
Boost.LocalFunction 1.0.0
Lorenzo Caminiti <lorcaminiti@gmail.com>
Copyright © 2009-2012 Lorenzo Caminiti

Distributed under the Boost Software License, Version 1.0 (see accompanying file LICENSE_1_0.txt or a copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Introduction .. 2
Getting Started .. 4

This Documentation ... 4
Compilers and Platforms ... 4
Installation .. 4

Tutorial .. 6
Local Functions ... 6
Binding Variables ... 7
Binding the Object this ... 8
Templates ... 10

Advanced Topics .. 11
Default Parameters ... 11
Commas and Symbols in Macros ... 11
Assignments and Returns ... 13
Nesting ... 15
Accessing Types (concepts, etc) .. 15
Specifying Types (no Boost.Typeof) ... 16
Inlining .. 17
Recursion ... 18
Overloading .. 19
Exception Specifications .. 19
Storage Classifiers .. 20
Same Line Expansions .. 20
Limitations (operators, etc) ... 21

Examples .. 24
GCC Lambdas (without C++11) .. 24
Constant Blocks ... 25
Scope Exits ... 26
Boost.Phoenix Functions ... 27
Closures ... 28
GCC Nested Functions .. 29
N-Papers ... 29

Annex: Alternatives .. 30
Annex: No Variadic Macros .. 40
Annex: Implementation ... 43
Reference ... 46

Header <boost/local_function.hpp> ... 46
Header <boost/local_function/config.hpp> .. 52

Release Notes .. 55
Bibliography ... 57
Acknowledgments .. 58

This library allows to program functions locally, within other functions, and directly within the scope where they are needed.

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Introduction
Local functions (a.k.a., nested functions) are a form of information hiding and they are useful for dividing procedural tasks into
subtasks which are only meaningful locally, avoiding cluttering other parts of the program with functions, variables, etc unrelated
to those parts. Therefore, local functions complement other structuring possibilities such as namespaces and classes. Local functions
are a feature of many programming languages, notably Pascal and Ada, yet lacking from C++03 (see also [N2511]).

Using C++11 lambda functions, it is possible to implement local functions by naming lambda functions assigning them to local
variables. For example (see also add_cxx11_lambda.cpp):

int main(void) { // Some local scope.
int sum = 0, factor = 10; // Variables in scope to bind.

auto add = [factor, &sum](int num) { // C++11 only.
sum += factor * num;

};

add(1); // Call the lambda.
int nums[] = {2, 3};
std::for_each(nums, nums + 2, add); // Pass it to an algorithm.

BOOST_TEST(sum == 60); // Assert final summation value.
return boost::report_errors();

}

This library allows to program local functions portably between C++03 and C++11 (and with performances comparable to lambda
functions on C++11 compilers). For example (see also add.cpp):

int main(void) { // Some local scope.
int sum = 0, factor = 10; // Variables in scope to bind.

void BOOST_LOCAL_FUNCTION(const bind factor, bind& sum, int num) {
sum += factor * num;

} BOOST_LOCAL_FUNCTION_NAME(add)

add(1); // Call the local function.
int nums[] = {2, 3};
std::for_each(nums, nums + 2, add); // Pass it to an algorithm.

BOOST_TEST(sum == 60); // Assert final summation value.
return boost::report_errors();

}

This library supports the following features for local functions:

• Local functions can capture, or better bind, any of the variables from the enclosing scope (a function together with its captured
variables is also called a closure).

• The local function body is programmed using the usual C++ statement syntax (as a consequence, compiler errors and debugging
retain their usual meaning and format).

• Local functions can be passed as template parameters so they can be conveniently used with STL algorithms and other templates.
1

• However, local functions must be specified within a declarative context (e.g., at a point in the code where local variables can be
declared) thus they cannot be specified within expressions. 2

1 This is a strength with respect to C++03 functors implemented using local classes which cannot be passed as template parameters (see [N2657] and the Alternatives
section).
2 This is a weakness with respect to C++11 lambda functions which can instead be specified also within expressions (see the Alternatives section).

2

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Nested_function
http://en.wikipedia.org/wiki/Nested_function#An_example
http://en.wikipedia.org/wiki/Nesting_(computing)#In_programming
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2511.html
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/add_cxx11_lambda.cpp
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/JTC1/SC22/WG21/
http://www.open-std.org/JTC1/SC22/WG21/
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add.cpp
http://en.wikipedia.org/wiki/Name_binding
http://en.wikipedia.org/wiki/Closure_(computer_science)
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

See the Alternatives section for a comparison between this library, C++11 lambda functions, Boost.Phoenix, and other C++ techniques
that implement features related to local functions.

3

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.boost.org/libs/phoenix
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Getting Started
This section explains how to setup a system to use this library.

This Documentation
Programmers should have enough knowledge to use this library after reading the Introduction, Getting Started, and Tutorial sections.
The Advanced Topics and Reference sections can be consulted at a later point to gain a more advanced knowledge of the library.
All the other sections of this documentation can be considered optional.

Some footnotes are marked by the word "Rationale". They explain reasons behind decisions made during the design and implement-
ation of this library.

In most of the examples presented in this documentation, the Boost.Detail/LightweightTest (boost/detail/light-
weight_test.hpp) macro BOOST_TEST is used to check correctness conditions. The BOOST_TEST macro is conceptually similar
to assert but a failure of the checked condition does not abort the program, instead it makes boost::report_errors return a
non-zero program exit code. 3

Compilers and Platforms
The implementation of this library uses preprocessor and template meta-programming (as supported by Boost.Preprocessor and
Boost.MPL), templates with partial specializations and function pointers (similarly to Boost.Function), and automatic type deduction
(as supported by Boost.Typeof). The authors originally developed and tested the library on:

1. GNU Compiler Collection (GCC) C++ 4.5.1 on Ubuntu Linux 10.

2. GCC 4.3.4 and 4.5.3 (with and without C++11 features enabled -std=c++0x) on Cygwin.

3. Miscrosoft Visual C++ (MSVC) 8.0 on Windows XP and Windows 7.

See the library regressions test results for detailed information on supported compilers and platforms.

Installation
This library is composed of header files only. Therefore there is no pre-compiled object file which needs to be installed or linked.
Programmers can simply instruct the C++ compiler where to find the library header files (-I option for GCC, /I option for MSVC,
etc) and they can start compiling code using this library.

The library implementation uses Boost.Typeof to automatically deduce the types of bound variables (see the Tutorial section). In
order to compile code in type-of emulation mode, all types should be properly registered using BOOST_TYPEOF_REGISTER_TYPE
and BOOST_TYPEOF_REGISTER_TEMPLATE, or appropriate Boost.Typeof headers should be included (see the source code of most
examples presented in this documentation).

The followings are part of the library private API, they are not documented, and they should not be directly used by programmers:
4

• Any symbol defined by files within the boost/local_function/aux_/ or boost/local_function/detail/ directory
(these header files should not be directly included by programmers).

• Any symbol within the boost::local_function::aux or boost::local_function::detail namespace.

3 Rationale. Using Boost.Detail/LightweightTest allows to add the examples to the library regression tests so to make sure that they always compile and run correctly.
4 Rationale. This library concatenates symbols specified by the programmers (e.g., the local function name) with other symbols (e.g., special prefixes or file line
numbers) to make internal symbols with unique names to avoid name clashes. These symbols are separated by the letter "X" when they are concatenated so they read
more easily during debugging (the underscore character "_" could not be used instead of the letter "X" because if the original symbols already contained a leading
or trailing underscore, the concatenation could result in a symbol with double underscores "__" which is reserved by the C++ standard). The "aux" symbols are
private to this library while the "detail" symbols may be used within Boost by other libraries but they are still not part of this library public API.

4

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/local_function/doc/html/reference.html
http://www.boost.org/libs/preprocessor
http://www.boost.org/libs/mpl
http://www.boost.org/libs/function
http://www.boost.org/libs/typeof
http://www.open-std.org/JTC1/SC22/WG21/
http://www.boost.org/development/tests/release/developer/local_function.html
http://www.boost.org/libs/typeof
http://www.boost.org/libs/typeof
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Any symbol prefixed by boost_local_function_aux_... or boost_local_function_detail_... (regardless of its
namespace).

• Any symbol prefixed by BOOST_LOCAL_FUNCTION_AUX_... or BOOST_LOCAL_FUNCTION_DETAIL_... (regardless of its
namespace).

Some of the library behaviour can be changed at compile-time by defining special configuration macros. If a configuration macro
is left undefined, the library will use an appropriate default value for it. All configuration macros are defined in the header file
boost/local_function/config.hpp. It is strongly recommended not to change the library configuration macro definitions
unless strictly necessary.

5

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Tutorial
This section illustrates basic usage of this library.

Local Functions
Local functions are defined using macros from the header file boost/local_function.hpp. The macros must be used from
within a declarative context (this is a limitation with respect to C++11 lambda functions which can instead be declared also within
expressions):

#include <boost/local_function.hpp> // This library header.

...
{ // Some declarative context.

...
result-type BOOST_LOCAL_FUNCTION(parameters) {

body-code
} BOOST_LOCAL_FUNCTION_NAME(name)
...

}

The code expanded by the macros declares a function object (or functor) with the local function name specified by BOOST_LOC-
AL_FUNCTION_NAME. 5 The usual C++ scope visibility rules apply to local functions for which a local function is visible only
within the enclosing scope in which it is declared.

The local function result type is specified just before the BOOST_LOCAL_FUNCTION macro.

The local function body is specified using the usual C++ statement syntax in a code block { ... } between the BOOST_LOCAL_FUNC-
TION and BOOST_LOCAL_FUNCTION_NAME macros. The body is specified outside any of the macros so eventual compiler error
messages and related line numbers retain their usual meaning and format. 6

The local function parameters are passed to the BOOST_LOCAL_FUNCTION macro as a comma-separated list of tokens (see the No
Variadic Macros section for compilers that do not support variadic macros):

BOOST_LOCAL_FUNCTION(parameter-type1 parameter-name1, parameter-type2 parameter-name2, ...)

The maximum number of parameters that can be passed to a local function is controlled at compile-time by the configuration macro
BOOST_LOCAL_FUNCTION_CONFIG_ARITY_MAX. For example, let's program a local function named add that adds together two
integers x and y (see also add_params_only.cpp):

int BOOST_LOCAL_FUNCTION(int x, int y) { // Local function.
return x + y;

} BOOST_LOCAL_FUNCTION_NAME(add)

BOOST_TEST(add(1, 2) == 3); // Local function call.

If the local function has no parameter, it is possible to pass void to the BOOST_LOCAL_FUNCTION macro (similarly to the C++
syntax that allows to use result-type function-name(void) to declare a function with no parameter): 7

5 Rationale. The local function name must be passed to the macro BOOST_LOCAL_FUNCTION_NAME ending the function definition so this macro can declare
a local variable with the local function name to hold the local function object. Therefore the local function name cannot be specified within the BOOST_LOC-
AL_FUNCTION and it must appear instead after the local function body (even if that differs from the usual C++ function declaration syntax).
6 Rationale. If the local function body were instead passed as a macro parameter, it would be expanded on a single line of code (because macros always expand as
a single line of code). Therefore, eventual compiler error line numbers would all report the same value and would no longer be useful to pinpoint errors.
7 Rationale. The C++03 standard does not allow to pass empty parameters to a macro so the macro cannot be invoked as BOOST_LOCAL_FUNCTION(). On
C99 compilers with properly implemented empty macro parameter support, it would be possible to allow BOOST_LOCAL_FUNCTION() but this is already not
the case for MSVC so this syntax is never allowed to ensure better portability.

6

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/Functor
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_params_only.cpp
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/jtc1/sc22/wg14/www/projects#9899
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

BOOST_LOCAL_FUNCTION(void) // No parameter.

For example, let's program a local function that always returns 10 (see also ten_void.cpp):

int BOOST_LOCAL_FUNCTION(void) { // No parameter.
return 10;

} BOOST_LOCAL_FUNCTION_NAME(ten)

BOOST_TEST(ten() == 10);

Binding Variables
Variables in scope (local variables, enclosing function parameters, data members, etc) can be bound to a local function declaration.
Only bound variables, static variables, global variables, functions, and enumerations from the enclosing scope are accessible from
within the local function body. The types of bound variables are deduced automatically by this library using Boost.Typeof. 8

This library introduces the new "keyword" bind 9 which is used in place of the parameter type to specify the name of a variable in
scope to bind (therefore, bind cannot be used as a local function parameter type). A variable can be bound by value:

bind variable-name // Bind by value.

Or by reference prefixing the variable name with &:

bind& variable-name // Bind by reference.

Furthermore, the "keyword" bind can be prefixed by const to bind the variable by constant value:

const bind variable-name // Bind by constant value.

Or by constant reference:

const bind& variable-name // Bind by constant value.

Note that when const is used, it must always precede bind. 10

If a variable is bound by value, then a copy of the variable value is taken at the point of the local function declaration. If a variable
is bound by reference instead, the variable will refer to the value it has at the point of the local function call. Furthermore, it is the
programmers' responsibility to ensure that variables bound by reference survive the existence scope of the local function otherwise
the bound references will be invalid when the local function is called resulting in undefined behaviour (in other words, the usual
care in using C++ references must be taken for variables bound by reference).

The type of a bound variable is automatically deduced using Boost.Typeof and it is the exact same type used to declare such a variable
in the enclosing scope with the following notes:

8 Rationale. By binding a variable in scope, the local function declaration is specifying that such a variable should be accessible within the local function body re-
gardless of its type. Semantically, this binding should be seen as an "extension" of the scope of the bound variable from the enclosing scope to the scope of the local
function body. Therefore, contrary to the semantic of passing a function parameter, the semantic of binding a variable does not depend on the variable type but just
on the variable name: "The variable in scope named x should be accessible within the local function named f". For example, this reduces maintenance because if a
bound variable type is changed, the local function declaration does not have to change.
9 Obviously, the token bind is not a keyword of the C++ language. This library parses the token bind during macro expansion using preprocessor meta-programming
(see the Implementation section). Therefore, bind can be considered a new "keyword" only at the preprocessor meta-programming level within the syntax defined
by the macros of this library (thus it is referred to as a "keyword" only within quotes).
10 Rationale. The library macros could have been implemented to accept both syntaxes const bind ... and bind const ... equivalently. However,
handling both syntaxes would have complicated the macro implementation without adding any feature so only one syntax const bind ... is supported.

