val ue_t ype>isaStrict Weak Ordering over val ue_t ype.

 Effects: Sortstheview accordingtost d: : | ess<val ue_t ype>. The sorting is stable, i.e. equivalent elements preserve their re-
|ative position.

» Postconditions: Validity of iterators and referencesis preserved.
» Complexity: O(n*log(n)).

» Exception safety: Basic.

t enpl at e< cl ass Conpare >
voi d sort (Conpare conp);

106

render

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/StrictWeakOrdering.html
http://www.sgi.com/tech/stl/StrictWeakOrdering.html
http://www.sgi.com/tech/stl/StrictWeakOrdering.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

* Requires: Compareisa Strict Weak Ordering over val ue_t ype.

» Effects: Sortsthe view according to conp. The sorting is stable, i.e. equivalent elements preserve their relative position.
» Postconditions: Validity of iterators and references is preserved.

e Complexity: O(n*log(n)).

» Exception safety: Basic.

voi d reverse();

Effects. Reversesthe order of the elementsin the view.

Postconditions: Validity of iterators and references is preserved.

Complexity: O(n).
» Exception safety: nothrow.
Rearrange operations

These operations, without counterpart in st d: : I i st (although splice provides partially overlapping functionality), perform indi-
vidual and global repositioning of elements inside the index.

void relocate(iterator position, iterator i);

* Requires: positionisavaliditerator of theview. i isavalid dereferenceable iterator of the view.

» Effects: Insertsthe element pointed to by i before posi ti on. If posi ti on==i , no operation is performed.
» Postconditions: No iterator or reference isinvalidated.

e Complexity: Constant.

» Exception safety: nothrow.
void relocate(iterator position, iterator first, iterator |ast);

* Requires: position isavalid iterator of the view. first and | ast are valid iterators of the view. | ast is reachable from
first.positionisnotintherange[first,|ast).

Effects: Therange of elements[first, | ast) isrepositioned just before posi ti on.

Postconditions: No iterator or reference isinvalidated.
» Complexity: Constant.

» Exception safety: nothrow.

Serialization

Views cannot be serialized on their own, but only as part of the bi map into which they are embedded. In describing the additional
preconditions and guarantees associated to vect or _of views with respect to serialization of their embedding containers, we use
the concepts defined in the bi map serialization section.

Operation: saving of abi map b to an output archive (XML archive) ar.

107

render

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/StrictWeakOrdering.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

» Requires: No additional requirements to those imposed by the container.

Operation: loading of abi map b' from an input archive (XML archive) ar.

» Requires: No additional requirements to those imposed by the container.

» Postconditions: On successful loading, each of the elements of [begi n(), end()) isarestored copy of the corresponding
elementin[m get <i >().begin(), mget<i>().end()),wherei istheposition of thevect or _of view inthe container.

Operation: saving of ani terat or or const _i terator it toan output archive (XML archive) ar.

* Requires: it isavalid iterator of the view. The associated bi map has been previously saved.

Operation: loading of ani t erat or or const _i terator it'fromaninput archive (XML archive) ar.

» Postconditions. On successful loading, if it was dereferenceable then *i t ' isthe restored copy of *i t , otherwisei t '==end() .

* Note: Itisalowedthatitbeaconst iterator andtherestoredit'aniterator, or viceversa.

unconstrained_set of Reference
Header "boost/bimap/unconstrained_set_of.hpp" synopsis

namespace boost {
namespace bi maps {

tenpl at e< cl ass KeyType >
struct unconstrai ned_set_of;
struct unconstrai ned_set_of relation

} I/ namespace bi map
} I/ namespace boost

unconstrained_set_of Views

An unconstrained_set_of set view isaview with no constraints. The use of these kind of view boost the bimap performance but the
view can not be accessed. An unconstrained view is an empty class.

namespace boost {
namespace bi maps {
namespace vi ews {

tenpl ate< -inplenentation defined paraneter list- >
class -inplenmentation defined view name-

/1 Enpty view
H
} I/ namespace views

} I/ namespace bi map
} I/ namespace boost

Inthe case of abi map< unconstrai ned_set _of <Left>, ... >

108

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

In the set view:
typedef signature-conpatible with relation< Left, ... > key_type;
typedef signature-conpatible with relation< Left, ... > value_type;

In the left map view:

typedef Left key_type;
typedef ... mapped_t ype;

t ypedef signature-conpatible with std::pair< Left, ... > value_type;

In the right map view:

typedef ... key_type;
typedef Left mapped_type;

typedef signature-conmpatible with std::pair< ... , Left > value_type;

Complexity signature

We adopt the scheme outlined in the complexity signature section. An unconstrained view can not be accessed by the user, but the
formulas to find the order of an operation for a bimap hold with the following definitions. The complexity signature of auncon-
strai ned_set _of viewis:

* copying:c(n) = 0O

e insertion:i(n) =0

e hinted insertion: h(n) = 0
e deletion:d(n) =0

* replacement:r(n) = 0

e modifying: m(n) = 0
Serialization

Views cannot be serialized on their own, but only as part of the bi map into which they are embedded. In describing the additional
preconditions and guarantees associated to | i st _of views with respect to serialization of their embedding containers, we use the
concepts defined in the bi map serialization section.

Operation: saving of abi map b to an output archive (XML archive) ar.

» Requires: No additional requirements to those imposed by the container.

Operation: loading of abi map b' from an input archive (XML archive) ar.

» Requires: No additional requirements to those imposed by the container.

109

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Compiler specifics

Compiler OSTested State
GCC33 Linux Supported
GCC34 Linux Supported
GCC4.0 Linux, Mac Supported
GCC4.1 Linux Supported
GCC4.2 Linux Supported
ICC8.0 Linux Supported
ICC9.0 Linux Supported
ICC9.1 Linux Supported
GCC4.2 Linux Supported
GCC4.2 Linux Supported
VS7.1 Windows Supported
VS8.0 Windows Supported
ICC7.1 Windows Not Supported
ICC8.0 Windows Supported
ICC9.1 Windows Supported
CW 8.3 Windows Not Supported
VS 7.1

If a.cpp file uses more than four differents bimaps the compiler will run out of symbols and issue an internal compiler error. The
official solution in msdn isto split the .cpp in severa files or upgrade your compiler.

VS 8.0

V C++ 8.0 warns on usage of certain Standard Library and API functions that can be cause buffer overruns or other possible security
issues if misused. See http://msdn.microsoft.com/msdnmag/issues/05/05/Saf eCandC/default.aspx But the wording of the warning
is misleading and unsettling, there are no portable alternative functions, and VC++ 8.0's own libraries use the functions in question.
In order to turn off the warnings add the followings defines at the begging of your .cpp files:

#define _CRT_SECURE_NO_DEPRECATE
#define _SCL_SECURE_NO_DEPRECATE

110

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Performance

Section under construction.

111

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Examples

Examples list

In the folder libs/bimap/example you can find al the examples used in bimap documentation. Hereis alist of them:

Table 7. Tutorial examples

Program
simple_bimap.cpp
tagged_simple_bimap.cpp
step_by_step.cpp

population_bimap.cpp

repetitions_counter.cpp

mighty _bimap.cpp
user_defined_names.cpp
standard_map_comparison.cpp
at_function_examples.cpp
tutorial_modify_and replace.cpp
tutorial_range.cpp
tutorial_info_hook.cpp

unconstrained_collection.cpp

Description

Soccer world cup example

Soccer world cup example using user defined names
Basic example of the three views of bimap

Countries populations, using unordered_set_of and
mul ti set_of

Word repetitions counter, using unor der ed_set _of and
l'ist_of

Dictionary using | i st _of _rel ation

Equival ence between code with tagged and untagged code
Comparison between standard maps and bimap map views
Functions at (key) and oper at or [] (key) examples
modi fy and r epl ace examples

range() tutorial

Additional information hooking

Using unconst r ai ned_set _of collection type

112

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/simple_bimap.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/tagged_simple_bimap.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/step_by_step.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/population_bimap.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/repetitions_counter.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/mighty_bimap.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/user_defined_names.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/standard_map_comparison.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/at_function_examples.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/tutorial_modify_and_replace.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/tutorial_range.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/tutorial_info_hook.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/unconstrained_collection.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Table 8. Bimap and Boost examples
Program
assign.cpp
lambda.cpp
property_map.cpp

range.cpp

foreach.cpp

typeof.cpp

Xpressive.cpp

serialization.cpp:

Description

Bimap and Boost.Assign: Methods to insert elements
Bimap and Boost.Lambda: new lambda placeholders
Bimap and Boost.PropertyMap: PropertyMap support

Bimap and Boost.Range: Using bimaps in the new range
framework

Bimap and Boost.Foreach: Iterating over bimaps

Bimap and Boost. Typeof: using BOOST_AUTO whilewe wait
for C++0x

Bimap and Boost. X pressive: Inserting elementsin a bimap

Bimap and Boost.Serialization: Load and save bimaps and iter-
ators

Table 9. Boost.M ultilndex to Boost.Bimap path examples

Program
bidirectional_map.cpp
hashed_indices.cpp

tagged_bidirectional_map.cpp

Simple Bimap

Thisis the example from the one minute tutorial section.

