render

Boost.Config

Vesa Karvonen, John Maddock Beman Dawes
Copyright © 2001-2007 Beman Dawes, Vesa Karvonen, John Maddock

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE 1 0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents

Configuring BOOSE fOr YOUE PlaITOIM ...t e et e et e e et e e et e e et e e et e e eanaeenaaes 2
Using the default BOOSt CONFIGUIBLIONcueiee e e ettt e et e e et e e et e e et e e e eeenns 2
The <boost/CONfig.NPP= NEAMEY ... ettt e e et e et e et e e ea e e et 2
USING the CONTIGUIE STITE ... ettt ettt ettt ettt et et et et e ettt e et et ea e e e e e et e e et e e e an e e e saeeenneaeens 2
USEr SEHADIE OPLIONS ...ttt et e e ettt e e et e et et e e e et e et e e an e e et e e et e et e e aa e eaaaae 3
Advanced CONfIQUIELTION USAQEuueee ittt e et ettt e e e et e et e et e e tt e ettt e et s e e th e e ea e e et e e etn e eetn e eataaennaaetnans 6
Testing the DOOSE CONTIGUIBLION ...t ettt e e e et e e et e e et e e e at e e e e e et e e et aetnans 7
BOOSE MBCIO REFEIEINCE ... ceeiti ettt ettt e e et e e ettt e e et et e e et ettt e et et et e e e ee bt e e e es bt e e e estaneeeentnneeeens 9
Macros that desCribDe CH+03 TEFECESceuvuieiiii ettt e et e et e e et e e e ee e e e ennanaeees 9
Macros that describe OptioNal FEBIUINESc.. i e e e et e e e e 16
Macros that describe possible CH+ fULUIE FEEIUIEScouu it e eaa s 22
Macros that describe C++11 featureS NOt SUPPOITEXcuuiiei ittt e e et e et e et e e e eeaa e 22
Macros that allow use of C++11 features with C++03 COMPIIErSccuniiiiiii e 25
BOOSE HEIPEN IMIACIOS ...ttt ettt e ettt e et e e et e e et e ettt et aa e e e ah e e et e e et e eebn e eanaeees 29
BOOSt INFOrMELIONEL IMBCIOS ...ttt ettt e e et e et e e et e e e et et e e et et e e e e et e e e e ena s 35
[STelols QBT o= oz = o Y=ol o TSP 37
Macros for libraries with SEparate SOUICE COUEccuu ittt e e et e et e e e e e e e eb e eannas 40
S = a0 =T B 1S o = g Y o1 S PPN 45
OVEIVIBIN ..ottt ettt e ettt ettt e et et e e et et e e et et et e et e hh e e et e b et e et e b et e et e E e e et e e et e et e na e e e s 45
e 1[0 7= = PP P PP TPPPPTRRTPPPPTN 45
L0z V2 L 110 o/ (o] ST PTPRPPN 45
e o T Lo (g T 1= e < g £ 1SS PP 45
MiNiIMUM-WIAEN TNEEOEI TYPES ... e e et et e et et e e et e e et e e e e e et a et e eenas 45
Fastest minimumM-Width INTEGEN TYPES ... ittt et e e et ettt e et e e et e e e e e an e e e et e aeaneaeanss 46
CTge Y o LTI (S 0 = g1 0= S U 46
INTEGEN CONSLANT IMIBETOS ... eee ettt ettt ettt et et et e ettt e et e et e e e a et e et e et e e et teeareen e e an e et e et eenaenns 46
GUIDETNES FOr BOOSE AULNOIS ...ttt ettt ettt e ettt e et et r e et e ebr e et et n e e e ena e e ennens 48
Disabling COMPIEr WaIMINGS ... ettt et et e et et et e e et r et et e e ea e e et e e e tn e eeanaeeeaaaennaeeanss 48
AddiNG NEW DEFECE IMIACIOS ...ttt et e ettt et e ettt et aa e et et e e et e e eba e e e en e ean e eaebnaaeanaees 49
AddiNg NEW FEALUIE TESE IMIACIOS ... et ettt ettt ettt ettt e et e et e ettt et eb e e et e e et e e et e e e tn e e e ab e aennaaeanns 50
Modifying the Boost Configuration HEBOEIScuniiie e e et e e e e aees 50
e 107 =TT TUP PP TPPPPTTRPPPPIN 51
LI L=T o) o = 1 1 PPN 51
BT o)1 1] TSP PP SPPPTTRUPPPN 51
A CKNOWIBOGEIMENTS . ..ttt ettt oot e ettt ettt oottt e ettt et ta e e e aa e e ea o e e et e e et e et bn e e an e e et e e et e aeanaee 52
1