7

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/ten_void.cpp
http://www.boost.org/libs/typeof
http://www.boost.org/libs/typeof
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• If a bound variable was declared constant in the enclosing scope, it will always be bound by constant value or constant reference
even if bind... is used instead of const bind... . However, if a bound variable was not declared constant in the enclosing
scope then it will not be bound as constant unless constant binding is forced using const bind.... (Note that binding by constant
reference is not supported by C++11 lambda functions but it is supported by this library.) 11

• If a bound variable was declared as a reference in the enclosing scope, it will still be bound by value unless it is explicitly bound
by reference using bind& or const bind&. 12

When a variable is bound by value (constant or not), its type must be CopyConstructible (i.e., its must provide a copy constructor).
As with passing parameters to usual C++ functions, programmers might want to bind variables of complex types by (possibly constant)
reference instead of by value to avoid expensive copy operations when these variables are bound to a local function.

For example, let's program the local function add from the example in the Introduction section. We bind the local variable factor
by constant value (because its value should not be modified by the local function), the local variable sum by non-constant reference
(because its value needs to be updated with the summation result), and program the body to perform the summation (see also
add.cpp):

int main(void) { // Some local scope.
int sum = 0, factor = 10; // Variables in scope to bind.

void BOOST_LOCAL_FUNCTION(const bind factor, bind& sum, int num) {
sum += factor * num;

} BOOST_LOCAL_FUNCTION_NAME(add)

add(1); // Call the local function.
int nums[] = {2, 3};
std::for_each(nums, nums + 2, add); // Pass it to an algorithm.

BOOST_TEST(sum == 60); // Assert final summation value.
return boost::report_errors();

}

Binding the Object this
It is also possible to bind the object this when it is in scope (e.g., from an enclosing non-static member function). This is done by
using the special symbol this_ (instead of this) as the name of the variable to bind in the local function declaration and also to
access the object within the local function body. 13

11 An historical note: Constant binding of variables in scope was the main use case that originally motivated the authors in developing this library. The authors needed
to locally create a chuck of code to assert some correctness conditions while these assertions were not supposed to modify any of the variables they were using (see
the Contract++ library). This was achieved by binding by constant reference const bind& the variables needed by the assertions and then by programming the
local function body to check the assertions. This way if any of the assertions mistakenly changes a bound variable (for example confusing the operator == with =),
the compiler correctly generates an error because the bound variable is of const type within the local function body (see also constant blocks in the Examples
section).
12 Rationale. Variables originally declared as references are bound by value unless [const] bind& is used so that references can be bound by both value
[const] bind and reference [const] bind& (this is the same binding semantic adopted by Boost.ScopeExit). However, variables originally declared as
constants should never loose their const qualifier (to prevent their modification not just in the enclosing scope but also in the local scope) thus they are always
bound by constant even if bind[&] is used instead of const bind[&].
13 Rationale. The special name this_ was chosen following Boost practise to postfix with an underscore identifiers that are named after keywords (the C++
keyword this in this case). The special symbol this_ is needed because this is a reserved C++ keyword so it cannot be used as the name of the internal
parameter that passes the bound object to the local function body. It would have been possible to use this (instead of this_) within the local function body either
at the expenses of copying the bound object (which would introduce run-time overhead and also the stringent requirement that the bound object must have a deep
copy constructor) or by relying on an undefined behaviour of static_cast (which might not work on all platforms at the cost of portability).

8

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.boost.org/doc/libs/release/doc/html/CopyConstructible.html
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add.cpp
http://sourceforge.net/projects/contractpp
http://www.boost.org/libs/scope_exit
http://lists.boost.org/Archives/boost/2011/04/179729.php
http://groups.google.com/group/comp.lang.c++.moderated/browse_thread/thread/d3a86f27277f713b
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Warning

The library will generate a compile-time error if this is mistakenly used instead of this_ to bind the object in the
local function declaration. However, mistakenly using this instead of this_ to access the object within the local
function body will leads to undefined behaviour and it will not necessarily generate a compile-time error. 14 Pro-
grammers are ultimately responsible to make sure that this is never used within a local function.

The object this can be bound by value:

bind this_ // Bind the object `this` by value.

In this case the local function will be able to modify the object when the enclosing scope is not a constant member and it will not be
able to modify the object when the enclosing scope is a constant member. Otherwise, the object this can be bound by constant
value:

const bind this_ // Bind the object `this` by constant value.

In this case the local function will never be able to modify the object (regardless of whether the enclosing scope is a constant member
or not).

Note that the object this can never be bound by reference because C++ does not allow to obtain a reference to this (the library
will generate a compile-time error if programmers try to use bind& this_ or const bind& this_). Note that this is a pointer
so the pointed object is never copied even if this is bound by value (also it is not possible to directly bind *this because *this
is an expression and not a variable name).

For example, let's program a local function add similar to the one in the example from the Introduction section but using a member
function to illustrate how to bind the object this (see also add_this.cpp):

struct adder {
adder() : sum_(0) {}

int sum(const std::vector<int>& nums, const int factor = 10) {

void BOOST_LOCAL_FUNCTION(const bind factor, bind this_, int num) {
this_->sum_ += factor * num; // Use `this_` instead of `this`.

} BOOST_LOCAL_FUNCTION_NAME(add)

std::for_each(nums.begin(), nums.end(), add);
return sum_;

}

private:
int sum_;

};

Note that the local function has access to all class members via the bound object this_ regardless of their access level (public,
protected, or private). 15 Specifically, in the example above the local function updates the private data member sum_.

14 Rationale. The local function body cannot be a static member function of the local functor object in order to support recursion (because the local function name
is specified by the BOOST_LOCAL_FUNCTION_NAME macro only after the body so it must be made available via a functor data member named after the local
function and local classes cannot have static data members in C++) and nesting (because the argument binding variable must be declared as a data member so it is
visible in a local function nested within the body member function) -- see the Implementation section. Therefore, from within the local function body the variable
this is visible but it refers to the local functor and not to the bound object.
15 Rationale. This is possible because of the fix to C++ defect 45 that made inner and local types able to access all outer class members regardless of their access
level.

9

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_this.cpp
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#45
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Templates
When local functions are programmed within templates, they need to be declared using the special macros BOOST_LOCAL_FUNC-
TION_TPL and BOOST_LOCAL_FUNCTION_NAME_TPL: 16

#include <boost/local_function.hpp> // This library header.

...
{ // Some declarative context within a template.

...
result-type BOOST_LOCAL_FUNCTION_TPL(parameters) {

body-code
} BOOST_LOCAL_FUNCTION_NAME_TPL(name)
...

}

The BOOST_LOCAL_FUNCTION_TPL and BOOST_LOCAL_FUNCTION_NAME_TPL macros have the exact same syntax of the
BOOST_LOCAL_FUNCTION and BOOST_LOCAL_FUNCTION_NAME macros that we have seen so far.

For example, let's program a local function similar to the one from the Introduction section but within a template (see also
add_template.cpp):

template<typename T>
T total(const T& x, const T& y, const T& z) {

T sum = T(), factor = 10;

// Must use the `..._TPL` macros within templates.
T BOOST_LOCAL_FUNCTION_TPL(const bind factor, bind& sum, T num) {

return sum += factor * num;
} BOOST_LOCAL_FUNCTION_NAME_TPL(add)

add(x);
T nums[2]; nums[0] = y; nums[1] = z;
std::for_each(nums, nums + 2, add);

return sum;
}

16 Rationale. Within templates, this library needs to use typename to explicitly indicate that some expressions evaluate to a type. Because C++03 does not allow
to use typename outside templates, the special ..._TPL macros are used to indicate that the enclosing scope is a template so this library can safely use
typename to resolve expression type ambiguities. C++11 and other compilers might compile local functions within templates even when the ..._TPL macros
are not used. However, it is recommended to always use the ..._TPL macros within templates to maximize portability.

10

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_template.cpp
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/JTC1/SC22/WG21/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Advanced Topics
This section illustrates advanced usage of this library. At the bottom there is also a list of known limitations of this library.

Default Parameters
This library allows to specify default values for the local function parameters. However, the usual C++ syntax for default parameters
that uses the assignment symbol = cannot be used. 17 The keyword default is used instead:

parameter-type parameter-name, default parameter-default-value, ...

For example, let's program a local function add(x, y) where the second parameter y is optional and has a default value of 2 (see
also add_default.cpp):

int BOOST_LOCAL_FUNCTION(int x, int y, default 2) { // Default parameter.
return x + y;

} BOOST_LOCAL_FUNCTION_NAME(add)

BOOST_TEST(add(1) == 3);

Programmers can define a WITH_DEFAULT macro similar to the following if they think it improves readability over the above syntax
(see also add_with_default.cpp): 18

#define WITH_DEFAULT , default

int BOOST_LOCAL_FUNCTION(int x, int y WITH_DEFAULT 2) { // Default.
return x + y;

} BOOST_LOCAL_FUNCTION_NAME(add)

BOOST_TEST(add(1) == 3);

Commas and Symbols in Macros
The C++ preprocessor does not allow commas , within macro parameters unless they are wrapped by round parenthesis () (see the
Boost.Utility/IdentityType documentation for details). Therefore, using commas within local function parameters and bindings will
generate (cryptic) preprocessor errors unless they are wrapped with an extra set of round parenthesis () as explained here.

Note

Also macro parameters with commas wrapped by angular parenthesis <> (templates, etc) or square parenthesis []
(multidimensional array access, etc) need to be wrapped by the extra round parenthesis () as explained here (this
is because the preprocessor only recognizes the round parenthesis and it does not recognize angular, square, or any
other type of parenthesis). However, macro parameters with commas which are already wrapped by round paren-
thesis () are fine (function calls, some value expressions, etc).

17 Rationale. The assignment symbol = cannot be used to specify default parameter values because default values are not part of the parameter type so they cannot
be handled using template meta-programming. Default parameter values need to be separated from the rest of the parameter declaration using the preprocessor.
Specifically, this library needs to use preprocessor meta-programming to remove default values when constructing the local function type and also to count the
number of default values to provide the correct set of call operators for the local functor. Therefore, the symbol = cannot be used because it cannot be handled by
preprocessor meta-programming (non-alphanumeric symbols cannot be detected by preprocessor meta-programming because they cannot be concatenated by the
preprocessor).
18 The authors do not personally find the use of the WITH_DEFAULT macro more readable and they prefer to use the default keyword directly. Furthermore,
WITH_DEFAULT needs to be defined differently for compilers without variadic macros #define WITH_DEFAULT (default) so it can only be defined
by programmers based on the syntax they decide to use (see the No Variadic Macros section).

11

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_default.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_with_default.cpp
http://www.boost.org/libs/utility/identity_type
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

In addition, local function parameter types cannot start with non-alphanumeric symbols (alphanumeric symbols are A-Z, a-z, and
0-9). 19 The library will generate (cryptic) preprocessor errors if a parameter type starts with a non-alphanumeric symbol.

Let's consider the following example:

void BOOST_LOCAL_FUNCTION(
const std::map<std::string, size_t>& m, // (1) Error.
::sign_t sign, // (2) Error.
const size_t& factor,

default key_sizeof<std::string, size_t>::value, // (3) Error.
const std::string& separator, default cat(":", " ") // (4) OK.

) {
...

} BOOST_LOCAL_FUNCTION_NAME(f)

(1) The parameter type const std::map<std::string, size_t>& contains a comma , after the first template parameter
std::string. This comma is not wrapped by any round parenthesis () thus it will cause a preprocessor error. 20 The Boost.Util-
ity/IdentityType macro BOOST_IDENTITY_TYPE((type-with-commas)) defined in the boost/utility/identity_type.hpp
header can be used to wrap a type within extra parenthesis () so to overcome this problem:

#include <boost/utility/identity_type.hpp>

void BOOST_LOCAL_FUNCTION(
BOOST_IDENTITY_TYPE((const std::map<std::string, size_t>&)) m, // OK.
...

) {
...

} BOOST_LOCAL_FUNCTION_NAME(f)

This macro expands to an expression that evaluates (at compile-time) exactly to the specified type (furthermore, this macro does not
use variadic macros so it works on any C++03 compiler). Note that a total of two set of parenthesis () are needed: The parenthesis
to invoke the BOOST_IDENTITY_TYPE(...) macro plus the parenthesis to wrap the type expression (and therefore any comma ,
that it contains) passed as parameter to the BOOST_IDENTITY_TYPE((...)) macro. Finally, the BOOST_IDENTITY_TYPE macro
must be prefixed by the typename keyword typename BOOST_IDENTITY_TYPE(parenthesized-type) when used together
with the BOOST_LOCAL_FUNCTION_TPL macro within templates.

Note

Often, there might be better ways to overcome this limitation that lead to code which is more readable than the one
using the BOOST_IDENTITY_TYPE macro.

For example, in this case a typedef from the enclosing scope could have been used to obtain the following valid and perhaps more
readable code:

typedef std::map<std::string, size_t> map_type;
void BOOST_LOCAL_FUNCTION(

const map_type& m, // OK (and more readable).
...

) BOOST_LOCAL_FUNCTION_NAME(f)

(2) The parameter type ::sign_t starts with the non-alphanumeric symbols :: thus it will generate preprocessor errors if used as
a local function parameter type. The BOOST_IDENTITY_TYPE macro can also be used to overcome this issue:

19 Rationale. This limitation is because this library uses preprocessor token concatenation ## to inspect the macro parameters (to distinguish between function
parameters, bound variables, etc) and the C++ preprocessor does not allow to concatenate non-alphanumeric tokens.
20 The preprocessor always interprets unwrapped commas as separating macro parameters. Thus in this case the comma will indicate to the preprocessor that the first
macro parameter is const std::map<std::tring, the second macro parameter is size_t>& m, etc instead of passing const
std::map<std::string, size_t>& m as a single macro parameter.

12

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/utility/identity_type
http://www.boost.org/libs/utility/identity_type
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void BOOST_LOCAL_FUNCTION(
...
BOOST_IDENTITY_TYPE((::sign_t)) sign, // OK.
...

) {
...

} BOOST_LOCAL_FUNCTION_NAME(f)

Note

Often, there might be better ways to overcome this limitation that lead to code which is more readable than the one
using the BOOST_IDENTITY_TYPE macro.

For example, in this case the symbols :: could have been simply dropped to obtain the following valid and perhaps more readable
code:

void BOOST_LOCAL_FUNCTION(
...
sign_t sign, // OK (and more readable).
...

) {
...

} BOOST_LOCAL_FUNCTION_NAME(f)

(3) The default parameter value key_sizeof<std::string, size_t>::value contains a comma , after the first template
parameter std::string. Again, this comma is not wrapped by any parenthesis () so it will cause a preprocessor error. Because
this is a value expression (and not a type expression), it can simply be wrapped within an extra set of round parenthesis ():

void BOOST_LOCAL_FUNCTION(
...
const size_t& factor,

default (key_sizeof<std::string, size_t>::value), // OK.
...