Go to source code

Description
Boost.Multilndex to Boost.Bimap path example
Boost.Multilndex to Boost.Bimap path example

Boost.Multilndex to Boost.Bimap path example

113

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/bimap_and_boost/assign.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/bimap_and_boost/lambda.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/bimap_and_boost/property_map.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/bimap_and_boost/range.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/bimap_and_boost/foreach.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/bimap_and_boost/typeof.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/bimap_and_boost/xpressive.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/bimap_and_boost/serialization.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/mi_to_b_path/bidirectional_map.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/mi_to_b_path/hashed_indices.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/mi_to_b_path/tagged_bidirectional_map.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/simple_bimap.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

#i ncl ude <string>
#i ncl ude <i ostreanr

#i ncl ude <boost/ bi map. hpp>

tenpl ate< cl ass MapType >

voi d print_nap(const MapType & map,
const std::string & separator,
std::ostream & os)

{
typedef typenane MapType::const _iterator const_iterator;
for(const_iterator i = map.begin(), iend = map.end(); i !=iend; ++i)
{
0s << i->first << separator << i->second << std::endl;
}
}
int main()
{
/'l Soccer World cup
t ypedef boost:: bi map< std::string, int > results_bi map;
typedef results_bimap::val ue_type position;
results_bimap results;
results.insert(position("Argentina" 1)),
results.insert(position("Spain" ,2)),
results.insert(position("Gernany" ,3)),
results.insert(position("France" 4),
std::cout << "The nunber of countries is " << results.size()
<< std::endl;
std::cout << "The winner is " << results.right.at(1)
<< std::endl
<< std::endl;
std::cout << "Countries nanes ordered by their final position:"
<< std::endl;
/1 results.right works like a std::map< int, std::string >
print_map(results.right, ") ", std::cout);
std::cout << std::endl
<< "Countries nanmes ordered al phabetically along with"
"their final position:"
<< std::endl;
/1 results.left works like a std::map< std::string, int >
print_map(results.left, " ends in position ", std::cout);
return O;
}

You can rewrite it using tags to gain readability.

Go to source code

114

render

Y httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/tagged_simple_bimap.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

#i ncl ude <i ostreanr
#i ncl ude <boost/ bi map. hpp>

struct country
struct place

{};
{};
int main()
{ usi ng nanespace boost: : bi maps;
/1 Soccer World cup.
t ypedef bi map
) tagged< std::string, country >,
t agged< int , place >
> resul ts_bi map;

typedef results_bimap::val ue_type position;

results_bimap results;

results.insert(position("Argentina" 1))
results.insert(position("Spain" ,2)),
results.insert(position("Gernany" ,3)),
results.insert(position("France" 4),

std::cout << "Countries nanes ordered by their final position:"
<< std::endl;

Of or (resul ts_bi map: : map_by<pl ace>: : const _i t erat or
i resul ts. by<pl ace>().begin(),

i end resul ts. by<place>().end() ;
i I'=iend; ++i)
{
@Ostd::cout << i->get<place >() << ")
<< i->get<country>() << std::endl;
}

std::cout << std::endl
<< "Countries nanes ordered al fabetically along wth"
"their final position:"
<< std::endl;

©f or (resul ts_bi map: : map_by<country>::const_iterator
i resul ts. by<country>().begin(),

i end resul ts. by<country>().end()
i '=iend; ++i)
{
std::cout << i->get<country>() << " ends "
<< i->get<place >() << "°"
<< std::endl;
}
return O;

O results. by<place>() isequivadenttoresul ts.right
® get <Tag> worksfor each view of the bimap
© results. by<country>() isequivalenttoresul ts. | eft

115

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Mighty Bimap

Thisisthe translator example from the tutorial. In this example the collection type of relation is changed to alow the iteration of the
container.

Go to source code

#i ncl ude <i ostreanr

#i ncl ude <string>

#i ncl ude <boost/ bi map/ bi map. hpp>

#i ncl ude <boost/bi map/|ist_of . hpp>

#i ncl ude <boost/ bi map/ unor der ed_set _of . hpp>

struct english {};
struct spanish {};

int main()
{

usi ng namespace boost: : bi maps

t ypedef bi map

<
unor der ed_set _of < tagged< std::string, spanish > >
unor der ed_set _of < tagged< std::string, english > >
list_of relation

> transl ator;

translator trans;

/'l W have to use " push_back™ because the collection of relations is

/1 a "list_of relation’

trans. push_back(translator::value_type("hola" ,"hello"))
trans. push_back(translator::value_type("adi os" ,"goodbye"))
trans. push_back(translator::value_type("rosa" ,"rose"))
trans. push_back(translator::value_type("nesa" ,"table"))

std::cout << "enter a word" << std::endl

std::string word;

std::getline(std::cin,word);

/1 Search the queried word on the fromindex (Spanish)

transl ator:: map_by<spani sh>::const_iterator is
= trans. by<spani sh>().find(word)

if(is != trans. by<spanish>().end())

{
std::cout << word << " is said "
<< i s->get<english>()
<< " in English" << std::endl
}
el se
{

/1 Word not found in Spanish, try our luck in English

transl ator:: map_by<english>::const_iterator ie
= trans. by<english>().find(word)

if(ie != trans.by<english>().end())
{

116

render

> httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/mighty_bimap.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

std::cout << word << " is said"
<< i e->get <spani sh>()
<< " in Spanish" << std::endl
}
el se
{
/1 Word not found, show the possible translations
std::cout << "No such word in the dictionary" << std:: endl
std::cout << "These are the possible translations" << std::endl
for(translator::const_iterator
i = trans. begin(),
i_end = trans.end();
i '=i_end ; ++i)
{
std::cout << i->get<spanish>()
LS,
<< i->get<english>()
<< std::endl
}
}
}
return O

Multilndex to Bimap Path - Bidirectional Map

Thisis example 4 in Boost.Multilndex documentation.

This example shows how to construct a bidirectional map with multi_index_container. By a hidirectional map we mean a
container of elements of st d: : pai r <const FroniType, const ToType> such that no two elements exists with the same
first or second value (st d: : map only guarantees uniqueness of the first member). Fast look-up is provided for both keys. The
program features a tiny Spanish-English dictionary with on-line query of words in both languages.

Boost.Multilndex

Go to source code

117

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/mi_to_b_path/mi_bidirectional_map.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

#i ncl ude <i ostreanr
#i ncl ude <boost/tokeni zer. hpp>

#i ncl ude <boost/multi _index_contai ner. hpp>
#i ncl ude <boost/nulti _index/ key_extractors. hpp>
#i ncl ude <boost/nulti _i ndex/ ordered_i ndex. hpp>

usi ng nanmespace boost;
usi ng nanmespace boost::multi _index;

/1 tags for accessing both sides of a bidirectional map

struct from {};
struct to {};

/1 The class tenplate bidirectional _nap waps the specification
/1 of a bidirectional nap based on multi _i ndex_contai ner

t enpl at e<t ypenane Fronilype, t ypenane ToType>
struct bidirectional _nmap

{
typedef std:: pair<Fronmlype, ToType> val ue_type
typedef nulti _i ndex_contai ner<
val ue_type
i ndexed_by
<
or der ed_uni que
<
tag<frome, nenber<val ue_type, FronfType, & al ue_type::first>
>1
or der ed_uni que
<
tag<t o>, nenber<val ue_type, ToType, &al ue_type: : second>
>
>
> type;
s

/1 Adictionary is a bidirectional map fromstrings to strings
t ypedef bidirectional _map<std::string,std::string>::type dictionary;

int main()
{

dictionary d

/1 Fill up our mcrodictionary.
/1 first nmenbers Spanish, second nmenbers English

.insert(dictionary::value_type("hola","hello"))
.insert(dictionary::value_type("adi os", "goodbye"))
.insert(dictionary::value_type("rosa", "rose"))
.insert(dictionary::value_type("nesa","table"))

o0 00

std::cout << "enter a word" << std::endl
std::string word
std::getline(std::cin,word);

/'l search the queried word on the fromindex (Spanish)

118

render

Y httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

dictionary::iterator it = d.get<froms().find(word)

if(it '=d end())

{ /'l the second part of the elenent is the equivalent in English
std::cout << word << " is said"
<< it->second << " in English" << std::endl
}
el se
{
/1 word not found in Spanish, try our luck in English
dictionary::index_iterator<to>: :type it2 = d.get<to>().find(word)
if(it2 !'=d. get<to>().end())
{ std::cout << word << " is said"
<< jit2->first << " in Spanish" << std::endl
}
el se
{
std::cout << "No such word in the dictionary" << std::endl
}
}
return O

Boost.Bimap

Go to source code

119

render
httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/mi_to_b_path/bidirectional_map.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

#i ncl ude <i ostreanr
#i ncl ude <boost/tokeni zer. hpp>
#i ncl ude <boost/ bi map/ bi map. hpp>

usi ng nanespace boost: : bi maps
/1 Adictionary is a bidirectional map fromstrings to strings

t ypedef bi map<std::string,std::string> dictionary;
typedef dictionary::value_type translation

int main()
{

dictionary d

/1 Fill up our mcrodictionary.
/1 first nmenbers Spanish, second nmenbers English

d.insert(translation("hola" ,"hello"))
d.insert(translation("adi os", "goodbye"));
d.insert(translation("rosa" ,"rose"));
d.insert(translation("nesa" ,"table"))

std::cout << "enter a word" << std::endl

std::string word

std::getline(std::cin,word);

/1l search the queried word on the fromindex (Spanish)

dictionary::left_const_iterator it = d.left.find(word)

if(it !=dleft.end())

{ /1 the second part of the elenent is the equivalent in English
std::cout << word << " is said"
<< it->second ©
<< " in English" << std::endl
}
el se
{
/1 word not found in Spanish, try our luck in English
dictionary::right_const_iterator it2 = d.right.find(word)
if(it2 !'=d.right.end())
{ std::cout << word << " is said "
<< it2->second O
<< " in Spanish" << std::endl
}
el se
{
std::cout << "No such word in the dictionary" << std::endl
}
}
return O;

O it isaniterator of theleft view, soi t - >second refersto the right element of the relation, the word in english
® it2isaniterator of theright view, soi t 2- >second refersto the left element of the relation, the word in spanish

120

render

Y httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Or better, using tags...