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Configuring Boost for Your Platform

Using the default boost configuration

Boost comes aready configured for most common compilers and platforms; you should be ableto use boost "asis'. Sincethe compiler
is configured separately from the standard library, the default configuration should work even if you replace the compiler's standard
library with athird-party standard library (like STLport).

Using boost "as is" without trying to reconfigure is the recommended method for using boost. You can, however, run the configure
script if you want to, and there are regression tests provided that allow you to test the current boost configuration with your particul ar
compiler setup.

Boost library users can request support for additional compilers or platforms by visiting our Trac and submitting a support request.

The <boost/config.hpp> header

Boost library implementations access configuration macros via

#i ncl ude <boost/config. hpp>

While Boost library users are not required to include that file directly, or use those configuration macros, such useis acceptable. The
configuration macros are documented asto their purpose, usage, and limitations which makes them usable by both Boost library and
user code.

Boost informational or helper macros are designed for use by Boost users as well as for our own internal use. Note however, that
the feature test and defect test macros were designed for internal use by Boost libraries, not user code, so they can change at any
time (though no gratuitous changes are made to them). Boost library problems resulting from changes to the configuration macros
are caught by the Boost regression tests, so the Boost libraries are updated to account for those changes. By contrast, Boost library
user code can be adversely affected by changes to the macros without warning. The best way to keep abreast of changes to the
macros used in user code is to monitor the discussions on the Boost devel opers list.

Using the configure script

2 I mportant
This configure script only sets up the Boost headersfor use with a particular compiler. It has no effect on Boost.Build,
or how the libraries are built.

If you know that boost isincorrectly configured for your particular setup, and you are on a UNIX like platform, then you may want
to try and improve things by running the boost configure script. From a shell command prompt you will need to cd into <boost-
root>/1i bs/ confi g/ andtype:

sh ./configure

you will see alist of the items being checked as the script works its way through the regression tests. Note that the configure script
only really auto-detects your compiler if it's called g++, c++ or CC. If you are using some other compiler you will need to set one
or more of the following environment variables:

httpo://www.renderx.com/

http://stlport.sourceforge.net
https://svn.boost.org/trac/boost/newticket
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Config

Variable

CXX

CXXFLAGS

LDFLAGS

LIBS

Description

The name of the compiler, for example c++.

The compiler flagsto use, for example - O2.
Thelinker flagsto use, for example - L/ nypat h.

Any librariesto link in, for example - | pt hr ead.

For example to run the configure script with HP aCC, you might use something like:

export CXX="aCC'

export CXXFLAGS="-Aa -DAportabl e -D__HPACC THREAD SAFE RB TREE \
-DRWSTD_MULTI _THREAD - DRW MULTI _THREAD - D_REENTRANT - D_THREAD SAFE"

export LDFLAGS="- DAportabl e"
export LIBS="-Ipthread"
sh ./configure

However you run the configure script, when it finishes you will find a new header -user. hpp- located in the <boost-
root>/1i bs/ confi g/ directory. Note that configure does not install this header into your boost include path by default. This
header contains all the options generated by the configure script, plus a header-section that contains the user settable options from
the default version of <boost/config/user.hpp> (located under <boost-root>/ boost / confi g/). There are two ways you can use

this header:

» Option 1: copy the header into <boost-root>/ boost / confi g/ so that it replaces the default user.hpp provided by boost. This
option allows only one configure-generated setup; boost devel opers should avoid thisoption, asit incursthe danger of accidentally
committing a configure-modified <boost/config/user.hpp> to the svn repository (something you will not be thanked for!).

e Option 2: give the header a more memorable name, and place it somewhere convenient; then, define the macro
BOOST_USER_CONFI Gto point to it. For example create a new sub-directory <boost-root>/ boost / confi g/ user/, and copy
the header there; for example as mul ti t hr ead- gcc- confi g. hpp. Then, when compiling add the command line option:
- DBOOST_USER_CONFI G="<boost / confi g/ user/nul tithread-gcc-confi g. hpp>", and boost will usethe new configur-
ation header. This option allows you to generate more than one configuration header, and to keep them separate from the boost

source - so that updates to the source do not interfere with your configuration.

User settable options

There are some configuration-options that represent user choices, rather than compiler defects or platform specific options. These
arelisted in <boost / confi g/ user. hpp> and at the start of a configure-generated user . hpp header. You can define these on the

command line, or by editing <boost / confi g/ user . hpp>, they arelisted in the following table:

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro

BOOST_USER_CONFI G

BOOST_COWVPI LER_CONFI G

BOOST_STDLI B_CONFI G

BOOST_PLATFORM CONFI G

BOOST_NO_COWPI LER_CONFI G

BOOST_NO _STDLI B_CONFI G

BOOST_NO_PLATFORM_CONFI G

BOOST_NO_CONFI G

BOCST_STRI CT_CONFI G

Description

When defined, it should point to the name of the user configur-
ationfiletoinclude prior to any boost configuration files. When
not defined, defaultsto <boost / conf i g/ user . hpp>.

When defined, it should point to the name of the compiler con-
figuration file to use. Defining this cuts out the compiler selec-
tionlogic, and eliminates the dependency on the header contain-
ing that logic. For exampleif you are using gcc, then you could
defineBOOST_COMPILER _CONFIGto<boost / conf i g/ com

pi | er/ gcc. hpp>.

When defined, it should point to the name of the standard library
configuration file to use. Defining this cuts out the standard
library selection logic, and eliminates the dependency on the
header containing that logic. For example if you are using
STLport, then you could define BOOST_STDLI B_CONFI G to
<boost/config/stdlib/stlport. hpp>.

When defined, it should point to the name of the platform con-
figuration fileto use. Defining this cuts out the platform selection
logic, and eliminates the dependency on the header containing
that logic. For exampleif you are compiling on linux, then you
could define BOOST _PLATFORM CONFI G to <boost/ con-

figl/platfornlinux.hpp>.

When defined, no compiler configuration file is selected or in-
cluded, define when the compiler is fully conformant with the
standard, or wherethe user header (see BOOST_USER_CONFI G),
has had any options necessary added to it, for example by an
autoconf generated configure script.

When defined, no standard library configuration fileis selected
or included, define when the standard library isfully conformant
with the standard, or where the user header (see
BOOST_USER_CONFI G), has had any options necessary added
toit, for example by an autoconf generated configure script.

When defined, no platform configuration file is selected or in-
cluded, define when the platform is fully conformant with the
standard (and has no useful extra features), or where the user
header (see BOOST_USER_CONFI G), has had any optionsneces-
sary added to it, for example by an autoconf generated configure
script.

Equivalent to defining al of BOOST_NO_COWPI LER_CONFI G,
BOOST_NO_STDLI B_CONFI Gand BOOST _NO_PLATFORM CON
FI G

The normal behavior for compiler versions that are newer than
the last known version, isto assume that they have all the same
defects as the last known version. By setting this define, then
compiler versions that are newer than the last known version
are assumed to be fully conforming with the standard. Thisis
probably most useful for boost developers or testers, and for
those who want to use boost to test beta compiler versions.