) {
...

} BOOST_LOCAL_FUNCTION_NAME(f)

(4) The default parameter value cat(":", " ") is instead fine because it contains a comma , which is already wrapped by the
parenthesis () of the function call cat(...).

Consider the following complete example (see also macro_commas.cpp):

void BOOST_LOCAL_FUNCTION(
BOOST_IDENTITY_TYPE((const std::map<std::string, size_t>&)) m,
BOOST_IDENTITY_TYPE((::sign_t)) sign,
const size_t& factor,

default (key_sizeof<std::string, size_t>::value),
const std::string& separator, default cat(":", " ")

) {
// Do something...

} BOOST_LOCAL_FUNCTION_NAME(f)

Assignments and Returns
Local functions are function objects so it is possible to assign them to other functors like Boost.Function's boost::function in
order to store the local function into a variable, pass it as a parameter to another function, or return it from the enclosing function.

13

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/macro_commas.cpp
http://www.boost.org/libs/function
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

For example (see also return_assign.cpp):

void call1(boost::function<int (int) > f) { BOOST_TEST(f(1) == 5); }
void call0(boost::function<int (void)> f) { BOOST_TEST(f() == 5); }

boost::function<int (int, int)> linear(const int& slope) {
int BOOST_LOCAL_FUNCTION(const bind& slope,

int x, default 1, int y, default 2) {
return x + slope * y;

} BOOST_LOCAL_FUNCTION_NAME(lin)

boost::function<int (int, int)> f = lin; // Assign to local variable.
BOOST_TEST(f(1, 2) == 5);

call1(lin); // Pass to other functions.
call0(lin);

return lin; // Return.
}

void call(void) {
boost::function<int (int, int)> f = linear(2);
BOOST_TEST(f(1, 2) == 5);

}

Warning

As with C++11 lambda functions, programmers are responsible to ensure that bound variables are valid in any scope
where the local function object is called. Returning and calling a local function outside its declaration scope will
lead to undefined behaviour if any of the bound variable is no longer valid in the scope where the local function is
called (see the Examples section for more examples on the extra care needed when returning a local function as a
closure). It is always safe instead to call a local function within its enclosing scope.

In addition, a local function can bind and call other local functions. Local functions should always be bound by constant reference
const bind& to avoid unnecessary copies. For example, the following local function inc_sum binds the local function inc so
inc_sum can call inc (see aslo transform.cpp):

int offset = 5;
std::vector<int> v;
std::vector<int> w;

for(int i = 1; i <= 2; ++i) v.push_back(i * 10);
BOOST_TEST(v[0] == 10); BOOST_TEST(v[1] == 20);
w.resize(v.size());

int BOOST_LOCAL_FUNCTION(const bind& offset, int i) {
return ++i + offset;

} BOOST_LOCAL_FUNCTION_NAME(inc)

std::transform(v.begin(), v.end(), w.begin(), inc);
BOOST_TEST(w[0] == 16); BOOST_TEST(w[1] == 26);

int BOOST_LOCAL_FUNCTION(bind& inc, int i, int j) {
return inc(i + j); // Call the other bound local function.

} BOOST_LOCAL_FUNCTION_NAME(inc_sum)

offset = 0;
std::transform(v.begin(), v.end(), w.begin(), v.begin(), inc_sum);
BOOST_TEST(v[0] == 27); BOOST_TEST(v[1] == 47);

14

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/return_assign.cpp
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/transform.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Nesting
It is possible to nest local functions into one another. For example (see also nesting.cpp):

int x = 0;

void BOOST_LOCAL_FUNCTION(bind& x) {
void BOOST_LOCAL_FUNCTION(bind& x) { // Nested.

x++;
} BOOST_LOCAL_FUNCTION_NAME(g)

x--;
g(); // Nested local function call.

} BOOST_LOCAL_FUNCTION_NAME(f)

f();

Accessing Types (concepts, etc)
This library never requires to explicitly specify the type of bound variables (e.g., this reduces maintenance because the local function
declaration and definition do not have to change even if the bound variable types change as long as the semantics of the local function
remain valid). From within local functions, programmers can access the type of a bound variable using the following macro:

BOOST_LOCAL_FUNCTION_TYPEOF(bound-variable-name)

The BOOST_LOCAL_FUNCTION_TYPEOF macro expands to a type expression that evaluates (at compile-time) to the fully qualified
type of the bound variable with the specified name. This type expression is fully qualified in the sense that it will be constant if the
variable is bound by constant const bind[&] and it will also be a reference if the variable is bound by reference [const] bind&

(if needed, programmers can remove the const and & qualifiers using boost::remove_const and boost::remove_reference,
see Boost.TypeTraits).

The deduced bound type can be used within the body to check concepts, declare local variables, etc. For example (see also typeof.cpp
and addable.hpp):

int sum = 0, factor = 10;

void BOOST_LOCAL_FUNCTION(const bind factor, bind& sum, int num) {
// Type-of for concept checking.
BOOST_CONCEPT_ASSERT((Addable<boost::remove_reference<

BOOST_LOCAL_FUNCTION_TYPEOF(sum)>::type>));
// Type-of for declarations.
boost::remove_reference<BOOST_LOCAL_FUNCTION_TYPEOF(

factor)>::type mult = factor * num;
sum += mult;

} BOOST_LOCAL_FUNCTION_NAME(add)

add(6);

Within templates, BOOST_LOCAL_FUNCTION_TYPEOF should not be prefixed by the typename keyword but eventual type manip-
ulations need the typename prefix as usual (see also typeof_template.cpp and addable.hpp):

15

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/nesting.cpp
http://www.boost.org/libs/type_traits
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/typeof.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/addable.hpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/typeof_template.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/addable.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<typename T>
T calculate(const T& factor) {

T sum = 0;

void BOOST_LOCAL_FUNCTION_TPL(const bind factor, bind& sum, T num) {
// Local function `TYPEOF` does not need `typename`.
BOOST_CONCEPT_ASSERT((Addable<typename boost::remove_reference<

BOOST_LOCAL_FUNCTION_TYPEOF(sum)>::type>));
sum += factor * num;

} BOOST_LOCAL_FUNCTION_NAME_TPL(add)

add(6);
return sum;

}

In this context, it is best to use the BOOST_LOCAL_FUNCTION_TYPEOF macro instead of using Boost.Typeof to reduce the number
of times that Boost.Typeof is invoked (either the library already internally used Boost.Typeof once, in which case using this macro
will not use Boost.Typeof again, or the bound variable type is explicitly specified by programmers as shown be below, in which
case using this macro will not use Boost.Typeof at all).

Furthermore, within the local function body it possible to access the result type using result_type, the type of the first parameter
using arg1_type, the type of the second parameter using arg2_type, etc. 21

Specifying Types (no Boost.Typeof)
While not required, it is possible to explicitly specify the type of bound variables so the library will not internally use Boost.Typeof
to automatically deduce the types. When specified, the bound variable type must follow the bind "keyword" and it must be wrapped
within round parenthesis ():

bind(variable-type) variable-name // Bind by value with explicit type.
bind(variable-type)& variable-name // Bind by reference with explicit type.
const bind(variable-type) variable-name // Bind by constant value with explicit type.
const bind(variable-type)& variable-name // Bind by constant reference with explicit type.
bind(class-type*) this_ // Bind object `this` with explicit type.
const bind(class-type*) this_ // Bind object `this` by constant with explicit type.

Note that within the local function body it is always possible to abstract the access to the type of a bound variable using
BOOST_LOCAL_FUNCTION_TYPEOF (even when the bound variable type is explicitly specified in the local function declaration).

The library also uses Boost.Typeof to determine the local function result type (because this type is specified outside the
BOOST_LOCAL_FUNCTION macro). Thus it is also possible to specify the local function result type as one of the BOOST_LOCAL_FUNC-
TION macro parameters prefixing it by return so the library will not use Boost.Typeof to deduce the result type:

BOOST_LOCAL_FUNCTION_TYPE(return result-type, ...)

Note that the result type must be specified only once either before the macro (without the return prefix) or as one of the macro
parameters (with the return prefix). As always, the result type can be void to declare a function that returns nothing (so return
void is allowed when the result type is specified as one of the macro parameters).

The following example specifies all bound variables and result types (see also add_typed.cpp): 22

21 Rationale. The type names result_type and argN_type follow the Boost.TypeTraits naming conventions for function traits.
22 In the examples of this documentation, bound variables, function parameters, and the result type are specified in this order because this is the order used by C++11
lambda functions. However, the library accepts bound variables, function parameters, and the result type in any order.

16

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/typeof
http://www.boost.org/libs/typeof
http://www.boost.org/libs/typeof
http://www.boost.org/libs/typeof
http://www.boost.org/libs/typeof
http://www.boost.org/libs/typeof
http://www.boost.org/libs/typeof
http://www.boost.org/libs/typeof
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_typed.cpp
http://www.boost.org/libs/type_traits
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct adder {
adder(void) : sum_(0) {}

int sum(const std::vector<int>& nums, const int& factor = 10) {
// Explicitly specify bound variable and return types (no type-of).
BOOST_LOCAL_FUNCTION(const bind(const int&) factor,

bind(adder*) this_, int num, return int) {
return this_->sum_ += factor * num;

} BOOST_LOCAL_FUNCTION_NAME(add)

std::for_each(nums.begin(), nums.end(), add);
return sum_;

}

private:
int sum_;

};

Unless necessary, it is recommended to not specify the bound variable and result types. Let the library deduce these types so the
local function syntax will be more concise and the local function declaration will not have to change if a bound variable type changes
(reducing maintenance).

Note

When all bound variable and result types are explicitly specified, the library implementation will not use Boost.Typeof.

Inlining
Local functions can be declared inline to increase the chances that the compiler will be able to reduce the run-time of the local
function call by inlining the generated assembly code. A local function is declared inline by prefixing its name with the keyword
inline:

result-type BOOST_LOCAL_FUNCTION(parameters) {
... // Body.

} BOOST_LOCAL_FUNCTION_NAME(inline name) // Inlining.

When inlining a local function, note the following:

• On C++03 compliant compilers, inline local functions always have a run-time comparable to their equivalent implementation that
uses local functors (see the Alternatives section). However, inline local functions have the important limitation that they cannot
be assigned to other functors (like boost::function) and they cannot be passed as template parameters.

• On C++11 compilers, inline has no effect because this library will automatically generate code that uses C++11 specific features
to inline the local function calls whenever possible even if the local function is not declared inline. Furthermore, non C++11 local
functions can always be passes as template parameters even when they are declared inline. 23

23 Rationale. This library uses an indirect function call via a function pointer in order to pass the local function as a template parameter (see the Implementation
section). No compiler has yet been observed to be able to inline function calls when they use such indirect function pointer calls. Therefore, inline local functions do
not use such indirect function pointer call (so they are more likely to be optimized) but because of that they cannot be passed as template parameters. The indirect
function pointer call is needed on C++03 but it is not needed on C++11 (see [N2657] and Boost.Config's BOOST_NO_LOCAL_CLASS_TEMPLATE_PARA-
METERS) thus this library automatically generates local function calls that can be inline on C++11 compilers (even when the local function is not declared inline).

17

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/typeof
http://en.wikipedia.org/wiki/Inline_function
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/JTC1/SC22/WG21/
http://www.open-std.org/JTC1/SC22/WG21/
http://www.open-std.org/JTC1/SC22/WG21/
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/JTC1/SC22/WG21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm
http://www.boost.org/libs/chrono
http://www.open-std.org/JTC1/SC22/WG21/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Important

It is recommended to not declare a local function inline unless it is strictly necessary for optimizing pure C++03
compliant code (because in all other cases this library will automatically take advantage of C++11 features to optimize
the local function calls while always allowing to pass the local function as a template parameter).

For example, the following local function is declared inline (thus a for-loop needs to be used for portability instead of passing the
local function as a template parameter to the std::for_each algorithm, see also add_inline.cpp):

int sum = 0, factor = 10;

void BOOST_LOCAL_FUNCTION(const bind factor, bind& sum, int num) {
sum += factor * num;

} BOOST_LOCAL_FUNCTION_NAME(inline add) // Inlining.

std::vector<int> v(100);
std::fill(v.begin(), v.end(), 1);

for(size_t i = 0; i < v.size(); ++i) add(v[i]); // Cannot use for_each.

Recursion
Local functions can be declared recursive so a local function can recursively call itself from its body (as usual with C++ functions).
A local function is declared recursive by prefixing its name with the recursive "keyword" (thus recursive cannot be used as a
local function name):

result-type BOOST_LOCAL_FUNCTION(parameters) {
... // Body.

} BOOST_LOCAL_FUNCTION_NAME(recursive name) // Recursive.

For example, the following local function is used to recursively calculate the factorials of all the numbers in the specified vector (see
also factorial.cpp):

struct calculator {
std::vector<int> results;

void factorials(const std::vector<int>& nums) {
int BOOST_LOCAL_FUNCTION(bind this_, int num,

bool recursion, default false) {
int result = 0;

if(num <= 0) result = 1;
else result = num * factorial(num - 1, true); // Recursive call.

if(!recursion) this_->results.push_back(result);
return result;

} BOOST_LOCAL_FUNCTION_NAME(recursive factorial) // Recursive.

std::for_each(nums.begin(), nums.end(), factorial);
}

};

Compilers have not been observed to be able to inline recursive local function calls not even when the recursive local function is
also declared inline:

... BOOST_LOCAL_FUNCTION_NAME(inline recursive factorial)

18

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/JTC1/SC22/WG21/
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_inline.cpp
http://en.wikipedia.org/wiki/Recursion_(computer_science)#Recursive_procedures
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/factorial.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Recursive local functions should never be called outside their declaration scope. 24

Warning

If a local function is returned from the enclosing function and called in a different scope, the behaviour is undefined
(and it will likely result in a run-time error).

This is not a limitation with respect to C++11 lambda functions because lambdas can never call themselves recursively (in other
words, there is no recursive lambda function that can successfully be called outside its declaration scope because there is no recursive
lambda function at all).

Overloading
Because local functions are functors, it is possible to overload them using the boost::overloaded_function functor of
Boost.Functional/OverloadedFunction from the boost/functional/overloaded_function.hpp header (see the Boost.Func-
tional/OverloadedFunction documentation for details).