Go to source code

#i ncl ude <i ostreanr

#i ncl ude <boost/ bi map/ bi map. hpp>
usi ng namespace boost : : bi maps

/'l tags

struct spanish {};
struct english {};

/1 A dictionary is a bidirectiona
t ypedef bi map
<

t agged< std::string, spani sh >

> dictionary;

map fromstrings to strings

tagged< std::string,english >

typedef dictionary::value_type translation

int main()
{

dictionary d;

/1 Fill up our mcrodictionary.

/1l first menbers Spanish, second menbers English

d.insert(translation("hola"
d.insert(translation("adios","
d.insert(translation("rosa"
d.insert(translation("nesa"

std::cout << "enter a word" <<
std::string word,
std::getline(std::cin,word);

"hel | 0"

"rose"

goodbye”

std:: endl

/'l search the queried word on the fromindex (Spanish) */

di ctionary:: map_by<spani sh>::const_iterator it

d. by<spani sh>() . fi nd(word)

if(it !'=d. by<spanish>().end())
: std::cout << word << " is said "
<< it->get<english>() << "
}
el se
{

/1 word not found in Spanish, try our

in English" << std::endl

luck in English

dictionary:: map_by<english>::const_iterator it2 =
d. by<engl i sh>(). fi nd(word)

if(it2 !'= d. by<english>()
{

std::cout << word << "

end())

is said "

<< it2->get<spanish>() << "

in Spanish" << std::endl

121

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/mi_to_b_path/tagged_bidirectional_map.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

el se
{
std::cout << "No such word in the dictionary" << std::endl;
}
}
return O;

Multilndex to Bimap Path - Hashed indices

Thisis example 8 of Boost.Multilndex.

Hashed indices can be used as an alternative to ordered indices when fast look-up is heeded and sorting information is of no
interest. The example features aword counter where duplicate entries are checked by means of a hashed index.

Boost.Multilndex

Go to source code

122

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/mi_to_b_path/mi_hashed_indices.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

#i ncl ude <i ostreanr
#i ncl ude <i omani p>

#i

ncl ude <boost/tokeni zer. hpp>

#i ncl ude <boost/multi _index_contai ner. hpp>

#i ncl ude <boost/nulti _index/ key_extractors. hpp>
#i ncl ude <boost/nulti _i ndex/ ordered_i ndex. hpp>
#i ncl ude <boost/nmulti _i ndex/ hashed_i ndex. hpp>
#i ncl ude <boost/| anbda/l anbda. hpp>

usi ng nanmespace boost::multi _index;
nanmespace bl = boost::|anbda

/1 word_counter keeps the ocurrences of words inserted. A hashed
/1 index allows for fast checking of preexisting entries

struct word_counter_entry

{
std::string word
unsi gned int occurrences;
word_counter_entry(std::string word_) : word(word_), occurrences(0) {}
s
typedef nulti _i ndex_contai ner
<
word_counter_entry,
i ndexed_by
<
ordered_non_uni que
<
BOOST_MULTI _| NDEX_MEMBER(
wor d_counter_entry, unsigned int, occurrences)
std:: greater<unsigned int>
> 1)
hashed_uni que
<
BOOST_MULTI _| NDEX_MEMBER(wor d_counter _entry, std:: string, word)
>

>
> word_counter
t ypedef boost::tokeni zer <boost:: char_separator <char> > text _tokeni zer

int main()
{
std::string text=
"En un lugar de |a Mancha, de cuyo nonbre no quiero acordarne... "
".o..snip..L"
"...no se salga un punto de |l a verdad."

/| feed the text into the container
wor d_count er We;
text _tokeni zer tok(text,boost::char_separator<char>(" \t\n.,;:!1?2"\"-"))

unsi gned int total _occurrences = 0;

for(text_tokenizer::iterator it = tok.begin(), it_end = tok.end()
it '=it_end ; ++it)
{

++total _occurrences

123

render

s httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

word_counter::iterator wt
we. nodi fy_key(wit,

}

/1 list words by frequency of appearance

++ bl::_1

we.insert(*it).first;
)

std::cout << std::fixed << std::setprecision(2);

for(word_counter::iterator wt

we. begin(),

wit_end=wc. end();

std::setw(1l) << wit->word << ": "

100.0 * wit->occurrences / total __occurrences << "%

wit '=wt_end; ++wit)
{
std::cout <<
<< std::setw5)
<<
<< std::endl;
}
return O;

Boost.Bimap

Go to source code

124

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../example/mi_to_b_path/hashed_indices.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

#i ncl ude <i ostreanr
#i ncl ude <i omani p>

#i

ncl ude <boost/tokeni zer. hpp>

#i ncl ude <boost/ bi map/ bi map. hpp>

#i ncl ude <boost/ bi map/ unordered_set _of . hpp>
#i ncl ude <boost/ bi map/ nul ti set _of . hpp>

#i ncl ude <boost/ bi map/ support/| anbda. hpp>

usi ng nanespace boost: : bi maps

struct word {};
struct occurrences {}

’

t ypedef bi map
<

mul ti set _of < tagged<unsi gned int, occurrences>, std::greater<unsigned int> >
unor dered_set _of < tagged< std::string, wor d> >

> word_counter
t ypedef boost::tokeni zer <boost:: char_separator <char> > text_tokeni zer

int main()

{

std::string text=
"Rel ati ons between data in the STL are represented with naps."
"Amap is a directed relation, by using it you are representing "
"a mapping. In this directed relation, the first type is related to "
"the second type but it is not true that the inverse relationship "
"holds. This is useful in a lot of situations, but there are sone "
"rel ationships that are bidirectional by nature."

/| feed the text into the container
wor d_count er We;
text _tokeni zer tok(text,boost::char_separator<char>(" \t\n.,;:!1?2"\"-"))

unsi gned int total _occurrences = 0;

for(text_tokenizer::const_iterator it = tok.begin(), it_end = tok.end()

it '=it_end ; ++it)
{
++t ot al _occurrences
wor d_count er:: map_by<occurrences>::iterator wit =
we. by<occurrences>().insert(
wor d_count er: : map_by<occurrences>: :val ue_type(0, *it)
). first;
we. by<occurrences>(). nodi fy_key(wit, ++_key)
}

/1 list words by frequency of appearance
std::cout << std::fixed << std::setprecision(2);
for(word_counter::nmap_by<occurrences>::const _iterator

wi t = wc. by<occurrences>(). begin(),
wit_end = wc. by<occurrences>().end()

125

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

wit '=wt_end; ++wit)
{
std::cout << std::setw(15) << wit->get<word>() << ": "
<< std::setw5)
<< 100.0 * wit->get<occurrences>() / total _occurrences << "%
<< std::endl;
}
return O;

126

render -~

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Test suite

The Boost.Bimap test suite exercises the whole spectrum of functionalities provided by thelibrary. Although the tests are not meant
to serve as alearning guide, the interested reader may find it useful to inspect the source code to gain familiarity with some of the
least common features offered by Boost.Bimap.

127

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Program
test_tagged.cpp
test_mutant.cpp
test_structured pair.cpp
test mutant_relation.cpp

test_bimap_set_of.cpp

Description

Tagged idiom checks
Test the mutant idiom
Test structured pair class
Test the relation class

Library interface check

test_bimap multiset_of.cpp Library interface check

test_bimap unordered_set of.cpp Library interface check

test_bimap_unordered_multiset_of.cpp Library interface check

test_bimap _list_of.cpp Library interface check

test_bimap_vector_of.cpp Library interface check

test_bimap_convenience _header.cpp Library interface check

test_bimap_ordered.cpp Test set and multiset based bimaps

test_bimap_unordered.cpp Test unordered_set and unordered_multiset based bimaps

test_bimap_sequenced.cpp Test list and vector based bimaps

test_bimap_unconstrained.cpp Test bimaps with unconstrained views

test_bimap_serialization.cpp Serialization support checks

test_bimap_property _map.cpp Property map concepts for the set and unordered set views

test_bimap_modify.cpp repl ace, nodi fy and operator[]

test_bimap_lambda.cpp Test lambda modified idom support

test_bimap_assign.cpp Test Boost.Assign support
test_bimap_project.cpp Projection of iterators support
test_bimap_operator_bracket.cpp operator[] andat () functions
test_bimap_info.cpp Information hooking support
test_bimap_extra.cpp Additional checks
test bimap_info_1.cpp Information hooking compilation fail test
test bimap_info_2.cpp Information hooking compilation fail test
test_bimap_info_3.cpp Information hooking compilation fail test

test_bimap mutable 1.cpp Mutable members compilation fail test

128

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_tagged.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_mutant.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_structured_pair.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_mutant_relation.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_set_of.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_multiset_of.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_unordered_set_of.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_unordered_multiset_of.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_list_of.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_vector_of.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_convenience_header.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_ordered.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_unordered.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_sequenced.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_unconstrained.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_serialization.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_property_map.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_modify.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_lambda.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_assign.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_project.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_operator_bracket.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_info.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/test_bimap_extra.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/compile_fail/test_bimap_info_1.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/compile_fail/test_bimap_info_2.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/compile_fail/test_bimap_info_3.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/compile_fail/test_bimap_mutable_1.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Program Description

test_bimap _mutable 2.cpp Mutable members compilation fail test

test_bimap mutable 3.cpp Mutable members compilation fail test
129

render

> httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/compile_fail/test_bimap_mutable_2.cpp
http://www.boost.org/doc/libs/release/libs/bimap/doc/html/../../test/compile_fail/test_bimap_mutable_3.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Future work

Rearrange Function

Boost.Multilndex includes some others functions that can be included in the views.

