Boost.StaticAssert
John Maddock

Steve Cleary
Copyright © 2000, 2005 Steve Cleary and John Maddock

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at ht-
tp://www.boost.org/LICENSE_1 0.txt)

Table of Contents

OVENVIEN BN TULOITEI ... ettt ettt ettt ettt ettt oo et h e ettt e et e b e e et e b e e et e b e e et ebe e e et et e e e e et eas 2
USE @ NAMESPBCE SCOMPE. ... evueietnteeta ettt ietataeeat e tet e e e e e e et r et et e eat et et e et e e et aet et et e e et et e et e eaa e et eer et et e e ea e e eneneeaa e ene s 2
USE @ TUNCEION SCOPE ...ttt ettt ettt ettt ettt e et ettt oo ettt 4 e et ek oottt e e et et et e et s et e sba e neeenba e e e enaes 3
U o= R o] oL TS PSP TUPPPTR 3
U T (= 00T o = = PSPPSR 4
HOW TEWOTKS ..ottt ettt ootttk oot e et oot et b oot e e bt e et eb e et e eb e et e et e e e e tb e e e e naans 5
L= O (00 =0 1 TPV RPPRPPRN 6

Thismanual is aso available in printer friendly PDF format.

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://sourceforge.net/projects/boost/files/boost-docs/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.StaticAssert

Overview and Tutorial

The header <boost / st ati c_assert . hpp> supplies two macros:

BOOST_STATI C_ASSERT(x)
BOOST_STATI C_ASSERT_MBG(X, nsg)

Both generate a compile time error message if the integral-constant-expression x is not true. In other words, they are the compile
time equivalent of the assert macro; this is sometimes known as a "compile-time-assertion", but will be called a "static assertion"
throughout these docs. Note that if the conditionist r ue, then the macros will generate neither code nor data - and the macros can
also be used at either namespace, class or function scope. When used in a template, the static assertion will be evaluated at the time
the template is instantiated; thisis particularly useful for validating template parameters.

If the C++0x st ati c_assert featureis available, both macros will use it. For BOOST_STATI C_ASSERT(x) , the error message
will be a stringized version of x. For BOOST_STATI C_ASSERT_MSG(x, nsg), the error message will be the msg string.

If the C++0x st ati c_assert featureisnot available, BOOST_STATI C_ASSERT_MSG(x, nsg) will betreated as BOOST_STAT-
| C_ASSERT(x) .

The material that follows assumesthe C++0x st at i c_assert featureis not available.

One of the aims of BOOST_STATI C_ASSERT is to generate readable error messages. These immediately tell the user that a library
is being used in a manner that is not supported. While error messages obvioudy differ from compiler to compiler, but you should
see something like:

Il egal use of STATI C_ASSERTI ON_FAIl LURE<f al se>

Which isintended to at least catch the eye!

You can use BOOST_STATI C_ASSERT at any place where you can place adeclaration, that is at class, function or namespace scope,
thisisillustrated by the following examples:

Use at namespace scope.

The macro can be used at namespace scope, if there is some requirement must always be true; generally this means some platform
specific requirement. Suppose we requirethat i nt be at least a 32-bit integral type, and that wehar _t be an unsigned type. We can
verify this at compile time as follows:

#i nclude <climts>

#i ncl ude <cwchar >

#include <limts>

#i ncl ude <boost/static_assert. hpp>

namespace ny_conditions {

BOOST_STATI C_ASSERT(std: :numeric_limts<int> :digits >= 32);
BOOST_STATI C_ASSERT(WCHAR_M N >= 0);

} I/ nanmespace ny_conditions

The use of the namespace my_conditions here requires some comment. The macro BOOST_STATI C_ASSERT works by generating
an typedef declaration, and since the typedef must have a name, the macro generates one automatically by mangling a stub name
with the value of _ LI NE__. When BOOST_STATI C_ASSERT is used at either class or function scope then each use of
BOOST_STATI C_ASSERT is guaranteed to produce a name unique to that scope (provided you only use the macro once on each line).
However when used in a header at namespace scope, that namespace can be continued over multiple headers, each of which may
have their own static assertions, and on the "same" lines, thereby generating duplicate declarations. In theory the compiler should
silently ignore duplicate typedef declarations, however many do not do so (and even if they do they are entitled to emit warningsin

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.StaticAssert

such cases). To avoid potential problems, if you use BOOST_STATI C_ASSERT in a header and at namespace scope, then enclose
them in a namespace unique to that header.

Use at function scope

The macro istypically used at function scope inside template functions, when the template arguments need checking. Imagine that
we have an iterator-based algorithm that requires random access iterators. If the algorithm is instantiated with iterators that do not
meet our requirements then an error will be generated eventually, but this may be nested deep inside severa templates, making it
hard for the user to determine what went wrong. One option is to add a static assertion at the top level of the template, in that case
if the condition is not met, then an error will be generated in away that makes it reasonably obviousto the user that the templateis
being misused.