In the following example, the overloaded function object add can be called with signatures from either the local function add_s, or
the local function add_d, or the local function add_d with its extra default parameter, or the function pointer add_i (see also
overload.cpp):

int add_i(int x, int y) { return x + y; }

std::string s = "abc";
std::string BOOST_LOCAL_FUNCTION(

const bind& s, const std::string& x) {
return s + x;

} BOOST_LOCAL_FUNCTION_NAME(add_s)

double d = 1.23;
double BOOST_LOCAL_FUNCTION(const bind d, double x, double y, default 0) {

return d + x + y;
} BOOST_LOCAL_FUNCTION_NAME(add_d)

boost::overloaded_function<
std::string (const std::string&)

, double (double)
, double (double, double) // Overload giving default param.
, int (int, int)

> add(add_s, add_d, add_d, add_i); // Overloaded function object.

BOOST_TEST(add("xyz") == "abcxyz"); // Call `add_s`.
BOOST_TEST((4.44 - add(3.21)) <= 0.001); // Call `add_d` (no default).
BOOST_TEST((44.44 - add(3.21, 40.0)) <= 0.001); // Call `add_d`.
BOOST_TEST(add(1, 2) == 3); // Call `add_i`.

Exception Specifications
It is possible to program exception specifications for local functions by specifying them after the BOOST_LOCAL_FUNCTION macro
and before the body code block { ... }.

24 Rationale. This limitation comes from the fact that the global functor used to pass the local function as a template parameter (and eventually returned outside the
declarations scope) does not know the local function name so the local function name used for recursive call cannot be set in the global functor. This limitation to-
gether with preventing the possibility for inlining are the reasons why local functions are not recursive unless programmers explicitly declare them recursive.

19

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.boost.org/libs/functional/overloaded_function
http://www.boost.org/libs/functional/overloaded_function
http://www.boost.org/libs/functional/overloaded_function
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/overload.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Important

Note that the exception specifications only apply to the body code specified by programmers and they do not apply
to the rest of the code automatically generated by the macro expansions to implement local functions. For example,
even if the body code is specified to throw no exception using throw () { ... }, the execution of the library
code automatically generated by the macros could still throw (if there is no memory, etc).

For example (see also add_except.cpp):

double sum = 0.0;
int factor = 10;

void BOOST_LOCAL_FUNCTION(const bind factor, bind& sum,
double num) throw() { // Throw nothing.

sum += factor * num;
} BOOST_LOCAL_FUNCTION_NAME(add)

add(100);

Storage Classifiers
Local function parameters support the storage classifiers as usual in C++03. The auto storage classifier is specified as: 25

auto parameter-type parameter-name

The register storage classifier is specified as:

register parameter-type parameter-name

For example (see also add_classifiers.cpp):

int BOOST_LOCAL_FUNCTION(auto int x, register int y) { // Classifiers.
return x + y;

} BOOST_LOCAL_FUNCTION_NAME(add)

Same Line Expansions
In general, it is not possible to expand the BOOST_LOCAL_FUNCTION, BOOST_LOCAL_FUNCTION_TPL macros multiple times on
the same line. 26

Therefore, this library provides additional macros BOOST_LOCAL_FUNCTION_ID and BOOST_LOCAL_FUNCTION_ID_TPL which
can be expanded multiple times on the same line as long as programmers specify unique identifiers as the macros' first parameters.
The unique identifier can be any token (not just numeric) that can be successfully concatenated by the preprocessor (e.g., local_func-
tion_number_1_at_line_123). 27

25 The auto storage classifier is part of the C++03 standard and therefore supported by this library. However, the meaning and usage of the auto keyword changed
in C++11. Therefore, use the auto storage classifier with the usual care in order to avoid writing C++03 code that might not work on C++11.
26 Rationale. The BOOST_LOCAL_FUNCTION and BOOST_LOCAL_FUNCTION_TPL macros internally use __LINE__ to generate unique identifiers.
Therefore, if these macros are expanded more than on time on the same line, the generated identifiers will no longer be unique and the code will not compile. (This
restriction does not apply to MSVC and other compilers that provide the non-standard __COUNTER__ macro.) Note that the BOOST_LOCAL_FUNCTION_NAME
macro can always be expanded multiple times on the same line because the unique local function name (and not __LINE__) is used by this macro to generate
unique identifiers (so there is no need for a BOOST_LOCAL_FUNCTION_NAME_ID macro).
27 Because there are restrictions on the set of tokens that the preprocessor can concatenate and because not all compilers correctly implement these restrictions, it is
in general recommended to specify unique identifiers as a combination of alphanumeric tokens.

20

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_except.cpp
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_classifiers.cpp
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/JTC1/SC22/WG21/
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/JTC1/SC22/WG21/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The BOOST_LOCAL_FUNCTION_ID and BOOST_LOCAL_FUNCTION_ID_TPL macros accept local function parameter declaration
lists using the exact same syntax as BOOST_LOCAL_FUNCTION. For example (see also same_line.cpp):

#define LOCAL_INC_DEC(offset) \
int BOOST_LOCAL_FUNCTION_ID(BOOST_PP_CAT(inc, __LINE__), /* unique ID */ \

const bind offset, const int x) { \
return x + offset; \

} BOOST_LOCAL_FUNCTION_NAME(inc) \
\
int BOOST_LOCAL_FUNCTION_ID(BOOST_PP_CAT(dec, __LINE__), \

const bind offset, const int x) { \
return x - offset; \

} BOOST_LOCAL_FUNCTION_NAME(dec)

#define LOCAL_INC_DEC_TPL(offset) \
T BOOST_LOCAL_FUNCTION_ID_TPL(BOOST_PP_CAT(inc, __LINE__), \

const bind offset, const T x) { \
return x + offset; \

} BOOST_LOCAL_FUNCTION_NAME_TPL(inc) \
\
T BOOST_LOCAL_FUNCTION_ID_TPL(BOOST_PP_CAT(dec, __LINE__), \

const bind offset, const T x) { \
return x - offset; \

} BOOST_LOCAL_FUNCTION_NAME_TPL(dec)

template<typename T>
void f(T& delta) {

LOCAL_INC_DEC_TPL(delta) // Multiple local functions on same line.
BOOST_TEST(dec(inc(123)) == 123);

}

int main(void) {
int delta = 10;
LOCAL_INC_DEC(delta) // Multiple local functions on same line.
BOOST_TEST(dec(inc(123)) == 123);
f(delta);
return boost::report_errors();

}

As shown by the example above, the BOOST_LOCAL_FUNCTION_ID and BOOST_LOCAL_FUNCTION_ID_TPL macros are especially
useful when it is necessary to invoke them multiple times within a user-defined macro (because the preprocessor expands all nested
macros on the same line).

Limitations (operators, etc)
The following table summarizes all C++ function features indicating those features that are not supported by this library for local
functions.

21

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/same_line.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

CommentLocal Function SupportC++ Function Feature

This is not supported because local func-
tions cannot be templates (plus most C++
compilers do not implement export at
all).

No.export

This is not supported because local func-
tions are implemented using local classes
and C++03 local classes cannot be tem-
plates.

No.template<template-parameter-

list>

This is not supported because local func-
tions are not constructors.

No.explicit

Local functions can be specified inline
to improve the chances that C++03 com-
pilers can optimize the local function call
run-time (but inline local functions
cannot be passed as template parameters
on C++03 compilers, see the Advanced
Topics section).

Yes.inline

This is not supported because local func-
tions are always defined locally within
the enclosing scope and together with
their declarations.

No.extern

This is not supported because local func-
tions are not member functions.

No.static

This is not supported because local func-
tions are not member functions. a

No.virtual

This is supported (see the Tutorial sec-
tion).

Yes.result-type

Local functions are named and they can
call themselves recursively but they can-
not be operators (see the Tutorial and
Advanced Topics sections).

Yes.function-name

This is supported and it also supports the
auto and register storage classifiers,
default parameters, and binding of vari-
ables in scope (see the Tutorial and Ad-
vanced Topics sections).

Yes.parameter-list

This is not supported because local func-
tions are not member functions.

No.Trailing const qualifier

This is not supported because local func-
tions are not member functions.

No.Trailing volatile qualifier

a Rationale. It would be possible to make a local function class inherit from another local function class. However, this "inheritance" feature is not implemented
because it seemed of no use given that local functions can be bound to one another thus they can simply call each other directly without recurring to dynamic binding
or base function calls.

22

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://lists.boost.org/Archives/boost/2010/09/170895.php
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Operators

Local functions cannot be operators. Naming a local function operator... will generate a compile-time error. 28

For example, the following code does not compile (see also operator_error.cpp):

bool BOOST_LOCAL_FUNCTION(const point& p, const point& q) {
return p.x == q.x && p.y == q.y;

} BOOST_LOCAL_FUNCTION_NAME(operator==) // Error: Cannot use `operator...`.

Goto

It is possible to jump with a goto within the local function body. For example, the following compiles (see also goto.cpp):

int error(int x, int y) {
int BOOST_LOCAL_FUNCTION(int z) {

if(z > 0) goto success; // OK: Can jump within local function.
return -1;

success:
return 0;

} BOOST_LOCAL_FUNCTION_NAME(validate)

return validate(x + y);
}

However, it is not possible to jump with a goto from within the local function body to to a label defined in the enclosing scope. For
example, the following does not compile (see also goto_error.cpp):

int error(int x, int y) {
int BOOST_LOCAL_FUNCTION(int z) {

if(z <= 0) goto failure; // Error: Cannot jump to enclosing scope.
else goto success; // OK: Can jump within local function.

success:
return 0;

} BOOST_LOCAL_FUNCTION_NAME(validate)

return validate(x + y);
failure:

return -1;
}

28 Rationale. This is the because a local function name must be a valid local variable name (the local variable used to hold the local functor) and operators cannot
be used as local variable names.

23

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/operator_error.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/goto.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/goto_error.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples
This section lists some examples that use this library.

GCC Lambdas (without C++11)
Combing local functions with the non-standard statement expression extension of the GCC compiler, it is possible to implement
lambda functions for GCC compilers even without C++11 support.

Warning

This code only works on compilers that support GCC statement expression extension or that support C++11 lambda
functions.

For example (see also gcc_lambda.cpp and gcc_cxx11_lambda.cpp):

C++11 LambdasWith Local Functions (GCC only)

int val = 2;
int nums[] = {1, 2, 3};
int* end = nums + 3;

int* iter = std::find_if(nums, end,
[val](int num) -> bool {

return num == val;
}

);

int val = 2;
int nums[] = {1, 2, 3};
int* end = nums + 3;

int* iter = std::find_if(nums, end,
GCC_LAMBDA(const bind val, int num, re↵

turn bool) {
return num == val;

} GCC_LAMBDA_END
);

The GCC lambda function macros are implemented using local functions (see also gcc_lambda.hpp):

define GCC_LAMBDA_(binds, params, results) \
({ /* open statement expression (GCC extension only) */ \
BOOST_LOCAL_FUNCTION(\

BOOST_PP_LIST_ENUM(BOOST_PP_LIST_APPEND(binds, \
BOOST_PP_LIST_APPEND(params, \

BOOST_PP_IIF(BOOST_PP_LIST_IS_NIL(results), \
(return void, BOOST_PP_NIL) /* default for lambdas */ \

, \
results \

)\
) \

)) \
)

#define GCC_LAMBDA_END_(id) \
BOOST_LOCAL_FUNCTION_NAME(BOOST_PP_CAT(gcc_lambda_, id)) \
BOOST_PP_CAT(gcc_lambda_, id); \
}) /* close statement expression (GCC extension only) */

This is possible because GCC statement expressions allow to use declaration statements within expressions and therefore to declare
a local function within an expression. The macros automatically detect if the compiler supports C++11 lambda functions in which
case the implementation uses native lambdas instead of local functions in GCC statement expressions. However, C++11 lambda
functions do not support constant binding so it is best to only use const bind variable (same as =variable for C++11 lambda

24

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://gcc.gnu.org/onlinedocs/gcc/Statement-Exprs.html
http://www.open-std.org/JTC1/SC22/WG21/
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/gcc_lambda.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/gcc_cxx11_lambda.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/gcc_lambda.hpp
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

functions) and bind& variable (same as &variable for C++11 lambda functions') because these have the exact same semantic
between the local function and the native lambda implementations. Furthermore, local functions allow to bind data members directly
while C++11 lambda functions require to access data members via binding the object this. Unfortunately, the short-hand binds &
and = of C++11 lambda functions (which automatically bind all variables in scope either by reference or value) are not supported
by these GCC lambda function macros because they are not supported by local functions. Finally, the result type return result-

type is optional and it is assumed void when it is not specified (same as with C++11 lambda functions).

Constant Blocks
It is possible to use local functions to check assertions between variables that are made constant within the asserted expressions.
This is advantageous because assertions are not supposed to change the state of the program and ideally the compiler will not compile
assertions that modify variables.

For example, consider the following assertion where by mistake we programmed operator= instead of operator==:

int x = 1, y = 2;
assert(x = y); // Mistakenly `=` instead of `==`.

Ideally this code will not compile instead this example not only compiles but the assertion even passes the run-time check and no
error is generated at all. The [N1613] paper introduces the concept of a const-block which could be used to wrap the assertion above
and catch the programming error at compile-time. Similarly, the following code will generate a compile-time error when operator=
is mistakenly used instead of operator== because both x and y are made constants (using local functions) within the block of code
performing the assertion (see also const_block_error.cpp):

N1613 Const-BlocksWith Local Functions

int x = 1, y = 2;
const { // Constant block.

assert(x = y); // Compiler error.
}

int x = 1, y = 2;
CONST_BLOCK(x, y) { // Constant block.

assert(x = y); // Compiler error.
} CONST_BLOCK_END

The constant block macros are implemented using local functions (see also const_block.hpp):

#define CONST_BLOCK_(variables) \
void BOOST_LOCAL_FUNCTION(\

BOOST_PP_IIF(BOOST_PP_LIST_IS_NIL(variables), \
void BOOST_PP_TUPLE_EAT(3) \

, \
BOOST_PP_LIST_FOR_EACH_I \

)(CONST_BLOCK_BIND_, ~, variables) \
)

#define CONST_BLOCK_END_(id) \
BOOST_LOCAL_FUNCTION_NAME(BOOST_PP_CAT(const_block_, id)) \
BOOST_PP_CAT(const_block_, id)(); /* call local function immediately */

The constant block macros are implemented using a local function which binds by constant reference const bind& all the specified
variables (so the variables are constant within the code block but they do not need to be CopyConstructible and no extra copy
is performed). The local function executes the assert instruction in its body and it is called immediately after it is defined. More
in general, constant blocks can be used to evaluate any instruction (not just assertions) within a block were all specified variables
are constant.