130

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Release notes

Boost 1.53 release

» Refactor map _view_iterator to improve error messages.

 Fixed replace_(left/right/key/data) bug when using relations with info.

 Fixed vector_of and list_of viewsassi gn(si ze_t ype, val ue_t ype) bug.

 Fixed vector_of viewsoperat or[] (si ze_type) andat (si ze_t ype) functionsreturn value.
Boost 1.52 release

* Fixed unused parameter name warnings in Boost.Bimap (#7425).

Boost 1.50 release

» Added key type and mapped_type (leaving data_type for backward compatibility) typedefs to map views (#6031).
» Removed spurious dependency on Boost.Serialization (#3868).

* Solved unused constructor parameter warning (#5749).

Boost 1.45 release

* Fixed custom allocators (#3665).

* Fixed count() constness (#2484).

* Other maintenance fixes.

Boost 1.35 release

» Added to Boost Libraries.

131

httpo://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/7425
https://svn.boost.org/trac/boost/ticket/6031
https://svn.boost.org/trac/boost/ticket/3868
https://svn.boost.org/trac/boost/ticket/5749
https://svn.boost.org/trac/boost/ticket/3665
https://svn.boost.org/trac/boost/ticket/2484
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Rationale

This section assumes that you have read all other sections, the most of important of which being tutorial, std::set theory and the
reference, and that you have tested the library. A lot of effort wasinvested in making the interface as intuitive and clean as possible.
If you understand, and hopefully like, the interface of thislibrary, it will be alot easier to read this rationale. The following section
is little more than arationale. This library was coded in the context of the Google SoC 2006 and the student and mentor were in
different continents. A great deal of email flowed between Joagquin and Matias. Thejuiciest parts of the conversationswhere extracted
and rearranged here.

S Note
To browse the code, you can use the Bimap Compl ete Reference, adoxygen-powered document targeted at developers.

General Design

Theinitial explanation includes few features. This section aims to describe the general design of the library and excludes details of
those features that are of lesser importance; these features will be introduced | ater.

The design of the library is divided into two parts. The first is the construction of ar el at i on class. Thiswill be the object stored
and managed by themul ti _i ndex_cont ai ner core. Theideaisto makethisclassaseasy aspossibleto use, while making it efficient
in terms of memory and access time. This is a cornerstone in the design of Boost.Bimap and, as you will see in this rationale, the
rest of the design follows easily.

The following interface is necessary for ther el at i on class:

typedef -unspecified- TA typedef -unspecified- TB;

TA a, ai; TB b, bi;

typedef relation< TA, TB > rel;

STATI C_ASSERT(is_sane< rel::left_type , TA > :value);
STATI C_ASSERT(is_sane< rel::right_type, TB >::value);

rel r(ai,bi);

assert(r.left == ai & r.right == bi);
r.left =a; r.right = b;
assert(r.left == a & r.right ==);

typedef pair_type_by< nenber_at::left , rel >::type pba_type;
STATI C_ASSERT(is_sane< pba_type::first_type , TA >::value);
STATI C_ASSERT(is_sane< pba_type::second_type, TB >::value);

typedef pair_type_by< nenber_at::right, rel >::type pbb_type;
STATI C_ASSERT(is_sane< pbb_type::first_type , TB >::value);
STATI C_ASSERT(is_sane< pbb_type::second_type, TA >::value);

pba_type pba = pair_by< nmenber_at::left >(r);
assert(pba.first == r.left && pba.second == r.right);

pbb_type pbb = pair_by< nmenber_at::right >(r);
assert(pbb.first == r.right &% pbb.second == r.left);

132

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/doxydoc/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

relation<A,B>
left right
v .
first first
second : second
pair_by<left> pair_by<right>
pair<A,B> pair<B,A>

Although this seems straightforward, as will be seen later, it is the most difficult code hack of the library. It is indeed very easy if
we relax some of the efficiency constraints. For example, it istrivia if we allow arelation to have greater size than the the sum of
those of its components. It is equally simple if access speed is not important. One of the first decisions made about Boost.Bimap
was, however, that, in order to be useful, it had to achieve zero overhead over the wrapped Boost.M ultilndex container. Finally,
there is another constraint that can be relaxed: conformance to C++ standards, but this is quite unacceptable. Let us now suppose
that we have coded this class, and it conforms to what was required.

The second part is based on thisr el at i on class. We can now view the data in any of three ways: pai r <A, B>, r el ati on<A, B>
and pai r <B, A>. Suppose that our bimap supports only one-to-one relations. (Other relation types are considered additional features
inthisdesign.) The proposed interface isvery simple, and it is based heavily on the concepts of the STL. Given abi map<A, B> bm

1. bm | ef t issignature-compatible with ast d: : map<A, B>
2. bmri ght issignature-compatible with ast d: : nap<B, A>

3. bmissignature-compatible with ast d: : set <rel ati on<A, B> >

133

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

bimap<X,Y> bm

om.right

This interface is easily learned by users who have a STL background, as well as being simple and powerful. This is the general
design.

Relation Implementation
This section explains the details of the actual r el at i on classimplementation.

Thefirst thing that we can imagine is the use of an uni on. Regrettably, the current C++ standard only allows unions of POD types.
For the views, we can try awrapper around ar el at i on<A, B> that has two references named first and second that bind to A and B,
ortoBand A.

relati on<TA TB> r

const _reference_pair<A B> pba(r)
const _reference_pair<B, A> pbb(r)

Itisnot difficult to code the relation class using this, but two references areinitialized at every access and using of pba. fi r st will
be slower in most compilersthanusingr . | ef t directly . Thereis another hidden drawback of using this scheme: it is not iterator-
friendly, since the map views iterators must be degraded to Read Write instead of LValue. Thiswill be explained later.

At first, this seemsto be the best we can do with the current C++ standard. However thereis a solution to this problem that does not
conform very well to C++ standards but does achieve zero overhead in terms of access time and memory, and additionally allows
the view iterators to be upgraded to LValue again.

In order to usethis, the compiler must conform to alayout-compatibility clausethat isnot currently in the standard but isvery natural .
The additional clause imposes that if we have two classes:

struct class_a b

{
Typel nane_a;
Type2 nane_b;
b
struct class_b_a
{
Typel nane_b;
Type2 nane_a;
b

134

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

then the storage layout of cl ass_a_b isequal to the storage layout of cl ass_b_a. If you are surprised to learn that this does not
hold in a standards-compliant C++ compiler, welcome to the club. It isthe natural way to implement it from the point of view of the
compiler's vendor and is very useful for the developer. Maybe it will be included in the standard some day. Every current compiler
conformsto this.

If we are able to count on this, then we can implement an idiom called mut ant . Theideaisto provide a secure wrapper around r e-
i nterpret_cast.A class can declare that it can be viewed using different view classes that are storage-compatible with it. Then
we use the free function mut at e<vi ew>(mut ant) to get the view. The mut at e function checks at compile time that the requested
view is declared in the mutant views list. We implement a class name st ruct ur ed_pai r that is signature-compatible with a
st d: : pai r, whilethe storage layout is configured with athird template parameter. Two instances of thistemplate classwill provide
the views of the relation.

Thethingisthat if we want to be standards-compliant, we cannot use this approach. It isvery annoying not to be able to use something
that we know will work with every compiler and that isfar better than alternatives. So -- and thisis an important decision -- we have
to find away to useit and still make the library standards-compliant.

Theideaisvery simple. We code both approaches: the const_reference_pair-based and the mutant-based, and use the mutant approach
if the compiler iscompliant with our new layout-compatible clause. If the compiler really messesthings up, we degrade the performance
of the bimap alittle. The only drawback hereis that, while the mutant approach allows to make LValue iterators, we have to degrade
them to Read Write in both cases, because we require that the same code be compilable by any standards-compliant compiler.

@ Note
Testing this approach in al the supported compilers indicated that the mutant idiom was always supported. The
strictly compliant version was removed from the code because it was never used.