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/compiler/gcc.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/compiler/gcc.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/stdlib/stlport.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/platform/linux.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/platform/linux.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro

BOOST_ASSERT_CONFI G

BOCST_DI SABLE_THREADS

BOOST_DI SABLE_W N32

BOOST_DI SABLE_ABI _HEADERS

BOCST_ABI _PREFI X

BOCST_ABI _SUFFI X

BOOST_ALL_DYN LI NK

BOOST_WHATEVER _DYN_LI NK

BOOST_ALL_NO LI B

Description

When thisflag isset, if the config finds anything unknown, then
it will stop with a#error rather than continue. Boost regression
testers should set this define, as should anyone who wants to
quickly check whether boost is supported on their platform.

When defined, disables threading support, even if the compiler
in its current translation mode supports multiple threads.

When defined, disables the use of Win32 specific API's, even
when these are available. Also has the effect of setting
BOOST_DI SABLE_THREADS unless BOOST_HAS PTHREADS is
set. This option may be set automatically by the config system
when it detects that the compiler isin "strict mode".

Stops boost headers from including any prefix/suffix headers
that normally control things like struct packing and alignment.

A prefix header to include in place of whatever boost.config
would normally select, any replacement should set up struct
packing and alignment options as required.

A suffix header to include in place of whatever boost.config
would normally select, any replacement should undo the effects
of the prefix header.

Forces al libraries that have separate source, to be linked as
dil's rather than static libraries on Microsoft Windows (this
macroisusedtoturnon__decl spec(dl | i nport) modifiers,
so that the compiler knows which symbols to look for in adll
rather than in a static library). Note that there may be somelib-
rariesthat can only be statically linked (Boost. Test for example)
and otherswhich may only bedynamically linked (Boost. Thread
for example), in these cases this macro has no effect.

Forces library "whatever" to be linked as a dll rather than a
static library on Microsoft Windows: replace the WHATEVER
part of the macro name with the name of the library that you
want to dynamically link to, for example use
BOOST_DATE_TI ME_DYN LI NK or BOOST _REGEX_DYN_LI NK
etc (this macro is used to turn on __decl spec(dl | i nport)

modifiers, so that the compiler knows which symbols to look
for in adll rather than in a static library). Note that there may
be some libraries that can only be statically linked (Boost.Test
for example) and others which may only be dynamically linked
(Boost. Thread for example€), in these cases this macro is unsup-
ported.

Tellsthe config system not to automatically select which librar-
iestolink against. Normally if acompiler supports#pragmalib,
then the correct library build variant will be automatically selec-
ted and linked against, simply by the act of including one of that
library's headers. This macro turns that feature off.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Config

Macro Description

BOOST_WHATEVER NO LI B Tellsthe config system not to automatically select which library
to link against for library "whatever", replace WHATEVER in
the macro name with the name of the library; for example
BOOST_DATE_TI ME_NO LI Bor BOOST _REGEX_NO LI B. Nor-
mally if a compiler supports #pr agma | i b, then the correct
library build variant will be automatically selected and linked
against, simply by the act of including one of that library's
headers. This macro turns that feature off.

BOOST_LI B_DI AGNOSTI C Causes the auto-linking code to output diagnostic messagesin-
dicating the name of the library that is selected for linking.

BOOST_LI B_TOOLSET Overrides the name of the toolset part of the name of library
being linked to; note if defined this must be defined to a quoted
string literal, for example "abc".

Advanced configuration usage

By setting various macros on the compiler command line or by editing <boost/config/user.hpp>, the boost configuration setup can
be optimised in avariety of ways.

Boost's configuration is structured so that the user-configuration is included first (defaulting to <boost/config/user.hpp> if
BOOST_USER_CONFI Gis not defined). This sets up any user-defined policies, and gives the user-configuration a chance to influence
what happens next.