Unfortunately, constant blocks cannot be implemented with C++11 lambda functions because these do not support constant binding.
Variables bound by value using C++11 lambda functions (variable, =variable, and =) are constant but they are required to be

25

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2004/n1613.pdf
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/const_block_error.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/const_block.hpp
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

CopyConstructible and they introduce potentially expensive copy operations. 29 Of course it is always possible to introduce extra
constant variables and bind these variables to the C++11 lambda functions but the constant block code will then have to manage the
declaration and initialization of these extra variables plus it will have to use the extra variable names instead of the original variable
names:

int x = 1, y = 2;
const decltype(x)& const_x = x; // Constant so cannot be modified
const decltype(y)& const_y = y; // and reference so no copy.
[&const_x, &const_y]() { // Lambda functions (C++11 only).

assert(const_x = const_y); // Unfortunately, `const_` names.
}();

In many cases the use of an extra constant variable const_x can be acceptable but in other cases it might be preferable to maintain
the same variable name x within the function body.

Scope Exits
Scope exits allow to execute arbitrary code at the exit of the enclosing scope and they are provided by the Boost.ScopeExit library.

For curiosity, here we show how to re-implement scope exits using local functions. One small advantage of scope exits that use
local functions is that they support constant binding. Boost.ScopeExit does not directly support constant binding (however, it is always
possible to introduce an extra const local variable, assign it to the value to bind, and then bind the const variable so to effectively
have constant binding with Boost.ScopeExit as well).

Note

In general, the authors recommend to use Boost.ScopeExit instead of the code listed by this example whenever
possible (because Boost.ScopeExit is a library deliberately designed to support the scope exit construct).

The following example binds p by constant reference so this variable cannot be modified within the scope exit body but it is not
copied and it will present the value it has at the exit of the enclosing scope and not at the scope exit declaration (see also
scope_exit.cpp):

Boost.ScopeExitWith Local Functions

person& p = persons_.back();
person::evolution_t checkpoint = p.evolution_;

BOOST_SCOPE_EXIT(checkpoint, &p, this_) { // ↵
Or extra variable `const_p`.

if (checkpoint == p.evolution_) this_->per↵
sons_.pop_back();
} BOOST_SCOPE_EXIT_END

person& p = persons_.back();
person::evolution_t checkpoint = p.evolution_;

SCOPE_EXIT(const bind check↵
point, const bind& p, bind this_) {

if (checkpoint == p.evolution_) this_->per↵
sons_.pop_back();
} SCOPE_EXIT_END

The scope exit macros are implemented by passing a local function when constructing an object of the following class (see also
scope_exit.hpp):

29 Ideally, C++11 lambda functions would allow to bind variables also using const& variable (constant reference) and const& (all variables by constant
reference).

26

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.boost.org/libs/scope_exit
http://www.boost.org/libs/scope_exit
http://www.boost.org/libs/scope_exit
http://www.boost.org/libs/scope_exit
http://www.boost.org/libs/scope_exit
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/scope_exit.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/scope_exit.hpp
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct scope_exit {
scope_exit(boost::function<void (void)> f): f_(f) {}
~scope_exit(void) { f_(); }

private:
boost::function<void (void)> f_;

};

define SCOPE_EXIT(...) \
void BOOST_LOCAL_FUNCTION(__VA_ARGS__)

#define SCOPE_EXIT_END_(id) \
BOOST_LOCAL_FUNCTION_NAME(BOOST_PP_CAT(scope_exit_func_, id)) \
scope_exit BOOST_PP_CAT(scope_exit_, id)(\

BOOST_PP_CAT(scope_exit_func_, id));

A local variable within the enclosing scope is used to hold the object so the destructor will be invoked at the exit of the enclosing
scope and it will in turn call the local function executing the scope exit instructions. The scope exit local function has no parameter
and void result type but it supports binding and constant binding.

Boost.Phoenix Functions
Local functions can be used to create Boost.Phoenix functions. For example (see also phoenix_factorial_local.cpp and
phoenix_factorial.cpp):

27

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/phoenix
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/phoenix_factorial_local.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/phoenix_factorial.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Global FunctorLocal Functions

struct factorial_impl { // Phoenix function ↵
from global functor.

template<typename Sig>
struct result;

template<typename This, typename Arg>
struct result<This (Arg)> : res↵

ult<This (Arg const&)> {};

template<typename This, typename Arg>
struct result<This (Arg&)> { ty↵

pedef Arg type; };

template<typename Arg> // Polymorphic.
Arg operator()(Arg n) const {

re↵
turn (n <= 0) ? 1 : n * (*this)(n - 1);

}
};

int main(void) {
using boost::phoenix::arg_names::arg1;

boost::phoenix::function<factorial_im↵
pl> factorial;

int i = 4;
BOOST_TEST(factorial(i)() == 24); // ↵

Call.
BOOST_TEST(factorial(arg1)(i) == 24); // ↵

Lazy call.
return boost::report_errors();

}

int main(void) {
using boost::phoenix::arg_names::arg1;

int BOOST_LOCAL_FUNCTION(int n) { // Un↵
fortunately, monomorphic.

return (n <= 0) ? 1 : n * factorial_im↵
pl(n - 1);

} BOOST_LOCAL_FUNCTION_NAME(recurs↵
ive factorial_impl)

boost::phoenix::function< boost::func↵
tion<int (int)> >

factorial(factorial_impl); // ↵
Phoenix function from local function.

int i = 4;
BOOST_TEST(factorial(i)() == 24); ↵

 // Call.
BOOST_TEST(factorial(arg1)(i) == 24); ↵

 // Lazy call.
return boost::report_errors();

}

This is presented here mainly as a curiosity because Boost.Phoenix functions created from local functions have the important limit-
ation that they cannot be polymorphic. 30 Therefore, in many cases creating the Boost.Phoenix function from global functors (possibly
with the help of Boost.Phoenix adaptor macros) might be a more useful.

Closures
The following are examples of closures that illustrate how to return local functions to the calling scope (note how extra care is taken
in order to ensure that all bound variables remain valid at the calling scope):

Files

return_inc.cpp

return_this.cpp

return_setget.cpp

return_derivative.cpp

30 Rationale. Local functions can only be monomorphic because they are implemented using local classes and local classes cannot be templates in C++ (not even in
C++11).

28

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/phoenix
http://www.boost.org/libs/phoenix
http://www.boost.org/libs/phoenix
http://en.wikipedia.org/wiki/Closure_(computer_science)
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/return_inc.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/return_this.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/return_setget.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/return_derivative.cpp
http://www.open-std.org/JTC1/SC22/WG21/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

GCC Nested Functions
The GCC C compiler supports local functions as a non-standard extension under the name of nested functions. Note that nested
functions are exclusively a C extension of the GCC compiler (they are not supported for C++ not even by the GCC compiler, and
they are not part of any C or C++ standard, nor they are supported by other compilers like MSVC).

The following examples are taken form the GCC nested function documentation and programmed using local functions:

Files

gcc_square.cpp

gcc_access.cpp

gcc_store.cpp

N-Papers
The following examples are taken from different C++ "N-papers" and programmed using local functions:

NotesFiles

This example is adapted from [N2550] (C++11 lambda func-
tions): It passes a local function to the STL algorithm
std::find_if.

n2550_find_if.cpp

This example is adapted from [N2529] (C++11 lambda func-
tions): It binds the object in scope this to a local function.

n2529_this.cpp

29

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://gcc.gnu.org/onlinedocs/gcc/Nested-Functions.html
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/gcc_square.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/gcc_access.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/gcc_store.cpp
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2550.pdf
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/n2550_find_if.cpp
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2529.pdf
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/n2529_this.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Annex: Alternatives
This section compares the features offered by this library with similar features offered by C++ and by other libraries.

Features

The following table compares local function features.

30

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.PhoenixGlobal Functor
(Not Local)

Local FunctorC++11 Lambda
Function (Not
C++03)

Boost.LocalFunc-
tion

Local Function
Feature

Yes.No. Therefore this
not really an altern-
ative implementa-
tion of local func-
tions but it is listed
here just for com-
parison.

Yes.Yes.Yes.Can be defined loc-
ally

No (it uses C++ ex-
pression template
syntax).

Yes. Plus eventual
compiler errors and
debugging retain
their usual meaning
and format.

Yes. Plus eventual
compiler errors and
debugging retain
their usual meaning
and format.

Yes. Plus eventual
compiler errors and
debugging retain
their usual meaning
and format.

Yes. Plus eventual
compiler errors and
debugging retain
their usual meaning
and format.

Can be defined us-
ing C++ statement
syntax

Yes (plus the local
function can be un-
named).

No. It can be
defined only within
declarations.

No. It can be
defined only within
declarations.

Yes (plus the local
function can be un-
named).

No. It can be
defined only within
declarations.

Can be defined
within expressions

Yes.Yes.No on C++03 com-
pilers (but yes on
C++11 compilers
and some com-
pilers like MSVC
8.0, see [N2657]).

Yes.Yes. The C++03
standard does not
allow to pass local
types as template
parameters (see
[N2657]) but this
library implements
a "trick" to get
around this limita-
tion (see the Imple-
mentation section).

Can be passed as
template parameter
(e.g., to STL al-
gorithms)

Yes. Variables in
scope are access-
ible as usual within
expressions (plus
boost::phoenix::let

can be used to bind
variables by con-
stant reference).

No. Programmers
must manually pro-
gram functor data
members and expli-
citly specify their
types to access
variables in scope.

No. Programmers
must manually pro-
gram functor data
members and expli-
citly specify their
types to access
variables in scope.

Yes. The variable
names are repeated
in the function de-
claration (plus
there is a short-
hand syntax to bind
all variables in
scope at once) so
they can be bound
by constant value
and by reference
(the object this
can also be bound).
However, variables
cannot be bound by
constant references
(see below).

Yes. The variable
names are repeated
in the function de-
claration so they
can be bound by
value, by constant
value, by reference,
and by constant
reference (the ob-
ject this can also
be bound using
this_).

Access variables in
scope

Yes.Yes.No (local classes
cannot have mem-
ber function tem-
plates).

No (C++11
lambdas cannot be
function tem-
plates).

No (local functions
cannot be function
templates).

Polymorphic in the
function parameter
type

31

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Expression-template
http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Expression-template
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/JTC1/SC22/WG21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm
http://www.open-std.org/JTC1/SC22/WG21/
http://en.wikipedia.org/wiki/Type_polymorphism#Parametric_polymorphism
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

C++11 Lambda Function

C++11 lambda functions have most of the features of this library plus some additional feature (see also the example in the Introduction
section):

• C++11 lambda functions can be defined within expressions while this library local functions can only be defined at declaration
scope.

• C++11 lambda functions are only supported by the C++11 standard so they are not supported by all C++ compilers. This library
local functions can be programmed also on C++03 compilers (and they have performances comparable to C++11 lambda functions
on C++11 compilers).

• C++11 lambda functions do not allow to bind variables in scope by constant reference. Because a variable cannot be bound by
constant reference, C++11 lambda functions can bind a variable by constant only if the variable is CopyConstructible and the
binding requires a (potentially expensive) extra copy operation. Constant reference binding is instead supported by this library.

• C++11 lambda functions do not allow to bind data members selectively without binding also the object this while this library
local functions can bind either selected data members or the entire object this (using this_).

• C++11 lambda functions provide a short-hand syntax to bind all variables in scope at once (& or =) while this library local function
always require to bind variables naming them one-by-one.

For example, for non-copyable objects (see also noncopyable_cxx11_lambda_error.cpp and noncopyable_local_func-
tion.cpp):

Boost.LocalFunctionC++11 Lambda Function

struct n: boost::noncopyable {
int i;
n(int _i): i(_i) {}

};
BOOST_TYPEOF_REGISTER_TYPE(n) // Register for ↵
`bind& x` below.

int main(void) {
n x(-1);

void BOOST_LOCAL_FUNC↵
TION(const bind& x) { // OK: No copy

assert(x.i == -1); ↵
 // and constant.

} BOOST_LOCAL_FUNCTION_NAME(f)
f();

return 0;
}

struct n: boost::noncopyable {
int i;
n(int _i): i(_i) {}

};

int main(void) {
n x(-1);

auto f = [x](void) { // Error: x is ↵
non-copyable, but if

assert(x.i == -1); // bind `&x` then ↵
`x` is not constant.

};
f();

return 0;
}

Or, for objects with expensive copy operations (see also expensive_copy_cxx11_lambda.cpp and expensive_copy_loc-
al_function.cpp):

32

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.open-std.org/JTC1/SC22/WG21/
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.open-std.org/JTC1/SC22/WG21/
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/noncopyable_cxx11_lambda_error.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/noncopyable_local_function.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/noncopyable_local_function.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/expensive_copy_cxx11_lambda.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/expensive_copy_local_function.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/expensive_copy_local_function.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.LocalFunctionC++11 Lambda Function

struct n {
int i;
n(int _i): i(_i) {}
n(n const& x): i(x.i) { // Some time con↵

suming copy operation.
for (un↵

signed i = 0; i < 10000; ++i) std::cout << '.';
}

};
BOOST_TYPEOF_REGISTER_TYPE(n) // Register for ↵
`bind& x` below.

int main(void) {
n x(-1);

void BOOST_LOCAL_FUNC↵
TION(const bind& x) { // OK: No copy expens↵
ive

assert(x.i == -1); ↵
 // copy but constant.

} BOOST_LOCAL_FUNCTION_NAME(f)
f();

return 0;
}

struct n {
int i;
n(int _i): i(_i) {}
n(n const& x): i(x.i) { // Some time con↵

suming copy operation.
for (un↵

signed i = 0; i < 10000; ++i) std::cout << '.';
}

};

int main(void) {
n x(-1);

auto f = [x]() { // Problem: Ex↵
pensive copy, but if bind

assert(x.i == -1); // by `&x` then ↵
`x` is not constant.

};
f();

return 0;
}

When constant binding functionality is needed for C++11 lambda functions, the best alternative might be to bind an extra local
variable declared constant and initialized to the original variable (for example, see constant blocks implemented with C++11 lambda
functions in the Examples section).

Local Functor

The following example compares local functions with C++ local functors (see also add_local_functor.cpp and add.cpp):

33

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/add_local_functor.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.LocalFunctionLocal Functor

int main(void) { ↵
 // Some local scope.

int sum = 0, factor = 10; ↵
 // Variables in scope to bind.

void BOOST_LOCAL_FUNC↵
TION(const bind factor, bind& sum, int num) {

sum += factor * num;
} BOOST_LOCAL_FUNCTION_NAME(add)

add(1); ↵
 // Call the local function.

int nums[] = {2, 3};
std::for_each(nums, nums + 2, add); ↵

 // Pass it to an algorithm.