Bimap Implementation

The core of himap will be obviously amul ti _i ndex_cont ai ner . The basic idea to tackle the implementation of the bimap class
isto useiterator_adaptor to convert the iterators from Boost.Multilndex to the st d: : map and st d: : set behaviour. The
map_vi ewand the set _vi ew can be implemented directly using this new transformed iterators and a wrapper around each index
of the core container. However, there is a hidden idiom here, that, once coded, will be very useful for other parts of thislibrary and
for Boost. MRU library. Following the ideas from i t er at or _adapt or, Boost.Bimap views are implemented using a cont ai n-

er _adapt or . There are several template classes (for example map_adapt or and set _adapt or) that take ast d: : map signature-
conformant class and new iterators, and adapt the container so it now uses this iterators instead of the originals. For example, if you
have a st d: : set <i nt *>, you can build other container that behaves exactly as a st d: : set <i nt > using set _adapt or and
i terator_adapt or. The combined use of this two toolsis very powerful. A cont ai ner _adapt or can take classes that do not
fulfil al the requirements of the adapted container. The new container must define these missing functions.

Additional Features

N-1, N-N, hashed maps

Thisisavery interesting point of the design. The framework introduced in std::set theory permits the management of the different
constraints with a very simple and conceptual approach. It is easy both to remember and to learn. The idea hereisto allow the user
to specify the collection type of each key directly. In order to implement this feature, we have to solve two problems:

e Theindex typesof themul ti _i ndex_cont ai ner core now depends on the collection type used for each key.
» The map views now change their semantics according to the collection type chosen.

Boost.Bimap relies heavily on Boost.MPL to implement all of the metaprogramming necessary to make this framework work. By
default, if the user does not specify the kind of the set, ast d: : set typeisused.

135

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

2 % I
yl\' Xl - YJ
s A : I
r® X3 s
Y6 et]
; X4 _ 1
i
- u XS
’ A2 Y4
y; XG I
-
74 Y6
X, \
Y,
bimap<set_of<X> unordered_sef_of<Y>> bimap<vector_of<X> list_of<Y>>

Collection type of relation constraints

The constraints of the bimap set view are another very important feature. In general, Boost.Bimap users will base the set view type
on one of the two collection types of their keys. It may be useful however to give this set other constraints or simply to order it dif-
ferently. By default, Boost.Bimap bases the collection type of relations on the left collection type, but the user may choose between:

o left_based

* right_based

» set of_relation<>

e multiset_of relation<>
 unordered_set_of relation<>

* unordered_multiset_of relation<>
o list_of

 vector_of

Inthefirst two cases, thereare only two indicesinthenul ti _i ndex_cor e, and for thisreason, these are the preferred options. The
implementation uses further metaprogramming to define a new index if necessary.

Tagged

Theideaof using tagsinstead of the menber _at : : si de idiom is very appealing since code that usesit is more readable. The only
cost is compile time. boost/bimap/tagged is the implementation of anon-invasive tagged idiom. Ther el at i on classisbuiltin such
away that even when the user usestags, themenber _at : : si de idiom continuesto work. Thisisgood since an user can start tagging
even before completing the coding of the algorithm, and the untagged code continues to work. The development becomes a little
more complicated when user-defined tags are included, but there are many handy metafunctions defined in thet agged idiom that
help to keep things simple enough.

136

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

yvalue type

tag

tagged type

Code

You can browse the code using the Boost.Bimap doxygen docs.

The code follows the Boost Library Requirement and Guidelines as closely as possible.

Table 10. foldersin boost/bimap
name
user level header files
tagged/
relation/
container_adaptor/
views/
property_map/
Table 11. foldersin each folder

name

support/

detail/

The student and the mentor

@ Tip

what isinside?

tagged idiom

the bimap data

easy way of adapting containers

bimap views

support for property map concept

what isinside?

class definitions

optional metafunctions and free functions

things not intended for the user's eyes

It isagood ideato read the original Boost.Misc SoC proposal first.

- The discussion starts with Joaquin trying to strip out the "m sc" nanme out of the

library -

137

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/bimap/doc/html/doxydoc/index.html
http://www.boost.org/more/lib_guide.htm
http://h1.ripway.com/mcape/boost/libs/misc/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Joaquin

Joaquin

Thinking about it, the unifying principle of MISC containersis perhaps misleading: certainly all miscs use multi-
indexing internally, but this does not reflect much in the external interface (as it should be, OTOH). So, from the
user's point of view, miscs are entirely heterogeneous beasts. Moreover, there isn't in your proposal any kind of
global facility common to all miscs. What about dropping the misc principle and working on each container asa
separate library, then? You'd have boost: : bimap, boost::mru, etc, and no common intro to them. This also opens
up the possibility to add other containersto the suite which aren't based on B.MI. What's your stance on this? Do
you see a value in keeping miscs conceptually together?

Astheoriginal proposal statesonly two containers (bimap and mru set) both based in B.MI, it was straight forward
to group themtogether. When | was writing the SoC proposal | experienced a similar feeling when the two families
begin to grow. As you say, the only common denominator is their internal implementation. | thought a bit about
a more general framework to join this two families (and other internally related ones) and finally came up with
an idea: Boost.Multilndex! So | think that it is not a good idea to try to unify the two families and | voted in favor
of get rid of the misc part of boost: : misc::bimap and boost:: misc::mru. Anyway, for my SoC application it seems
OK to put the two families in the same project because although from the outside they are completely unrelated,
thework | will have to do in order to build the libraries will be consistent and what | will learn coding the bimap
family will be used when | start to code the mru family. When the mru family isin place, | will surely have learnt
other things to improve the bimap group.

On the other hand, | think it will be useful for the general user to have at least some document linked in the B.MI
documentation that enumerates the most common cases of uses (a bimap and an mru set for example) and points
where to find clean implementation for this useful containers. For now, a link to boost::bimap and other one to
boost::mru will suffice. If you think about the title of such a document, you will probably come up with something
like: Common Multi Index Specialized Containers, and we are back to our misc proposal. So, to order some ideas:

- A new family of containers that can be accessed by both key will be created. (boost: : bimap)
- A new family of time aware containers will see the light. (boost: :mru)
- A page can be added to B.MI documentation, titled misc that links this new libraries.

Thisis a clearer framework for the user. They can use a mru container without hearing about Boost.Multilndex
at all. And B.MI userswill get some of their common containers already implemented with an STL friendly interface
in other libraries. And as you stated thisis more extensible because opens the door to use other librariesin bimap
and mru families than just Boost.Multilndex without compromising the more general boost framework. The word
"misc" it isgoing to disappear from the code and the documentation of bimap and mru. From now on the only use
for it will beto identify our SoC project. | amthinking in a name for the bimap library. What about Boost.Bidirec-
tionalMap? Ideas?

Yes, Boost.Bimap. In my opinion, bimap is a well known name in the Boost and even in the C++ community. It
sounds and is short. Why not to vindicate yourself as the owner of this name?

138

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

- Then

Matias

Joaquin

Matias

Joaquin

Matias

Joaquin

Matias

after a week of work -

Now that Boost.Bimap is getting some shape, | see that as you have told me, we must offer a "one_to_many_map"
and a "multi_bimap" as part of the library. The framework | am actually working allowed to construct this kind
of bidirectional maps and it is easy to understand from the user side.

OK, | am glad we agree on this point.

With respect to the symmetry of the key access names, | have to agree that there is not much a difference between
the following ones:

- to - from
-to-b
-0-1

- left - right

In my opinion it isa matter of taste, but left/right sounds more symmetrical than the others.

| like very much the left/right notation, it is very simpleto remember and it isalot more symmetrical than to/from.

At first my idea was to obtain ease of use hiding the B.MI core, making it more STL-intuitive. Nevertheless | have
realized that B.MI is a lot more coherent and easy to use that | had imagined. This makes me think again in the
problem. In the design that | am coding now, bimap is-a multi_index_container specializes with a data type very
comfortable called bipair, that can be seen like any of the two mapsthat integratesit using map views. This scheme
has great benefits for users:

- If the user already knows B.MI, he can take advantage of the tools that it provides and that are not present in
the STL containers. In addition, in some cases the use to indices to see the data can be very useful.

- If the user does not know anything about B.MI but have an STL framework, the learning curveis reduced to un-
derstand the bimap instantiation and how a is obtained the desired map view.

Another very important benefit holds: All the algorithms done for B.MI continues to work with Boost.Bimap and
if B.MI continues growing, bimap grow automatically.

Umm... Thisis an interesting design decision, but controversial in my opinion. Basically you decide to expose the
implementation of bimap; that has advantages, as you stated, but also a nonsmall disadvantage: once you have
documented the implementation, it is not possible to change it anymore. It is a marriage with B.MI without the
chance of divorce. The other possibility, to hide the implementation and to duplicate and document the provided
functionality, explicitly or implicitly due to the same characteristics of the implementation, is of course heavier to
maintain, but it gives a degree of freedom to change the guts of your software if you need to. Do not take this like
a frontal objection, but | think that it is quite important design decision, not only in the context of bimap but in
general.

139

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

You are quite right here. | think we have to choose the hardest path and hide the B.MI core from the user. | am
sending you the first draft of bimap along with some documentation.

- This conpl etes the second week, the docunentation was basically the first section of this rationale

Joaquin

| must confess that | am beginning to like what | see. | am mathematical by vocation, and when | see symmetry in
aformulation | believe that it isin the right track.

Matias
e are two mathematicians by vocation then.
Joaquin

| think that the part of std::set theory is very clear. To me, it turns out to me somewhat strange to consider the
rank of a map (values X) like a std:: set, but of course the formulation is consistent.

Matias

| like it very much, it can be a little odd at first, but now that | have get used to it, it is very easy to expressin the
code my contrains on the data, and | believe that if somebody reads the code and sees the bimap instantiation he
is not going to have problems understanding it. Perhaps it is easier to understand it if we use your notation:
ordered _nonunique, unordered unique, but this goes against our STL facade. In my opinion the user that comes
from STL must have to learn as less as possible.