Next the compiler, standard library, and platform configuration files are included. These are included via macros (BOOST_COM
Pl LER_CONFI Getc, see user settable macros), and if the corresponding macro is undefined then a separate header that detects which
compiler/standard library/platformisin useisincluded in order to set these. The config can betold to ignore these headers altogether
if the corresponding BOOST_NO_XXX macro is set (for example BOOST_NO_COWPI LER_CONFI Gto disable including any compiler
configuration file - see user settable macros).

Finally the boost configuration header, includes <boost/config/suffix.hpp>; this header contains any boiler plate configuration code
- for example where one boost macro being set implies that another must be set also.

The following usage examples represent just afew of the possibilities:

Example 1: creating our own frozen configuration

L ets suppose that we're building boost with Visual C++ 6, and STLport 4.0. Lets suppose aso that we don't intend to update our
compiler or standard library any time soon. In order to avoid breaking dependencies when we update boost, we may want to "freeze"
our configuration headers, so that we only have to rebuild our project if the boost code itself has changed, and not because the boost
config has been updated for more recent versions of Visual C++ or STLport. We'll start by realising that the configuration filesin
use are: <boost/ confi g/ conpil er/visual c. hpp> for the compiler, <boost/config/stdlib/stlport.hpp> for the
standard library, and <boost / confi g/ pl at f or m wi n32. hpp> for the platform. Next we'll create our own private configuration
directory: boost / confi g/ nyset up/, and copy the configuration files into there. Finally, open up <boost/config/user.hpp> and
edit the following defines:

#define BOOST_COWPI LER CONFI G "boost/ confi g/ nyset up/ vi sual c. hpp"
#define BOOST_STDLI B_ CONFI G "boost/ confi g/ nysetup/stl port. hpp"
#defi ne BOOST_USER CONFI G "boost/ confi g/ nmysetup/ wi n32. hpp"

Now when you use boost, its configuration header will go straight to our "frozen™" versions, and ignore the default versions, you will
now be insulated from any configuration changes when you update boost. This technique is also useful if you want to modify some
of the boost configuration files; for example if you are working with a beta compiler release not yet supported by boost.

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/compiler/visualc.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/stdlib/stlport.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/platform/win32.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Example 2: skipping files that you don't need

L ets suppose that you're using boost with a compiler that is fully conformant with the standard; you're not interested in the fact that
older versions of your compiler may have had bugs, because you know that your current version does not need any configuration
macros setting. In a case like this, you can define BOOST_NO_COWPI LER_CONFI G €either on the command line, or in <boost/con-
fig/user.hpp>, and miss out the compiler configuration header altogether (actually you miss out two headers, one which works out
what the compiler is, and one that configures boost for it). This has two consequences: the first is that |ess code has to be compiled,
and the second that you have removed a dependency on two boost headers.

Example 3: using configure script to freeze the boost configuration

If you are working on a unix-like platform then you can use the configure script to generate a "frozen" configuration based on your
current compiler setup - see using the configure script for more details.

Testing the boost configuration

The boost configuration library provides a full set of regression test programs under the <boost-root>/ boost / confi g/ test/
sub-directory:

File Description

config_info.cpp Prints out a detailed description of your compiler/standard lib-
rary/platform setup, plus your current boost configuration. The
information provided by this program isuseful in setting up the
boost configuration files. If you report that boost is incorrectly
configured for your compiler/library/platform then pleaseinclude
the output from this program when reporting the changes re-
quired.

config_test.cpp A monoalithic test program that includes most of the individual
test cases. Thisprovidesaquick check to seeif boost is correctly
configured for your compiler/library/platform.

limits_ test.cpp Tests your standard library's st d: : nuneric_limts imple-
mentation (or its boost provided replacement if
BOOST_NO LI M TS is defined). This test file fails with most
versions of numeric_limits, mainly due to the way that some
compilerstreat NAN's and infinity.