BOOST_TEST(sum == 60); ↵
 // Assert final summation value.

return boost::report_errors();
}

int main(void) {
int sum = 0, factor = 10;

struct local_add { // Unfortunately, boil↵
erplate code to program the class.

loc↵
al_add(int& _sum, int _factor): sum(_sum), factor(_factor) {}

inline void operator()(int num) { // ↵
Body uses C++ statement syntax.

sum += factor * num;
}

private: // Unfortunately, cannot bind ↵
so repeat variable types.

int& sum; // Access `sum` by refer↵
ence.

const int factor; // Make `factor` ↵
constant.

} add(sum, factor);

add(1);
int nums[] = {2, 3};
// Unfortunately, cannot pass as template ↵

parameter to `std::for_each`.
 ↵
 for(size_t i = 0; i < 2; ++i) add(nums[i]);

BOOST_TEST(sum == 60);
return boost::report_errors();

}

Global Functor

The following example compares local functions with C++ global functors (see also add_global_functor.cpp and add.cpp):

34

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/add_global_functor.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.LocalFunctionGlobal Functor

int main(void) { ↵
 // Some local scope.

int sum = 0, factor = 10; ↵
 // Variables in scope to bind.

void BOOST_LOCAL_FUNC↵
TION(const bind factor, bind& sum, int num) {

sum += factor * num;
} BOOST_LOCAL_FUNCTION_NAME(add)

add(1); ↵
 // Call the local function.

int nums[] = {2, 3};
std::for_each(nums, nums + 2, add); ↵

 // Pass it to an algorithm.

BOOST_TEST(sum == 60); ↵
 // Assert final summation value.

return boost::report_errors();
}

// Unfortunately, cannot be defined locally ↵
(so not a real alternative).
struct global_add { // Unfortunately, boiler↵
plate code to program the class.

glob↵
al_add(int& _sum, int _factor): sum(_sum), factor(_factor) {}

inline void operator()(int num) { // Body ↵
uses C++ statement syntax.

sum += factor * num;
}

private: // Unfortunately, cannot bind so re↵
peat variable types.

int& sum; // Access `sum` by reference.
const int factor; // Make `factor` con↵

stant.
};

int main(void) {
int sum = 0, factor = 10;

global_add add(sum, factor);

add(1);
int nums[] = {2, 3};
std::for_each(nums, nums + 2, add); // ↵

Passed as template parameter.

BOOST_TEST(sum == 60);
return boost::report_errors();

}

However, note that global functors do not allow to define the function locally so they are not a real alternative implementation of
local functions.

Boost.Phoenix

The following example compares local functions with Boost.Phoenix (see also add_phoenix.cpp and add.cpp):

35

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/phoenix
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/add_phoenix.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.LocalFunctionBoost.Phoenix

int main(void) { ↵
 // Some local scope.

int sum = 0, factor = 10; ↵
 // Variables in scope to bind.

void BOOST_LOCAL_FUNC↵
TION(const bind factor, bind& sum, int num) {

sum += factor * num;
} BOOST_LOCAL_FUNCTION_NAME(add)

add(1); ↵
 // Call the local function.

int nums[] = {2, 3};
std::for_each(nums, nums + 2, add); ↵

 // Pass it to an algorithm.

BOOST_TEST(sum == 60); ↵
 // Assert final summation value.

return boost::report_errors();
}

int main(void) {
using boost::phoenix::let;
using boost::phoenix::local_names::_f;
using boost::phoenix::cref;
using boost::phoenix::ref;
using boost::phoenix::arg_names::_1;

int sum = 0, factor = 10;
int nums[] = {1, 2, 3};

// Passed to template, `factor` by con↵
stant, and defined in expression.
 ↵
 std::for_each(nums, nums + 3, let(_f = cref(factor))[

// Unfortunately, body cannot use ↵
C++ statement syntax.

ref(sum) += _f * _1, _1 // Access ↵
`sum` by reference.

]);

BOOST_TEST(sum == 60);
return boost::report_errors();

}

The comparison in this section does not include the Boost.Lambda library because that library is obsolete and it was replaced by
Boost.Phoenix. The Boost.Phoenix library version 3.0 is used for this comparison.

Performances

The following tables compare run-times, compile-times, and binary sizes for the different alternatives to local functions presented
in this section.

Overall, this library has compile-times and generates binary sizes similar to the ones of the other approaches. This library run-times
on C++03 compilers were measured to be larger than other approaches when compiler optimization is enabled (using bjam release

...). However, on compilers that allow to pass local types as template parameters (e.g., MSVC 8.0 or GCC 4.5.3 with C++11 features
enabled -std=c++0x, see also [N2657] and Boost.Config's BOOST_NO_LOCAL_CLASS_TEMPLATE_PARAMETERS) this library
automatically generates optimized code that runs as fast as the fastest of the other approaches (see the "Boost.LocalFunction" approach
below). When this library local function is specified inline (see the "Boost.LocalFunction Inline" approach below and the Advanced
Topics section) its run-times are always comparable to both the "Local Functor" and "Global Functor" approaches. However, in
these cases the local function cannot be portably passed as template parameter (see [N2657] and Boost.Config's BOOST_NO_LOC-
AL_CLASS_TEMPLATE_PARAMETERS) so std::for_each is replaced by a for-loop (on MSVC the for-loop, and not the local
function in fact the same applies to local functors, was measured to have worst performances than using std::for_each). Finally,
this library run-times are always among the fastest when no compiler optimization is enabled (using bjam debug ...).

36

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/lambda
http://www.boost.org/libs/phoenix
http://www.boost.org/libs/phoenix
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/JTC1/SC22/WG21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm
http://www.boost.org/libs/chrono
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm
http://www.boost.org/libs/chrono
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

The run-time performances of this library local functions are explained because on C++03 compliant compilers
(e.g., GCC 4.5.3 without -std=c++0x) this library needs to use a function pointer in order to portably pass the
local function class as a template parameter (see [N2657] and the Implementation section). For all tested compilers,
this function pointer prevents the compiler optimization algorithms from inlining the local function calls. Instead,
the functors used by other approaches (e.g., Boost.Phoenix) have been observed to allow all tested compilers to inline
all the function calls for optimization. This run-time performance cost is not present on compilers that allow to pass
local types as template parameters (e.g., MSVC 8.0 or GCC 4.5.3 with C++11 features enabled -std=c++0x, see
Boost.Config's BOOST_NO_LOCAL_CLASS_TEMPLATE_PARAMETERS) because this library does not have to use the
extra function pointer to implement the local function call (it directly passes the local class type as template para-
meter).

This run-time performance cost on C++03 compilers might or might not be an issue depending on the performance requirements of
specific applications. For example, an application might already be using a number of indirect function calls (function pointers, vir-
tual functions, etc) for which the overhead added by using the one extra function pointer required by the local function call might
not be noticeable within the overall program run-time.

Finally, note that only a very simple local function body with just a single instruction was used for the anaylsis presented here (see
the source files below). The authors have not studied how this library and the other approaches will perform with respect to each
other when a more complex set of instructions is programmed for the local function body (e.g., if a more complex set of instructions
in the local function body were to inhibit some compiler from inlining function objects also other approaches like C++11 lambda
functions and Boost.Phoenix could start to show higher run-times even when optimization is enabled).

The following commands were executed from the library example directory to measure compile-time, binary size, and run-time re-
spectively:

> touch <FILE_NAME>.cpp # force recompilation
> python chrono.py bjam {release|debug} <FILE_NAME> # compile-time
> size <FILE_NAME> # binary size
> ./<FILE_NAME> # run-time

The local function was called 1e8 times to add together all the elements of a vector and the run-time was measured using Boost.Chrono
averaging over 10 executions of the vector summation (see the source files below).

Source FileApproachLegend

profile_local_function.cppBoost.LocalFunction

profile_local_function_in-

line.cpp

Boost.LocalFunction inline

profile_cxx11_lambda.cppC++11 Lambda Function a

profile_local_functor.cppLocal Functor

profile_global_functor.cppGlobal Functor

profile_phoenix.cppBoost.Phoenix

a Measurements available only for C++11 compilers.

37

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm
http://www.boost.org/libs/phoenix
http://www.open-std.org/JTC1/SC22/WG21/
http://www.boost.org/libs/chrono
http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://en.wikipedia.org/wiki/C%2B%2B0x#Lambda_functions_and_expressions
http://www.boost.org/libs/phoenix
http://www.boost.org/libs/chrono
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/profile_local_function.cpp
http://www.boost.org/libs/local_function
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/profile_local_function_inline.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/profile_local_function_inline.cpp
http://www.boost.org/libs/local_function
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/profile_cxx11_lambda.cpp
http://www.open-std.org/JTC1/SC22/WG21/
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/profile_local_functor.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/profile_global_functor.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/profile_phoenix.cpp
http://www.boost.org/libs/phoenix
http://www.open-std.org/JTC1/SC22/WG21/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

GCC 4.5.3 With C++11 Lambda Functions and "Local Classes as Template Parameters" (bjam cxxflags=-std=c++0x
...)

Compiled with bjam release ... for maximum optimization (-O3 -finline-functions)

Compiled with bjam debug ... for no optimizat ion (-O0 -fno-inline)

MSVC 8.0 With "Local Classes as Template Parameters" (Without C++11 Lambda Functions)

Compiled with bjam release ... for maximum optimization (/O2 /Ob2)

C o m p i l e d w i t h b j a m d e b u g . . . f o r n o o p t i m i z a t i o n (/ O d / O b 0)

38

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

GCC 4.3.4 With C++03 Only (Without C++11 Lambda Functions and Without "Local Classes as Template Parameters")

Compiled with bjam release ... for maximum optimization (-O3 -finline-functions)

Compiled with bjam debug ... for no optimizat ion (-O0 -fno-inline)

39

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/JTC1/SC22/WG21/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Annex: No Variadic Macros
This section illustrates an alternative syntax for compilers without variadic macro support.

Sequence Syntax

Most modern compilers support variaid macros (notably, these include GCC, MSVC, and all C++11 compilers). However, in the
rare case that programmers need to use this library on a compiler without variadic macros, this library also allows to specify its macro
parameters using a Boost.Preprocessor sequence where tokens are separated by round parenthesis ():

(token1) (token2) ... // All compilers.

Instead of the comma-separated list that we have seen so far which requires variadic macros:

token1, token2, ... // Only compilers with varidic macros.

For example, the following syntax is accepted on all compilers with and without variadic macros (see also add_seq.cpp):

int main(void) {
int sum = 0, factor = 10;

void BOOST_LOCAL_FUNCTION((const bind factor) (bind& sum) (int num)) {
sum += factor * num;

} BOOST_LOCAL_FUNCTION_NAME(add)

add(1);
int nums[] = {2, 3};
std::for_each(nums, nums + 2, add);

BOOST_TEST(sum == 60);
return boost::report_errors();

}

However, on compilers with variadic macros the comma-separated syntax we have seen so far is preferred because more readable
(see also add.cpp):

int main(void) { // Some local scope.
int sum = 0, factor = 10; // Variables in scope to bind.

void BOOST_LOCAL_FUNCTION(const bind factor, bind& sum, int num) {
sum += factor * num;

} BOOST_LOCAL_FUNCTION_NAME(add)

add(1); // Call the local function.
int nums[] = {2, 3};
std::for_each(nums, nums + 2, add); // Pass it to an algorithm.

BOOST_TEST(sum == 60); // Assert final summation value.
return boost::report_errors();

}

Note that the same macros accept both syntaxes on compilers with variadic macros and only the sequence syntax on compilers
without variadic macros. Finally, an empty local function parameter list is always specified using void on compilers with and without
variadic macros:

40

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Variadic_macro
http://www.open-std.org/JTC1/SC22/WG21/
http://www.boost.org/libs/preprocessor
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int BOOST_LOCAL_FUNCTION(void) { // No parameter.
return 10;

} BOOST_LOCAL_FUNCTION_NAME(ten)

BOOST_TEST(ten() == 10);

Examples

For reference, the following is a list of most of the examples presented in this documentation reprogrammed using the sequence
syntax instead of the comma-separated syntax (in alphabetic order):

41

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Files

add_classifiers_seq.cpp

add_default_seq.cpp

add_except_seq.cpp

add_inline_seq.cpp

add_params_only_seq.cpp

add_template_seq.cpp

add_this_seq.cpp

add_typed_seq.cpp

add_with_default_seq.cpp

all_decl_seq.cpp

factorial_seq.cpp

macro_commas_seq.cpp

nesting_seq.cpp

overload_seq.cpp

return_assign_seq.cpp

return_derivative_seq.cpp

return_inc_seq.cpp

return_setget_seq.cpp

return_this_seq.cpp

same_line_seq.cpp

transform_seq.cpp

typeof_seq.cpp

typeof_template_seq.cpp

42

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_classifiers_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_default_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_except_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_inline_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_params_only_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_template_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_this_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_typed_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/add_with_default_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/all_decl_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/factorial_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/macro_commas_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/nesting_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/overload_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/return_assign_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/return_derivative_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/return_inc_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/return_setget_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/return_this_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/same_line_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/transform_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/typeof_seq.cpp
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../test/typeof_template_seq.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Annex: Implementation
This section gives an overview of the key programming techniques used to implement this library.

Note

The code listed here can be used by curious readers and library maintainers as a reference in trying to understand
the library source code. There is absolutely no guarantee that the library implementation uses the exact code listed
here.

Local Classes as Template Parameters

This library uses a local class to implement the local function object. However, in C++03 local classes (and therefore the local
function objects they implement) cannot be passed as template parameters (e.g., to the std::for_each algorithm), this is instead
possible in C++11, MSVC, and some other compilers (see [N2657] and Boost.Config's BOOST_NO_LOCAL_CLASS_TEMPLATE_PARA-
METERS). To work around this limitation, this library investigated the following two "tricks" (both tricks can be extended to support
function default parameters):

1. The casting functor trick uses a non-local functor that calls a static member function of the local class via a function pointer. The
static member function then calls the correct local function body after type casting the object from a void* pointer (local classes
can always be used for type casting via static_cast or similar).

2. The virtual functor trick derives the local functor class from a non-local base class. The correct overridden implementation of the
virtual operator() is then called via dynamic binding.