#i nclude <iterator>
#i ncl ude <boost/static_assert. hpp>
#i ncl ude <boost/type_traits. hpp>

tenpl ate <cl ass RandomAccesslterator >
RandomAccessl terator foo(RandomAccesslterator from
RandomAccesslterator to)

{
/1l this tenplate can only be used with
/'l random access iterators...
typedef typenanme std::iterator_traits<
RandomAccesslterator >::iterator_category cat;
BOOST_STATI C_ASSERT(
(boost::is_convertible<
cat,
const std::random access_iterator_tag&>::value));
I
/'l detail goes here...
return from
}

A couple of footnotes are in order here: the extra set of parenthesis around the assert, is to prevent the commainside thei s_con-

verti bl e template being interpreted by the preprocessor as a macro argument separator; the target typefori s_converti bl e is
areference type, as some compilers have problemsusingi s_converti bl e when the conversion is via a user defined constructor
(in any case there is no guarantee that the iterator tag classes are copy-constructible).

Use at class scope

The macro is typically used inside classes that are templates. Suppose we have a template-class that requires an unsigned integral
type with at least 16-bits of precision as atemplate argument, we can achieve this using something like this:

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.StaticAssert

#include <limts>
#i ncl ude <boost/static_assert. hpp>

tenpl ate <cl ass Unsi gnedl nt >
cl ass nycl ass
{ .
private:

BOOST_STATI C_ASSERT_MBG(st d: : nuneric_limts<Unsignedlnt>::is_specialized, "nyclass can only [
be specialized for types with nunmeric_|limts support.");

BOOST_STATI C_ASSERT_MSG(std: : nuneric_limts<Unsignedint>: :digits >= 16, "Tenplate argunent [
Unsi gnedl nt nust have at |east 16 bits precision.")

BOOST_STATI C_ASSERT_MSG(std: : nuneric_limts<Unsignedlnt>::is_integer, "Tenplate argunent Un[
signedlnt nust be an integer.");

BOOST_STATI C_ASSERT_MSG(! std: : nuneric_limts<Unsignedlnt>: :is_signed, "Tenplate argunent Un[
signedlnt nust not be signed.");
public:

/* details here */

I

Use in templates

Normally static assertions when used inside a class or function template, will not be instantiated until the template in whichiit is used
is instantiated. However, there is one potential problem to watch out for: if the static assertion is not dependent upon one or more
template parameters, then the compiler is permitted to eval uate the static assertion at the point it isfirst seen, irrespective of whether
the template is ever instantiated, for example:

tenpl ate <class T>
struct nust_not _be instantiated

{
b

BOOST_STATI C_ASSERT(f al se) ;

Will produce a compiler error with some compilers (for example Intel 8.1 or gcc 3.4), regardless of whether the templateis ever in-
stantiated. A workaround in cases like thisis to force the assertion to be dependent upon a template parameter:

tenpl ate <class T>
struct must_not _be_instantiated

/1 this will be triggered if this type is instantiated
BOOST_STATI C_ASSERT(si zeof (T) == 0);

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.StaticAssert

How it works

BOOST_STATI C_ASSERT works as follows. Thereis class STATI C_ASSERTI ON_FAI LURE which is defined as:

namespace boost {
tenpl at e <bool > struct STATI C_ASSERTI ON_FAI LURE;

tenpl ate <> struct STATI C_ASSERTI ON_FAI LURE<t rue>{};
}

Thekey featureisthat the error message triggered by the undefined expression si zeof (STATI C_ASSERTI ON_FAI LURE<0>) , tends
to be consistent across awide variety of compilers. The rest of the machinery of BOOST_STATI C_ASSERT isjust away to feed the
si zeof expression into at ypedef . The use of a macro here is somewhat ugly; however boost members have spent considerable
effort trying to invent a static assert that avoided macros, all to no avail. The general conclusion was that the good of a static assert
working at namespace, function, and class scope outweighed the ugliness of a macro.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.StaticAssert

Test Programs

Test Program

static_assert_test.cpp

static_assert_example _1.cpp

static_assert_example_2.cpp
static_assert_example_3.cpp
static_assert_test fail_1.cpp

static_assert_test fail_2.cpp

static_assert_test fail_3.cpp

static_assert_test fail_4.cpp

static_assert_test fail_5.cpp

static_assert_test fail_6.cpp

static_assert_test fail_7.cpp

static_assert_test fail_8.cpp

static_assert_test fail_9.cpp

Table 1. Test programs provided with static_assert

Expected to Compile

Yes

Platform dependent.

Yes
Yes
No

No

No

No

No

No

No

No

No

Description

Illustrates usage, and should aways
compile, really just testscompiler compat-
ibility.

Namespace scope test program, may
compile depending upon the platform.

Function scope test program.
Class scope test program.
Illustrates failure at namespace scope.

Illustratesfailure at non-template function
Scope.

[llustrates failure at non-template class
scope.

Illustrates failure at non-template class
scope.

Illustrates failure at template class scope.

Illustrates failure at template class mem-
ber function scope.

Illustrates failure of class scope example.

Illustrates failure of function scope ex-
ample.

Illustrates failure of function scope ex-
ample (part 2).

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_example_1.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_example_2.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_example_3.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_1.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_2.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_3.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_4.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_5.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_6.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_7.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_8.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_9.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.StaticAssert
	Table of Contents
	Overview and Tutorial
	Use at namespace scope.
	Use at function scope
	Use at class scope
	Use in templates

	How it works
	Test Programs