no_*pass. cpp Individual compiler defect test files. Each of these should com-
pile, if one does not then the corresponding BOOST_NO_XXX
macro needsto be defined - see each test filefor specific details.

no_*fail.cpp Individual compiler defect test files. Each of these should not
compile, if one does then the corresponding BOOST_NO_XXX
macro is defined when it need not be - see each test file for
specific details.

has_*pass. cpp Individual feature test files. If one of these does not compile
then the corresponding BOOST_HAS XXX macroisdefined when
it should not be - see each test file for specific details.

has_*fail.cpp Individual feature test files. If one of these does compile then
the corresponding BOOST_HAS XXX macro can be safely defined
- see each test file for specific details.

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Although you can run the configuration regression tests as individual test files, there are rather alot of them, so there are a couple
of shortcuts to help you out:

If you have built the boost regression test driver, then you can use this to produce a nice html formatted report of the results using
the supplied test file.

Alternatively you can run the configure script like this:
./configure --enable-test
in which case the script will test the current configuration rather than creating a new one from scratch.

If you arereporting the results of these testsfor anew platform/library/compiler then please include alog of the full compiler output,
the output from conf i g_i nf 0. cpp, and the pass/fail test results.

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../tools/regression/doc/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Boost Macro Reference

Macros that describe C++03 defects

The following macros al describe features that are required by the C++03 standard, if one of the following macros is defined, then
it represents a defect in the compiler's conformance with the 2003 standard.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro
BOOST_BCB_PARTI AL_SPECI ALI ZA-
TI ON_BUG

BOOST_FUNCTI ON_SCOPE_USI NG _DE-
CLARATI ON_BREAKS_ADL

BOOST_NO ADL_BARRI ER

BOOST_NO_ARGUMENT _DEPEND-
ENT_LOOKUP

BOOST_NO_AUTO _PTR

BOCST_NO COVPLETE VALUE | N TI AL-
| ZATI ON

BOOST_NO_CTYPE_FUNCTI ONS

BOOST_NO_CV_SPECI ALI ZATI ONS

BOOST_NO_CV_VOI D_SPECI ALI ZA-
TI ONS

BOOST_NO_CWCHAR

BOOST_NO_CWCTYPE

BOOST_NO_FENV_H

Section

Compiler

Compiler

Compiler

Compiler

Standard library

Compiler

Platform

Compiler

Compiler

Platform

Platform

Platform, Standard library

Description

The compiler exhibits certain partial spe-
cialisation bug - probably Borland C++
Builder specific.

Argument dependent lookup failsif there
isausing declaration for the symbol being
looked up in the current scope. For ex-
ample, using boost:: get _pointer;
prevents ADL from finding overloads of
get _poi nt er in namespaces nested in-
side boost (but not elsawhere). Probably
Borland specific.

The compiler locates and searches
namespaces that it should *not* in fact
search when performing argument depend-
ent lookup.

Compiler does not implement argument-
dependent lookup (also named Koenig
lookup); see std::3.4.2 [basic.koenig.|ook-

up]

If the compiler / library supplies non-
standard or broken st d: : auto_ptr.

Compiler hasnot completely implemented
value-initialization. See also The Util-
ity/Value Init docs

The Platform does not provide functions
for the character-classifying operations
<ct ype. h>and <cct ype>, only macros.

If template specialisationsfor cv-qualified
types conflict with a specialisation for a
cv-unqualififed type.

If template speciaisations for cv-void
types conflict with a specialisation for
void.

The Patform does not provide
<wchar . h> and <cwchar >.

The Platform does not provide <wc-
t ype. h>and <cwct ype>.

The C standard library doesn't provide
<fenv. h>. <boost/ de-
tail/fenv. hpp> should be included
instead of <f env. h> for maximum port-
ability on platforms which do provide
<fenv. h>.