For example (see also impl_tparam_tricks.cpp):

43

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/JTC1/SC22/WG21/docs/standards
http://www.open-std.org/JTC1/SC22/WG21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm
http://www.boost.org/libs/chrono
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/impl_tparam_tricks.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/detail/lightweight_test.hpp>
#include <vector>
#include <algorithm>

// Casting functor trick.
struct casting_func {

explicit casting_func(void* obj, void (*call)(void*, const int&))
: obj_(obj), call_(call) {}

// Unfortunately, function pointer call is not inlined.
inline void operator()(const int& num) { call_(obj_, num); }

private:
void* obj_;
void (*call_)(void*, const int&);

};

// Virtual functor trick.
struct virtual_func {

struct interface {
// Unfortunately, virtual function call is not inlined.
inline virtual void operator()(const int&) {}

};
explicit virtual_func(interface& func): func_(&func) {}
inline void operator()(const int& num) { (*func_)(num); }

private:
interface* func_;

};

int main(void) {
int sum = 0, factor = 10;

// Local class for local function.
struct local_add : virtual_func::interface {

explicit local_add(int& _sum, const int& _factor)
: sum_(_sum), factor_(_factor) {}

inline void operator()(const int& num) {
body(sum_, factor_, num);

}
inline static void call(void* obj, const int& num) {

local_add* self = static_cast<local_add*>(obj);
self->body(self->sum_, self->factor_, num);

}
private:

int& sum_;
const int& factor_;
inline void body(int& sum, const int& factor, const int& num) {

sum += factor * num;
}

} add_local(sum, factor);
casting_func add_casting(&add_local, &local_add::call);
virtual_func add_virtual(add_local);

std::vector<int> v(10);
std::fill(v.begin(), v.end(), 1);

// std::for_each(v.begin(), v.end(), add_local); // Error but OK on C++11.
std::for_each(v.begin(), v.end(), add_casting); // OK.
std::for_each(v.begin(), v.end(), add_virtual); // OK.

BOOST_TEST(sum == 200);
return boost::report_errors();

}

44

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The casting functor trick measured slightly better run-time performances than the virtual functor trick so the current implementation
of this library uses the casting functor trick (probably because in addition to the indirect function call, the virtual functor trick also
requires accessing the virtual function table). However, neither one of the two tricks was observed to allow for compiler optimizations
that inline the local function calls (because they rely on one indirect function call via either a function pointer or a virtual function
respectively). Therefore, on compilers that accept local classes as template parameters (MSVC, C++11, etc, see [N2657] and
Boost.Config's BOOST_NO_LOCAL_CLASS_TEMPLATE_PARAMETERS), this library automatically generates code that passes the local
class type directly as template parameter without using neither one of these two tricks in order to take full advantage of compiler
optimizations that inline the local function calls.

Parsing Macros

This library macros can parse the list of specified parameters and detect if any of the bound variable names matches the token this_
(to generate special code to bind the object in scope), or if the variable is bound by const (to generate special code to bind by constant),
etc. The parameter tokens are inspected using preprocessor meta-programming and specifically using the macros defined by the files
in the boost/local_function/detail/preprocessor/keyword/ directory. 31

For example, the following code defines a macro that allows the preprocessor to detect if a set of space-separated tokens ends with
this_ or not (see also impl_pp_keyword.cpp):

#include <boost/local_function/detail/preprocessor/keyword/thisunderscore.hpp>
#include <boost/local_function/detail/preprocessor/keyword/const.hpp>
#include <boost/local_function/detail/preprocessor/keyword/bind.hpp>
#include <boost/detail/lightweight_test.hpp>

// Expand to 1 if space-separated tokens end with `this_`, 0 otherwise.
#define IS_THIS_BACK(tokens) \

BOOST_LOCAL_FUNCTION_DETAIL_PP_KEYWORD_IS_THISUNDERSCORE_BACK(\
BOOST_LOCAL_FUNCTION_DETAIL_PP_KEYWORD_BIND_REMOVE_FRONT(\
BOOST_LOCAL_FUNCTION_DETAIL_PP_KEYWORD_CONST_REMOVE_FRONT(\

tokens \
)))

int main(void) {
BOOST_TEST(IS_THIS_BACK(const bind this_) == 1);
BOOST_TEST(IS_THIS_BACK(const bind& x) == 0);
return boost::report_errors();

}

31 This technique is at the core of even more complex preprocessor parsing macros like the ones that parse the Contract++ syntax.

45

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Virtual_method_table
http://www.open-std.org/JTC1/SC22/WG21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm
http://www.boost.org/libs/chrono
http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../example/impl_pp_keyword.cpp
http://sourceforge.net/projects/contractpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

Header <boost/local_function.hpp>
Local functions allow to program functions locally, within other functions, and directly within the scope where they are needed.

BOOST_LOCAL_FUNCTION(declarations)
BOOST_LOCAL_FUNCTION_TPL(declarations)
BOOST_LOCAL_FUNCTION_ID(id, declarations)
BOOST_LOCAL_FUNCTION_ID_TPL(id, declarations)
BOOST_LOCAL_FUNCTION_NAME(qualified_name)
BOOST_LOCAL_FUNCTION_NAME_TPL(name)
BOOST_LOCAL_FUNCTION_TYPEOF(bound_variable_name)

Macro BOOST_LOCAL_FUNCTION

BOOST_LOCAL_FUNCTION — This macro is used to start a local function declaration.

Synopsis

// In header: <boost/local_function.hpp>

BOOST_LOCAL_FUNCTION(declarations)

Description

This macro must be used within a declarative context, it must follow the local function result type, it must be followed by the local
function body code, and then by the BOOST_LOCAL_FUNCTION_NAME macro (see the Tutorial and Advanced Topics sections):

{ // Some declarative context.
...
result_type BOOST_LOCAL_FUNCTION(declarations) {

... // Body code.
} BOOST_LOCAL_FUNCTION_NAME(qualified_name)
...

}

As usual, exceptions specifications can be optionally programmed just after the macro and before the body code block { ... }
(but the exception specifications will only apply to the body code and not to the library code automatically generated by the macro
expansion, see the Advanced Topics section).

Within templates, the special macros BOOST_LOCAL_FUNCTION_TPL and BOOST_LOCAL_FUNCTION_NAME_TPL must be used.

Parameters:

46

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../../../boost/local_function.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

On compilers that support variadic macros, the parameter declar-
ations are defined by the following grammar:

declarations:
void | declaration_tuple | declara↵

tion_sequence
declaration_tuple:

declaration, declaration, ...
declaration_sequence:

(declaration) (declaration) ...
declaration:

bound_variable | parameter | de↵
fault_value | result_type
bound_variable:

[const] bind [(vari↵
able_type)] [&] variable_name
parameter:

[auto | register] parameter_type para↵
meter_name
default_value:

default parameter_default_value
result_type:

return function_result_type

On compilers that do not support variadic macros, declara-
tion_tuple cannot be used:

declarations:
void | declaration_sequence

(Lexical conventions: token1 | token2 means either token1
or token2; [token] means either token or nothing; {expres-
sion} means the token resulting from the expression.)

declarations

Note that on compilers that support variadic macros, commas can be used to separate the declarations resembling more closely the
usual C++ function declaration syntax (this is the preferred syntax). However, for portability, on all C++ compilers (with and without
variadic macros) the same library macros also accept parameter declarations specified as a Boost.Preprocessor sequence separated
by round parenthesis ().

When binding the object this, the special symbol this_ needs to be used instead of this as the name of the variable to bind and
also within the local function body to access the object. (Mistakenly using this instead of this_ might not always result in a
compiler error and will in general result in undefined behaviour.)

The result type must either be specified just before the macro or within the macro declarations prefixed by return (but not in both
places).

Within the local function body it possible to access the result type using result_type, the type of the first parameter using
arg1_type, the type of the second parameter using arg2_type, etc. The bound variable types can be accessed using BOOST_LOC-
AL_FUNCTION_TYPEOF.

This macro cannot be portably expanded multiple times on the same line. In these cases, use the BOOST_LOCAL_FUNCTION_ID
macro instead.

The maximum number of local function parameters (excluding bound variables) is specified by the configuration macro
BOOST_LOCAL_FUNCTION_CONFIG_ARITY_MAX. The maximum number of bound variables is specified by the configuration macro
BOOST_LOCAL_FUNCTION_CONFIG_BIND_MAX. The configuration macro BOOST_LOCAL_FUNCTION_CONFIG_LOCALS_AS_TPARAMS
can be used to force optimizations that reduce the local function call run-time overhead.

Note: Local functions are functors so they can be assigned to other functors like boost::function (see Boost.Function).

47

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

See: Tutorial section, Advanced Topics section, BOOST_LOCAL_FUNCTION_NAME, BOOST_LOCAL_FUNCTION_TPL, BOOST_LOC-
AL_FUNCTION_NAME_TPL, BOOST_LOCAL_FUNCTION_TYPEOF, BOOST_LOCAL_FUNCTION_ID, BOOST_LOCAL_FUNCTION_CON-
FIG_ARITY_MAX, BOOST_LOCAL_FUNCTION_CONFIG_BIND_MAX, BOOST_LOCAL_FUNCTION_CONFIG_LOCALS_AS_TPARAMS.

Macro BOOST_LOCAL_FUNCTION_TPL

BOOST_LOCAL_FUNCTION_TPL — This macro is used to start a local function declaration within templates.

Synopsis

// In header: <boost/local_function.hpp>

BOOST_LOCAL_FUNCTION_TPL(declarations)

Description

This macro must be used instead of BOOST_LOCAL_FUNCTION when declaring a local function within a template. A part from that,
this macro has the exact same syntax a BOOST_LOCAL_FUNCTION (see BOOST_LOCAL_FUNCTION for more information):

{ // Some declarative context within a template.
...
result_type BOOST_LOCAL_FUNCTION_TPL(declarations) {

... // Body code.
} BOOST_LOCAL_FUNCTION_NAME_TPL(qualified_name)
...

}

Note that BOOST_LOCAL_FUNCTION_NAME_TPL must be used with this macro instead of BOOST_LOCAL_FUNCTION_NAME.

This macro cannot be portably expanded multiple times on the same line. In these cases, use the BOOST_LOCAL_FUNCTION_ID_TPL
macro instead.

Note: C++03 does not allow to use typename outside templates. This library internally manipulates types, these operations require
typename but only within templates. This macro is used to indicate to the library when the enclosing scope is a template so the
library can correctly use typename.

See: Tutorial section, BOOST_LOCAL_FUNCTION, BOOST_LOCAL_FUNCTION_ID_TPL, BOOST_LOCAL_FUNCTION_NAME_TPL.

Macro BOOST_LOCAL_FUNCTION_ID

BOOST_LOCAL_FUNCTION_ID — This macro allows to declare multiple local functions on the same line.

Synopsis

// In header: <boost/local_function.hpp>

BOOST_LOCAL_FUNCTION_ID(id, declarations)

Description

This macro is equivalent to BOOST_LOCAL_FUNCTION but it can be expanded multiple times on the same line if different identifiers
id are provided for each expansion (see the Advanced Topics section).

Parameters:

48

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

A unique identifier token which can be concatenated by the
preprocessor (__LINE__, local_function_num-

ber_1_on_line_123, etc).

id

Same as the declarations parameter of the BOOST_LOC-
AL_FUNCTION macro.

declarations

The BOOST_LOCAL_FUNCTION_NAME macro should be used to end each one of the multiple local function declarations as usual (and
it will specify a unique name for each local function).

Within templates, the special macros BOOST_LOCAL_FUNCTION_ID_TPL must be used.

Note: This macro can be useful when the local function macros are expanded within user-defined macros (because macros all expand
on the same line). On some compilers (e.g., MSVC which supports the non-standard __COUNTER__ macro) it might not be necessary
to use this macro but the use of this macro when expanding multiple local function macros on the same line is always necessary to
ensure portability (this is because this library can only portably use __LINE__ to internally generate unique identifiers).

See: Advanced Topics section, BOOST_LOCAL_FUNCTION, BOOST_LOCAL_FUNCTION_NAME, BOOST_LOCAL_FUNCTION_ID_TPL.

Macro BOOST_LOCAL_FUNCTION_ID_TPL

BOOST_LOCAL_FUNCTION_ID_TPL — This macro allows to declare multiple local functions on the same line within templates.

Synopsis

// In header: <boost/local_function.hpp>

BOOST_LOCAL_FUNCTION_ID_TPL(id, declarations)

Description

This macro must be used instead of BOOST_LOCAL_FUNCTION_TPL when declaring multiple local functions on the same line within
a template. A part from that, this macro has the exact same syntax as BOOST_LOCAL_FUNCTION_TPL (see BOOST_LOCAL_FUNC-
TION_TPL for more information).

Parameters:

A unique identifier token which can be concatenated by the
preprocessor (__LINE__, local_function_num-

ber_1_on_line_123, etc).

id

Same as the declarations parameter of the BOOST_LOC-
AL_FUNCTION_TPL macro.

declarations

The BOOST_LOCAL_FUNCTION_NAME macro should be used to end each one of the multiple local function declarations as usual (and
it will specify a unique name for each local function).

Outside template, the macro BOOST_LOCAL_FUNCTION_ID should be used to declare multiple local functions on the same line.

Note: This macro can be useful when the local function macros are expanded within user-defined macros (because macros all expand
on the same line). On some compilers (e.g., MSVC which supports the non-standard __COUNTER__ macro) it might not be necessary
to use this macro but the use of this macro when expanding multiple local function macros on the same line is always necessary to
ensure portability (this is because this library can only portably use __LINE__ to internally generate unique identifiers).

See: Advanced Topics section, BOOST_LOCAL_FUNCTION_TPL, BOOST_LOCAL_FUNCTION_NAME, BOOST_LOCAL_FUNCTION_ID.

49

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Macro BOOST_LOCAL_FUNCTION_NAME

BOOST_LOCAL_FUNCTION_NAME — This macro is used to end a local function declaration specifying its name.

Synopsis

// In header: <boost/local_function.hpp>

BOOST_LOCAL_FUNCTION_NAME(qualified_name)

Description

This macro must follow the local function body code block { ... }:

{ // Some declarative context.
...
result_type BOOST_LOCAL_FUNCTION(declarations) {

... // Body code.
} BOOST_LOCAL_FUNCTION_NAME(qualified_name)
...

}

Within templates, the special macros BOOST_LOCAL_FUNCTION_TPL and BOOST_LOCAL_FUNCTION_NAME_TPL must be used.

Parameters:

The name of the local function optionally qualified as follow:

name:
[inline] [recursive] local_func↵

tion_name

(Lexical conventions: token1 | token2 means either token1
or token2; [token] means either token or nothing; {expres-
sion} means the token resulting from the expression.)

qualified_name

The local function name can be qualified by prefixing it with the keyword inline (see the Advanced Topics section):

BOOST_LOCAL_FUNCTION_NAME(inline local_function_name)

This increases the chances that the compiler will be able to inline the local function calls (thus reducing run-time). However, inline
local functions cannot be passed as template parameters (e.g., to std::for_each) or assigned to other functors (e.g., to
boost::function). That is true on C++03 compilers but inline local functions can instead be passed as template parameters on
C++11 compilers. On C++11 compilers, there is no need to declare a local function lined because this library will automatically use
C++11 specific features to inline the local function while always allowing to pass it as a template parameter. This optimization is
automatically enabled when the Boost.Config macro BOOST_NO_CXX11_LOCAL_CLASS_TEMPLATE_PARAMETERS is not defined
but it also be forced using BOOST_LOCAL_FUNCTION_CONFIG_LOCALS_AS_TPARAMS.