Joaquin

Considering a relation likeastruct {left, right} isclean and clear. If | understand it well, one relation
hasviews of typepai r {first, second}, isthiscorrect?

Matias

Yes, | believe that the left/right notation to express symmetry is great. | believe that to people is going to loveiit.
Joaquin

OK, perfect. | likes this very much:

- bm.left is compatible with std::map<A,B>

- bmright is compatible with std::map<B,A>

- bmis compatible with std:; set<relation<A,B>>

Itis elegant and symmetric. | feel good vibrations here.
Matias

Great!
Joaquin

Moving on, the support for N-1, N-N, and hashed index isvery easy to grasp, and it fitswell in framework. However
| do not finish to understand very well the " set<relation> constraints' section. Wi you came up with some examples
of which is the meaning of the different cases that you enumerate?

Matias -

Yes, | mean:

140

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

- based on the | eft
- based on the right

The bimap core must be based on some index of multi index. If the index of the left is of the type hash, then in fact
the main view is going to be an unordered_set< relation<A,B> >. Perhaps thisis not what the user prefers and
he wants to base its main view on the right index.

- set_of relation

- multiset_of relation

- unordered_set of relation

- unordered_multiset_of relation

However, if both of them are hash indexes, the user may want the main view to be ordered. As we have a B.MI
core thisis very easy to support, we just have to add another index to it.

Joaquin

| understand it now. OK, | do not know if we have to include thisin the first version, is going to be a functionality
avalanche!

Matias

The user is not affected by the addition of this functionality, because by default it will be based on the left index
that is a very natural behaviour. | do not think that this is functionality bloat, but | agree with you that it is a
functionality avalanche.

Joaquin

There are restrictions between the left and right set types and the possible main view set types. For example if
some of the index is of unique type, then the main view cannot be of type multiset_of_relation. To the inverse one,
if the main view is of type set_of relation the left and the right index cannot be of type multi_set. All this subject
of the unicity constrictions and the resulting interactions between indexes is one of the subtle subjects of B.MI.

Matias
This can be checked at compile time and informed as an error in compile time.
Joaquin
It can be interesting.
- And right when everything seens to be perfect... -
Joaquin

| have some worse news with respect to mutant, it is very a well designed and manageable class, unfortunately,
C++ does not guarantee layout-compatibility almost in any case. For example, the C++ standard does not guar-
anteethat theclassesstruct {T1 a; T2 b;} andstruct{T1 b; T2 a;} arelayout-compatible, and therefore
the trick of reinterpret_cast is an undefined behavior. | am with you in which that in the 100% of the cases this
scheme will really work, but the standard is the standard. If you can look the layout-compatibility subject in it
(http://www.kuzbass.ru/docs/isocpp/). As you see, sometimes the standard is cruel. Although mutant seems a lost
case, please do not hurry to eliminate it. We will see what can be done for it.

Matias

| read the standard, and you were right about it. Mutant was an implementation detail. It is a pity because | am
sure that it will work perfect in any compiler. Perhaps the standard becomes more strict some day and mutant

141

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

returns to life... We can then try a wrapper around a relation<A,B> that have two references named first and
second that bind to A and B, or B and A.

rel ati on<TA TB> r;
const _reference_pair<A B> pba(r);
const _reference_pair<B, A> pbb(r);

It is not difficult to code the relation classin this way but two references are initialized with every access and the
use of pba. first will beslower thanr. | ef t in most compilers. It isvery difficult to optimize this kind of refer-
ences.

Joaquin

Thisworkaround is not possible, due to technical problems with the expected behavior of the iterators. If theiter-
ators of bm.left are of bidirectional type, then standard stated that it have to return an object of type const
value_type& when dereferenced. You will have to return a const_reference _pair created in the flight, making it
impossible to return a reference.

Matias

| understand... | have workaround for that also but surely the standard will attack me again! e must manage to
create the classrelation that responds as we want, the rest of the code will flow from this point. This clear separ-
ation between the relation class and the rest of the library, is going to help to us to separate the problems and to
attack them better.

Joaquin

What workaround? It already pricks my curiosity,| have dedicated a long time to the subject and | do not find any
solution except that we allow the relation class to occupy more memory.

Matias

We must achieve that the relation< A,B> size equals the pair<A,B> sizeif wewant thislibrary to be really useful.
| was going to write my workaround and | realized that It does not work. Look at this: http: //mmw.boost.org/libs/iter-
ator/doc/new-iter-concepts.html Basically the problem that we are dealing is solved if we based our iterators on
this proposal. The present standard forces that the bidirectional iterators also are of the type input and output.
Using the new concepts there is no inconvenient in making our iterators "Readable Writable Swappable Bidirec-
tional Traversal". Therefore the const_reference pair returnsto be valid.

Joaquin

It is correct in the sense that you simply say that your iterators are less powerful than those of the std::map. It is
not that it iswrong, simply that instead of fixing the problem, you confessit.

Matias

OK, but in our particular case; What are the benefits of offering a LValue iterator against a Read Write iterator?
It does not seem to me that it is less powerful in this case.

Joaquin

The main problem with a ReadWrite is that the following thing: val ue_type * p=&(*it); failsor storesa
transitory direction in p. Is thisimportant in the real life? | do not know. How frequently you store the direction
of the elements of a map? Perhaps it is not very frequent, since the logical thing is to store the iterators instead
of the directions of the elements. Let us review our options:

1. We used mutant knowing that is not standard, but of course it is supported in the 100% of the cases.

2. We used const_reference_pair and we declared the iterators not LValue.

142

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Matias

3. We found some trick that still we do not know. | have thus been playing with unions and things, without much
luck.

4. \\e |leverage the restriction that views have to support the first, second notation. If we made this decision, there
are several possihilities:

a. The left map has standard semantics first/second while the right map has the inverse semantics.
b. Instead of first and second we provide first() and second(), with which the problemistrivial.

¢. The map view do not support first/second but left/right as the father relation

5. We solve the problem using more memory than sizeof(pair<A,B>).

In any case, | would say that the only really unacceptable option is the last one.

Lets see.
1. | want the "standard compliant" label in the library.

2. Thisisthe natural choice, but knowing that there is another option that always works and it is more efficient is
awful.

3. | have also tried to play with unions, the problemis that the union members must be POD types.
4. Thisoption implies a big lost to the library.
5. Totally agree.

| want to add another option to thislist. Using metaprogramming, therelation class checksif the compiler supports
the mutant idiom. If it supports it then it uses it and obtains zero overhead plus LValue iterators, but if it do not
supports it then uses const_reference_pair and obtains minimum overhead with ReadWrite iterators. This might
be controversial but the advantages that mutant offers are very big and the truth is that | do not believe that in
any actual compiler thisidiomis not supported. This scheme would adjust perfectly to the present standard since
we are not supposing anything. The only drawback here is that although the mutant approach allows to make
LValue iterators we have to degrade they to Read Write in both cases, because we want that the same code can
be compiled in any standard compliant compiler.

- Hopefully we find our way out of the problem -

Joaquin

Matias

Changing the subject, | believe that the general concept of hooking data is good, but I do not like the way you
implement it. It has to be easy to migrate to B.MI to anticipate the case in that Boost.Bimap becomes insufficient.
It is more natural for a B.MI user that the data is accessed without the indirection of . dat a. | do not know how
this can be articulated in your framework.

| have a technical problem to implement the data_hook in this way. If the standard would let us use the mutant
idiomdirectly, | canimplement it using multipleinheritance. But aswe must use const_reference pair too, It becomes
impossible for me to support it. We have three options here:

1) relation { left, right, data } and pair_view { first, second, data }

- Thisis more intuitive within the bimap framework, since it does not mix the data with the index, as a tablein a
data base does, but gives more importance to the index.

- It is not necessary that the user puts the mutable keyword in each member of the data class.

143

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

- This moves away just a little bit from B.MI because the model of it is similar to a table, but it continues to exist
a clear path of migration.

2) relation { left,right, d1,d2... dn } and pair_view { first, second, data }
- The path to B.MI is the one you have proposed.
- It isvery asymmetric. It is necessary to explain that the views are handled different that the relation.
- The user must place the mutable keyboards in the data class.
3) Only relation { left,right, d1,d2... dn}
- Smple migration path to B.MI.
- You are not able to access the hooked data from the views.
My vote goes to the first proposal.
Joaquin
Yes, the first option is the one that less surprises hold to the user. | also vote for 1.
- The third week was over -
Matias

Thereis still one problem that | have to solve. | need to know if it is hecessary to create a map_view associated
to nothing. If it is necessary there are two options:. that it behaves as an empty container or that it throws an ex-
ception or assert when trying to useit. If it is not necessary, the map_view is going to keep a reference instead of
a pointer. To me, the map_view always must be viewing something. In the case of the iterators being able to create
them empty, makes them easy to use in contexts that require constructors by default, like being the value_type of
a container, but | do not believe that thisis the case of map_view.

Joaquin

How would an empty map_view be useful? My intuition islike yours, map_view would have to be always associate
to something. If we wished to obtain the semantics "is associated or not" we can use a pointer to a map_view.