The local function name can also be qualified by prefixing it with the "keyword" recursive (see the Advanced Topics section):

BOOST_LOCAL_FUNCTION_NAME(recursive local_function_name)

This allows the local function to recursively call itself from its body (as usual in C++). However, recursive local functions should
only be called within their declaration scope (otherwise the result is undefined behaviour). Finally, compilers have not been observed
to be able to inline recursive local function calls, not even when the recursive local function is also declared inline:

50

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

BOOST_LOCAL_FUNCTION(inline recursive local_function_name)

Note: The local function name cannot be the name of an operator operator... and it cannot be the same name of another local
function declared within the same enclosing scope (but boost::overloaded_function can be used to overload local functions,
see Boost.Functional/OverloadedFunction and the Advanced Topics section).

See: Tutorial section, Advanced Topics section, BOOST_LOCAL_FUNCTION, BOOST_LOCAL_FUNCTION_NAME_TPL.

Macro BOOST_LOCAL_FUNCTION_NAME_TPL

BOOST_LOCAL_FUNCTION_NAME_TPL — This macro is used to end a local function declaration specifying its name within
templates.

Synopsis

// In header: <boost/local_function.hpp>

BOOST_LOCAL_FUNCTION_NAME_TPL(name)

Description

This macro must be used instead of BOOST_LOCAL_FUNCTION_NAME when declaring a local function within a template. A part from
that, this macro has the exact same syntax a BOOST_LOCAL_FUNCTION_NAME (see BOOST_LOCAL_FUNCTION_NAME for more in-
formation):

{ // Some declarative context within a template.
...
result_type BOOST_LOCAL_FUNCTION_TPL(declarations) {

... // Body code.
} BOOST_LOCAL_FUNCTION_NAME_TPL(qualified_name)
...

}

Note that BOOST_LOCAL_FUNCTION_TPL must be used with this macro instead of BOOST_LOCAL_FUNCTION.

Note: C++03 does not allow to use typename outside templates. This library internally manipulates types, these operations require
typename but only within templates. This macro is used to indicate to the library when the enclosing scope is a template so the
library can correctly use typename.

See: Tutorial section, BOOST_LOCAL_FUNCTION_NAME, BOOST_LOCAL_FUNCTION_TPL.

Macro BOOST_LOCAL_FUNCTION_TYPEOF

BOOST_LOCAL_FUNCTION_TYPEOF — This macro expands to the type of the specified bound variable.

Synopsis

// In header: <boost/local_function.hpp>

BOOST_LOCAL_FUNCTION_TYPEOF(bound_variable_name)

51

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Description

This macro can be used within the local functions body to refer to the bound variable types so to declare local variables, check concepts
(using Boost.ConceptCheck), etc (see the Advanced Topics section). This way the local function can be programmed entirely without
explicitly specifying the bound variable types thus facilitating maintenance (e.g., if the type of a bound variable changes in the en-
closing scope, the local function code does not have to change).

Parameters:

The name of one of the local function's bound variables.bound_variable_name

The type returned by the macro is fully qualified in that it contains the extra constant and reference qualifiers when the specified
variable is bound by constant and by reference. For example, if a variable named t of type T is:

• Bound by value using bind t then BOOST_LOCAL_FUNCTION_TYPEOF(t) is T.

• Bound by constant value using const bind t then BOOST_LOCAL_FUNCTION_TYPEOF(t) is const T.

• Bound by reference using bind& t then BOOST_LOCAL_FUNCTION_TYPEOF(t) is T&.

• Bound by constant reference using const bind& t then BOOST_LOCAL_FUNCTION_TYPEOF(t) is const T&.

This macro must be prefixed by typename when used within templates.

Note: It is best to use this macro instead of Boost.Typeof so to reduce the number of times Boost.Typeof is used to deduce types
(see the Advanced Topics section).

See: Advanced Topics section, BOOST_LOCAL_FUNCTION.

Header <boost/local_function/config.hpp>
Configuration macros allow to change the behaviour of this library at compile-time.

BOOST_LOCAL_FUNCTION_CONFIG_ARITY_MAX
BOOST_LOCAL_FUNCTION_CONFIG_BIND_MAX
BOOST_LOCAL_FUNCTION_CONFIG_LOCALS_AS_TPARAMS

Macro BOOST_LOCAL_FUNCTION_CONFIG_ARITY_MAX

BOOST_LOCAL_FUNCTION_CONFIG_ARITY_MAX — Maximum number of parameters supported by local functions.

Synopsis

// In header: <boost/local_function/config.hpp>

BOOST_LOCAL_FUNCTION_CONFIG_ARITY_MAX

Description

If programmers leave this configuration macro undefined, its default value is 5 (increasing this number might increase compilation
time). When defined by programmers, this macro must be a non-negative integer number.

Note: This macro specifies the maximum number of local function parameters excluding bound variables (which are instead specified
by BOOST_LOCAL_FUNCTION_CONFIG_BIND_MAX).

52

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/local_function/doc/html/../../../../boost/local_function/config.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

See: Tutorial section, Getting Started section, BOOST_LOCAL_FUNCTION_CONFIG_BIND_MAX.

Macro BOOST_LOCAL_FUNCTION_CONFIG_BIND_MAX

BOOST_LOCAL_FUNCTION_CONFIG_BIND_MAX — Maximum number of bound variables supported by local functions.

Synopsis

// In header: <boost/local_function/config.hpp>

BOOST_LOCAL_FUNCTION_CONFIG_BIND_MAX

Description

If programmers leave this configuration macro undefined, its default value is 10 (increasing this number might increase compilation
time). When defined by programmers, this macro must be a non-negative integer number.

Note: This macro specifies the maximum number of bound variables excluding local function parameters (which are instead specified
by BOOST_LOCAL_FUNCTION_CONFIG_ARITY_MAX).

See: Tutorial section, Getting Started section, BOOST_LOCAL_FUNCTION_CONFIG_ARITY_MAX.

Macro BOOST_LOCAL_FUNCTION_CONFIG_LOCALS_AS_TPARAMS

BOOST_LOCAL_FUNCTION_CONFIG_LOCALS_AS_TPARAMS — Specify when local functions can be passed as template
parameters without introducing any run-time overhead.

Synopsis

// In header: <boost/local_function/config.hpp>

BOOST_LOCAL_FUNCTION_CONFIG_LOCALS_AS_TPARAMS

Description

If this macro is defined to 1, this library will assume that the compiler allows to pass local classes as template parameters:

template<typename T> void f(void) {}

int main(void) {
struct local_class {};
f<local_class>();
return 0;

}

This is the case for C++11 compilers and some C++03 compilers (e.g., MSVC), but it is not the case in general for most C++03
compilers (including GCC). This will allow the library to pass local functions as template parameters without introducing any run-
time overhead (specifically without preventing the compiler from optimizing local function calls by inlining their assembly code).

If this macro is defined to 0 instead, this library will introduce a run-time overhead associated to resolving a function pointer call in
order to still allow to pass the local functions as template parameters.

It is recommended to leave this macro undefined. In this case, the library will automatically define this macro to 0 if the
Boost.Config macro BOOST_NO_CXX11_LOCAL_CLASS_TEMPLATE_PARAMETERS is defined for the specific compiler, and to 1
otherwise.

53

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

See: Getting Started section, Advanced Topics section, BOOST_LOCAL_FUNCTION_NAME.

54

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Release Notes
This section lists the major changes between different library releases (in chronological order).

Version 1.0.0 (2012-04-12)

1. Incorporated all comments from the Boost review of this library.

2. Removed local blocks and local exits.

3. Renamed the library from Boost.Local to Boost.LocalFunction.

4. Using this_ instead of this also in the local function declaration (not just the body).

5. Made changes that allow to return local functions (similar to closures).

6. Added GCC lambda and constant block examples.

7. Moved overloaded_function to Boost.Functional/OverloadedFunction.

8. Moved BOOST_IDENTITY_TYPE to Boost.Utility/IdentityType.

9. Completely removed use of Boost.Typeof when bound and result types are explicitly specified.

10. Added ..._ID macros for multiple expansions on the same line.

11. Fixed compilation on Boost regression test platforms.

Version 0.2.0 (2011-05-14)

1. Replaced parenthesized syntax with variadic and sequencing macro syntaxes.

2. Profiled library performances against other approaches.

3. Replaced virtual functor trick with casting functor trick (for smaller run-time).

4. Optimized library run-time (rearranging code and not using casting functor trick on compilers that accept local classes as template
parameters).

5. Supported inline and recursive local functions.

6. Added type-of macro to expose bound types.

7. Allowed to explicitly specify bound types.

8. Removed using boost::function instead of exposing internal local functor as public API.

9. Added functor to overload local functions (and functors in general).

10. Implemented support for nesting local functions, blocks, and exits into one another.

Version 0.1.1 (2011-01-10)

1. Uploaded library source into Boost SVN sandbox.

2. Fixed prev/next arrows and other minor layouts in documentation.

3. Added Release section to documentation.

55

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://lists.boost.org/boost-announce/2011/12/0340.php
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Version 0.1.0 (2011-01-03)

1. Shared with Boost for first round of comments.

Version 0.0.1 (2010-12-15)

1. Completed development, examples, and documentation.

56

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bibliography
This section lists all the bibliographic references cited by this documentation.

[N1613] Thorsten Ottosen. Proposal to add Design by Contract to C++. The C++ Standards Committee, document no. N1613=04-
0053, 2004.

[N2511] Alisdair Meredith. Named Lambdas and Local Functions. The C++ Standards Committee, document no. N2511=08-0021,
2008.

[N2529] Jaakko Jarvi, John Freeman, Lawrence Crowl. Lambda Expressions and Closures: Wording for Monomorphic Lambdas
(Revision 3). The C++ Standards Committee, document no. N2529=08-0039, 2008.

[N2550] Jaakko Jarvi, John Freeman, Lawrence Crowl. Lambda Expressions and Closures: Wording for Monomorphic Lambdas
(Revision 4). The C++ Standards Committee, document no. N2550=08-0060, 2008.

[N2657] John Spicer. Local and Unamed Types as Template Arguments. The C++ Standard Committee, document no. N2657=08-
0167, 2008.

57

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2004/n1613.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2511.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2529.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2550.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Acknowledgments
This section aims to recognize the contributions of all the different people that participated directly or indirectly to the design and
development of this library.

Many thanks to Steven Watanabe and Vicente Botet for suggesting to me to use Boost.ScopeExit binding to emulate local functions.
Many thanks to Alexander Nasonov for clarifying how Boost.ScopeExit binding could be used to implement local functions and for
some early work in this direction.

Many thanks to Gregory Crosswhite for using an early version of this library in one of his projects.

Thanks to David Abrahams, Vicente Botet, et al. for suggesting to provide the variadic macro syntax on compilers that support
variadic macros.

Thanks to Pierre Morcello for sharing some code that experimented with implementing local functions using Boost.ScopeExit
binding (even if this library is not based on such a code).

Thanks to John Bytheway for checking the authors' virtual functor technique that originally allowed this library to pass local functions
as template parameters.

Thanks to Jeffrey Lee Hellrung for suggesting the use of the "keyword" bind to bind variables in scope and for suggesting to use
bind(type) to optionally specify the bound variable type. Thanks to Vicente Botet for suggesting to provide a macro to expose
the bound variable type to the public API.

Thanks to Steven Watanabe, Vicente Botet, Michael Caisse, Yechezkel Mett, Joel de Guzman, Thomas Heller, et al. for helping
with the Alternatives section and with the profiling of the different alternatives.

Many thanks to Jeffrey Lee Hellrung for managing the Boost review of this library. Thanks also to all the people that submitted a
Boost review: Andrzej Krzemienski, Edward Diener, Gregory Crosswhite, John Bytheway, Hartmut Kaiser, Krzysztof Czainski,
Nat Lindon, Pierre Morcello, Thomas Heller, and Vicente J. Botet. Thanks to everyone that commented on the library during its
Boost review.

Finally, many thanks to the entire Boost community and mailing list for providing valuable comments about this library and great
insights on the C++ programming language.

58

Boost.LocalFunction 1.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/scope_exit
http://lists.boost.org/Archives/boost/2010/04/165149.php
http://www.boost.org/libs/scope_exit
http://thread.gmane.org/gmane.comp.lib.boost.devel/168612
https://github.com/gcross/CodeSearch
http://lists.boost.org/Archives/boost/2011/02/176712.php
http://www.boost.org/libs/scope_exit
http://lists.boost.org/boost-announce/2011/12/0340.php
http://www.boost.org
http://lists.boost.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.LocalFunction 1.0.0
	Table of Contents
	Introduction
	Getting Started
	This Documentation
	Compilers and Platforms
	Installation

	Tutorial
	Local Functions
	Binding Variables
	Binding the Object this
	Templates

	Advanced Topics
	Default Parameters
	Commas and Symbols in Macros
	Assignments and Returns
	Nesting
	Accessing Types (concepts, etc)
	Specifying Types (no Boost.Typeof)
	Inlining
	Recursion
	Overloading
	Exception Specifications
	Storage Classifiers
	Same Line Expansions
	Limitations (operators, etc)

	Examples
	GCC Lambdas (without C++11)
	Constant Blocks
	Scope Exits
	Boost.Phoenix Functions
	Closures
	GCC Nested Functions
	N-Papers

	Annex: Alternatives
	Annex: No Variadic Macros
	Annex: Implementation
	Reference
	Header <boost/local_function.hpp>
	Macro BOOST_LOCAL_FUNCTION
	Macro BOOST_LOCAL_FUNCTION_TPL
	Macro BOOST_LOCAL_FUNCTION_ID
	Macro BOOST_LOCAL_FUNCTION_ID_TPL
	Macro BOOST_LOCAL_FUNCTION_NAME
	Macro BOOST_LOCAL_FUNCTION_NAME_TPL
	Macro BOOST_LOCAL_FUNCTION_TYPEOF

	Header <boost/local_function/config.hpp>
	Macro BOOST_LOCAL_FUNCTION_CONFIG_ARITY_MAX
	Macro BOOST_LOCAL_FUNCTION_CONFIG_BIND_MAX
	Macro BOOST_LOCAL_FUNCTION_CONFIG_LOCALS_AS_TPARAMS

	Release Notes
	Bibliography
	Acknowledgments