Matias
OK, then you agree to that map_views stores a reference instead of a pointer?
Joaquin

It depends on the semantics you want to give to map_views, and in concrete to the copy of map_views.

map_vi ew x=...;
map_view y=...;

X=Y;
What is supposed to do thislast line?
1. Rebinding of x, that isto say, x points at the same container that y.
2. Copy of the underlying container.
If you want to implement 1, you cannot use referencesinternally. If you want to implement 2, it is almost the same
to use a reference or a pointer.
Matias

144

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

If | want that they behave exactly as std::maps then | must go for 2. But if | think they as "views" of something, |
like 1. The question is complicated. | add ancther option:

3. Error: operator= is declare as private in boost: :bimap::map_view std_container

Also What happenswith st d_cont ai ner = vi ew; ?andwithvi ew = std_cont ai ner; ?

145

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

History

The long path from Code Project to Boost

2002 - bimap at Code Project

2003 - multiindex_set

2004 - indexed_set

2005 - multi_index_container

2006 - Multi Index Specialized Con-
tainers SoC project

2007 - Boost.Bimap

Joaquin Lopez Mufioz posted his first bimap library in 2002. Tons of users have been using
it. He then asked the list for interest in hislibrary in 2003. Luckily, there was a lot of interest
and Joaquin started to boostify the code. At some point all the developers seemed to agree
that, rather than a bidirectional map, it would be better to work on an N-indexed set that con-
tained Joaguin's library as a particular case.

The library grew enormously and was ready for a formal review in 2003. At this point, the
container was a lot more powerful, but everything comes with a price and this new beast
lacked the simplicity of the original bimap.

In 2004, the formal review ended well for the new multi-indexed container. This Swiss army
knife introduced several new features, such as non-unique indexes, hashed indices and se-
quenced indices. Inthelist of improvementsto thelibrary, it was mentioned that abidirectional
map should be coded in top of this container.

Once in Boogt, the library switched to the now familiar name "Boost.Multilndex". Late in
2004, it formally became a member of Boost. Joaguin continued to enchance the library and
added new features such as composite keys and random-access indices.

In 2006, during the formal review of Boost.Property_tree, the need for a bidirectional map
container built on top of Boost.Multilndex arose again. Boost entered the Google SoC 2006
as amentor organization at the same time. Joaguin put himself forward as a mentor. He pro-
posed to build not only abidirectional map, but amyriad multi-indexed specialized containers.
Matias Capeletto presented an application to code Boost.Misc for the SoC and was €l ected,
along with nine other students. Matias's and Joaquin's SoC project endswith aworking imple-
mentation of the bimap library that was presented in an informal review. By the end of the
year the library was queued for aformal review.

The formal review took place at the beggining of the year and Boost.Bimap was accepted in
Boost.

Multilndex and Bimap

This is the conversation thread that began during Boost.Property Tree formal review process. The review was very interesting and
very deep topics were addressed. It is quite interesting and it is now part of thislibrary history. Enjoy!

Marcin

Thebiggest virtue of property _treeiseasy to useinterface. If wetry to make generic tree of it, it will be compromised.

Gennadiy

IMO the same result (as library presents) could be achieved just by using multi_index.

Marcin

Could you elaborate more on that? | considered use of multi_index to implement indexing for properties, but it
only affected the implementation part of library, not interface, and because | already had a working, exception
safe solution, | didn't see the reason to dump it and add another dependency on another library.

Gennadiy

I mean why do | need this half baked property_tree as another data structure? Property tree supports nothing in
itself. It's just a data structure. You have parsers that produce property tree out of different sources. But you mat

146

httpo://www.renderx.com/

http://www.codeproject.com/vcpp/stl/bimap.asp#test_suite
http://aspn.activestate.com/ASPN/Mail/Message/boost/1404881
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

aswell produce maps or something else. Herefor exampleAll that | need to do to "implement" similar functionality
as your property tree:

/| Data structure itself
t enpl at e<t ypenane Val ueType, t ypenane KeyType>
struct Node;
t enpl at e<t ypenane Val ueType, t ypenane KeyType>
struct ptree_gen {
typedef std:: pair<KeyType, Node<Val ueType, KeyType> > mi _val ue;
typedef multi_i ndex_container<m _val ue, indexed_by<...> > type
b
t enpl at e<t ypenane Val ueType, t ypenane KeyType>
struct Node {
Val ueType v;
ptree_gen<Val ueType, KeyType>: : type chil dren;
s
/'l serialization support
t enpl at e<cl ass Archive, typenane Val ueType, typenane KeyType>
voi d serialize(Archive & ar, Node<Val ueType, KeyType>& n
const unsigned int version)
{

ar & n.v;
ar & n.children;
}
/'l some access nethods
t enpl at e<t ypenane Val ueType, t ypenane KeyType>
Val ueType const &
get(string const& keys, ptree_gen<Val ueType, KeyType>::type const& src)

{

std::pait<string,string> sk = split(keys, ".");

Node const& N = src.find(sk.first);

return sk.second.enpty() ? N.v : get(sk.second, N children);
}

Useit like this:

ptree_gen<string, string>::type PT;

boost::archive::text_iarchive ia(std::ifstreamifs("filenane"));
ia >> PT,

string value = get("a.b.c.d", PT);

Now tell me how property_tree interface is easier? And what is the value in 50k of Code you need to implement
this data structure.

Thorsten
Seriously Gennadiy, do you really see newbies writing the code you just did?
Marcin

What you just implemented is stripped down, bare bones version of property_tree that, among other things, does
not allow you to produce human editable XML files. Now add moreinterface (aka get functions), add more archives
to serialization lib, add customization, add transparent translation from strings to arbitrary types and vice versa.
Foend some weeks trying to get all the corner casesright, and then some more weeks trying to smooth rough edges
in the interface. Then write tests. Write docs. At the end, | believe you will not get much less code than thereisin
the library already. Maybe you get some savings by using multi_index instead of manual indexing.

Thereason why ptree does not use multi index is because implementation existed long before | considered submitting
to boost, probably before even | knew of multi index existence. It was working well. Later, when | was improving

147

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Dave

it during pre-review process, | seriously considered using multi-index. But | decided it is not worth throwing
everything out.

Although ptree haslarge interface with many functions modifying state of the tree, it uses"single point of change'
approach. Every insert eventually goes through one function, which takes care of exception safety and keeping
index in sync with data. The same applies to erase. This function has 9 lines of code in case of insert, and (by co-
incidence) also 9 in case of erase. By using multi index these functions would obviously be simplified, maybe to 4
lines each. Net gain: 10 lines of code (out of several hundred in ptree_implementation.hpp).

I'm aware that there are performance gainsto be reaped as well, but at that time | was rather focusing on getting
the interface right.

That's perfectly reasonable, but (through no fault of yours) it missesthe point | wastrying to make. | guess| should
have said, "...that demonstratesit to be the best implementation."”

All I'm saying is that the extent to which a Boost library implementation should leverage other Boost librariesis
not a question that can always be decided based on following simple guidelines, and that if thislibrary is accepted,
it'sworth revisiting your decision.

Thorsten

Dani€l

Boris

Marcin

Boris

| think it isimportant to focus on the interface in the review, but | also see several benefits of an implementation
that builds on Boost.Multilndex:'

- fewer bugs like the one Joaquin found
- better space efficiency

- exception-safety guarantees areimmediately full-filled (I haven't looked, but | suspect that there are several bugs
inthisarea)

Multi_index supports everything a bimap would, but its interface is more cumbersome. | for one won't use a
W3DOM-like library if we get one, but | would happily use property_tree. I've also only used multi_index once,
and that wasto useit asa bidirectional map. Property_tree covers other areas aswell as being a potential subset
of an XML library, but | till hold there is value in such a subset.

| haven't used program_options yet. But if | understand correctly both libraries seem to support storing and ac-
cessing data with stringsthat might describe some kind of hierarchy. This seemsto be the coreidea of both libraries
- isthis correct?

Then it wouldn't matter much what container is used. However a generic tree which can store data hierarchically
probably makes most sense. If | understand correctly both libraries could make use of such a class?

| think generic tree container is material for another library. Whether property_tree should be based on it or not
isa matter of internal implementation, and generally of little interest to users. The biggest value of property_tree
isinits easy to use interface, that should not be compromised, if at all possible. | have been already reassured in
this view by quite many people who took their time to review the library.

| was trying to see the big picture: | rather prefer a C++ standard based on a few well-known concepts like con-
tainers, iterators, algorithms etc. instead of having a C++ standard with hundreds of components which are

148

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

tailored for specific needs, collaborate with only a handful of other components and think they provide an easy-
to-use interface while all the easy-to-use interfaces make the whole standard | ess easy-to-use.

That said | have used your property tree library myself to read and write a configuration file. It was indeed very
easy to use. However it would have been even easier if it was something | had known before like eg. an iterator.
For now | will definitely use your property tree library but would appreciate if existing concepts were reused many
C++ developers are familiar with. My opinion is that your library should be a part of Boost but should be more
generalized in the future.

Thorsten

Well, | think we need both. Boost.Multilndex is a great library and can do all kinds of wonderful things. But |
would still like to see a bidirectional map (boost:: bimap) written as a wrapper around it to get an easy and spe-
cialized interface.

Pavel
Bimap is available in libs/multi-index/exampl es/bimap.cpp.
Thorsten

Right, but the real value comes when somebody designs a nice STL-like interface and write docs etc, at least that
was my point.

Dave

IMO Thorsten is exactly right. This is precisely the sort of thing that could be added to the library as part of its
ongoing maintenance and devel opment (without review, of course).

Joaquin

Thorsten, we have talked about this privately in the past, but | feel like bringing it to thelist in the hope of getting
the attention of potential contributors:

There are some data structures buildable with B.MI which are regarded as particularly useful or common, like
for instance the bidirectional map or bimap. A lean and mean implementation is provided in the aforementioned
example, but certainly a much carefully crafted interface can be provided keeping B.MI as the implementation
core; operator[], selection of 1-1/1-N/N-1/N-N variants, hashing/ordering, etc.

I'm afraid | don't have the time to pursue this, as the current roadmap for core features of B.MI istaking all the
spare time | can dedicate to the library. For this reason, | would love to see some volunteer jumping in who can
develop this and other singular containers using B.MI (a cache container comes to mind) and then propose the
results here either as a stand alone library of as part of B.MI --1'd prefer the former so asto keep the size of B.MI
bounded.

If there's such a volunteer | can provide her with some help/mentoring. | also wonder whether thisisatask suitable
to be proposed for Google Summer of Code.

Thorsten

| think it would be good for SOC. All the really hard things are taken care of by B.MI, and so it seems reasonable
for a student to be able tofill in the details.

Dave
Great!
Jeff

Please write a proposal!

149

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Joaquin

I've just done so:

150

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Bimap

Specialized containerswith Boost.Multil ndex
I ntroduction

Boost.Multilndex allows the construction of complex data structuresinvolving two or more indexing mechanisms on the same
set of elements. Out of the unlimited range of possible data structures specifiable within Boost.Multilndex, some particular
configurations arise recurrently:

a. A bidirectional map or bimap is a container of elements of type pair<T,Q> where fast look up is provided both for the T
and the Q field, in contrast with aregular STL map which only allows for fast look up on T.

b. An MRU (most recently used) list keepsthe n last referenced elements: when anew item isinserted and the list has reached
its maximum length, the oldest element is erased, whereasiif an insertion istried of a preexistence element, this gets promoted
to the first position. MRU lists can be used to implement dynamic caches and the kind of behavior exhibited by programs
featuring a"Recent files' menu command, for instance.

Although Boost.Multilndex providesthe mechanismsto build these common structures, the resulting interface can be cumber-
some and too general in comparison with specialized containers focusing on such particular structures.

Goal

Towritealibrary of specialized containerslike the ones described above, using Boost.Multilndex as the implementation core.
Besides bimap and MRU list, the student can also propose other specialized containers of interest in the community. It is ex-
pected that the library meetsthe standards of quality required by Boost for an eventual inclusion in this project, which implies
a strong emphasis on interface design, documentation and unit testing; the mentor will be guiding the student through the
complete cycle from specification and requirements gathering to documentation and actual coding. The final result of the
project must then contain:

a. Source code following Boost programming guidelines.

b. User documentation. Requirements on the format are loose, though the QuickBook format is gaining acceptance within
Boost.

c. Complete set of unit tests powered by Boost Build System V2.
Requirements
a. Intermediate-to-high level in C++, with emphasisin generic programming (templates).

b. Knowledge of the STL framework and design principles. Of course, knowledge of Boost in general and Boost.Multilndex
in particular isabig plus.

¢. Acquaintance with at least two different C++ programming environments.

d. Somefluency in the English language; subsequent reviews of the documentation can help smooth rough edges here, though.
e. A mathematical inclination and previous exposure to a formal Algorithms course would help very much.

f. A craving for extreme quality work.

Benefitsfor the student

The student taking on this project will have the opportunity to learn the complete process of software production inside a
highly regarded C++ open source institution, and even see her work included in Boost eventually. The completion of the
project involves non-trivial problems in C++ interface design and so-called modern C++ programming, high quality user
documentation and unit testing. The student will also learn, perhapsto her surprise, that most of the time will be spent gathering
and trying ideas and, in general, thinking, rather than writing actual code.

Matias

151

http://boost.org/more/lib_guide.htm#Guidelines
http://www.boost.org/tools/quickbook/
http://www.boost.org/boost-build2/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

| amplanning to submit an application to SoC. | will love to make real the specialized containersyou mention and
try to include some useful others.

And then... after long hours of coding (and fun) this library saw the |ight.

boost

€ bimap

152

render -~

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Bimap

Acknowledgements

Thislibrary was devel oped in the context of the Google SoC 2006. | first want to thank my mentor, Joaquin, for hisfriendship during
this project. Not only did he help me go through the process of creating this library, but he also did his best so we could have a great
time doing it. Also, Boost.Bimap would not exist had Boost.Multilndex, Joaquin's masterpiece, not existed. Thanks alot!

Go gle

| want to thank Google for this amazing boost to the open-source community and to Boost mentors for trusting in my proposal in
thefirst place. Next on the list are my colleagues from SoC that helped me not get bored during the long hours of coding.

Special acknowledgements to the developers of the Boost libraries that Boost.Bimap has abused. See the dependencies section for
acomplete list.

| want to thank the open-source devel opers who wrote the tools | used during this project. The list of namesisinfinitely long, so |
give ageneral huge thanks here.

Thanks to Paul Giaccone for proof-reading this documentation. (He has not finished yet -- the remaining typos and spelling errors
are mine and will be corrected as soon as possible.)

Finally, thanksto my family, who had to see me at home all day during the SoC. Special thanksto my brother Agustin, future famous
novelist (at the present time heis 19 years old), who patiently read every word of these docs and while correcting them, barked at
me for my bad written English. | havelearned alot from his sermons. | want to thank my dog, Mafalda, too for barking all day from
my window and for being such a good company.

Thanks to Alisdair Meredith, Fernando Cacciola, Jeff Garland, John Maddock, Thorsten Ottosen, Tony and Giovanni Piero Deretta

for participating in the formal review and give me useful advices to improve this library. And thanks a lot to lon Gaztafiaga for
managing the review.

Boost.Bimap Team

From Argentina... Matias and Mafalda and from Spain... Joaquin and Hector

Luckily, the distance helps team members avoid eating each other.

153

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Bimap
	Table of Contents
	Preface
	Introduction
	One minute tutorial
	The tutorial
	Roadmap
	Discovering the bimap framework
	Interpreting bidirectional maps
	Standard mapping framework
	Bimap mapping framework

	Controlling collection types
	Freedom of choice
	Configuration parameters
	Examples

	The collection of relations type
	A new point of view
	Configuration parameters
	Examples

	Differences with standard maps
	Insertion
	iterator::value_type
	operator[] and at()
	Complexity of operations

	Useful functions
	Projection of iterators
	replace and modify
	Retrieval of ranges

	Bimaps with user defined names
	Unconstrained Sets
	Additional information
	Complete instantiation scheme

	Bimap and Boost
	Bimap and MultiIndex
	Boost Libraries that work well with Boost.Bimap
	Introduction
	Boost.Serialization
	Boost.Assign
	Boost.Hash
	Boost.Lambda
	Boost.Range
	Boost.Foreach
	Boost.Typeof
	Boost.Xpressive
	Boost.Property_map

	Dependencies

	Reference
	Headers
	Bimap Reference
	View concepts
	Complexity signature
	Set type specification
	Tags
	Header "boost/bimap/bimap.hpp" synopsis
	Class template bimap
	Complexity
	Instantiation types
	Nested types
	Constructors, copy and assignment
	Projection operations
	Support for user defined names
	Serialization

	set_of Reference
	Header "boost/bimap/set_of.hpp" synopsis
	Header "boost/bimap/multiset_of.hpp" synopsis
	Collection type specifiers set_of and multiset_of
	[multi]set_of Views
	Complexity signature
	Instantiation types
	Constructors, copy and assignment
	Modifiers
	Set operations
	Range operations
	at(), info_at() and operator[] - set_of only
	Serialization

	unordered_set_of Reference
	Header "boost/bimap/unordered_set_of.hpp" synopsis
	Header "boost/bimap/unordered_multiset_of.hpp" synopsis
	Collection type specifiers unordered_set_of and unordered_multiset_of
	unordered_[multi]set_of Views
	Complexity signature
	Instantiation types
	Nested types
	Constructors, copy and assignment
	Modifiers
	Lookup
	at(), info_at() and operator[] - set_of only
	Hash policy
	Serialization

	list_of Reference
	Header "boost/bimap/list_of.hpp" synopsis
	list_of Views
	Complexity signature
	Instantiation types
	Constructors, copy and assignment
	Capacity operations
	Modifiers
	List operations
	Rearrange operations
	Serialization

	vector_of Reference
	Header "boost/bimap/vector_of.hpp" synopsis
	vector_of views
	Complexity signature
	Instantiation types
	Constructors, copy and assignment
	Capacity operations
	Modifiers
	List operations
	Rearrange operations
	Serialization

	unconstrained_set_of Reference
	Header "boost/bimap/unconstrained_set_of.hpp" synopsis
	unconstrained_set_of Views
	Complexity signature
	Serialization

	Compiler specifics
	Performance
	Examples
	Examples list
	Simple Bimap
	Mighty Bimap
	MultiIndex to Bimap Path - Bidirectional Map
	MultiIndex to Bimap Path - Hashed indices

	Test suite
	Future work
	Release notes
	Rationale
	General Design
	Additional Features
	Code
	The student and the mentor

	History
	The long path from Code Project to Boost
	MultiIndex and Bimap

	Acknowledgements