10

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../utility/value_init.htm#compiler_issues
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../utility/value_init.htm#compiler_issues
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/detail/fenv.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/detail/fenv.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro

BOOST_NO_DEPENDENT NESTED DER! V-
ATI ONS

BOOST_NO _DEPENDENT_TYPES_| N TEM
PLATE_VALUE_PARAMETERS

BOOST_ _NO_EXCEP-
TI ON_STD_NAMVESPACE

BOOST_NO_EXCEPTI ONS

BOOST_NO_FUNCTI ON_TEMPLATE_OR-
DERI NG

BOOST_NO | NCLASS_MEMBER | NI TI AL-
| ZATI ON

Section

Compiler

Compiler

Standard Library

Compiler

Compiler

Compiler

Description

The compiler fails to compile a nested
class that has a dependent base class:

tenpl at e<t ypenane T>

struct foo : {
tenpl at e<t ypenane U>
struct bar : public U {};

1

Template value parameters cannot have
a dependent type, for example:

tenpl ate<class T, typelO
nane T:.:type val ue>
class X { ... };

The standard library does not put some or
all of the contents of <exception> in
namespace std.

The compiler does not support exception
handling (thissettingistypically required
by many C++ compilers for embedded
platforms). Note that there is no require-
ment for boost libraries to honor this
configuration setting - indeed doing so
may be impossible in some cases. Those
libraries that do honor this will typically
abort if acritical error occurs - you have
been warned!

The compiler does not perform function
template ordering or itsfunction template
ordering isincorrect.

Il #1
tenpl ate<class T> void f(T);

Il #2
tentd
plate<class T,cass U vaid f(T(*)(U);

voi d bar(int);

f(&bar); // shoul d choose #2.

Compiler violates std::9.4.2/4.

render

11

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro Section Description

BOOST_NO | NTRINSI C WCHAR T Compiler The C++ implementation does not provide
wchar _t, or it isrealy a synonym for
another integral type. Use this symbol to
decide whether it is appropriate to expli-
citly speciadize atemplateonwchar _t if
there is already a specialization for other

integer types.
BOOST_NO_| OSFWD stdlib The standard library lacks <i osf wd>.
BOOST_NO_| OSTREAM std lib The standard library lacks <i ost r ean,

<i streanp Or <ost reanp.

BOOST_NO | S_ABSTRACT Compiler The C++ compiler does not support
SFINAE with abstract types, this is
covered by Core Language DR337, but is
not part of the current standard. Fortu-
nately most compilers that support
SFINAE also support this DR.

BOOST_NO LIM TS Standard library The C++ implementation does not provide
the <l i mi t s> header. Never check for
this symbol in library code; aways in-
clude <boost/linits. hpp>, which
guarantees to provide std:: numer-
ic limts.

BOOST_NO CXX11_NUVERI C LIM TS Standard library C++1ladditionstost d: : nuneric_lim
its are not available for use. static
function numeric_limts<T>::|ow
est () the lowest finite value represent-
able by the numeric type. static int
const max_di gi t s10 the number of
decimal digits that are required to make
sure that two distinct values of the type
have distinct decimal representations.
tenpl ate<> class nuneric_|lim
its<char16_t>;, see also
BOOST_NO CXX11_CHARL6 T, tem
pl at e<> cl ass numeric_lim
i ts<char32_t>; see aso
BOOST_NO_CXX11_CHAR32_T. Replaces
BOOST_NO_NUMERIC LIMITS LOW-

EST.
BOOST_NO_LI MI TS_COM- Standard library Constants such as numeric_lim
Pl LE_TI ME_CONSTANTS i ts<T>::is_signed are not available

for use at compile-time.

12

render

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#337
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Config

Macro

BOOST_NO_LONG LONG NUMERI C LI M
I TS

BOOST_NO_MEMBER_FUNCTI ON_SPE-
Cl ALI ZATI ONS

BOOST_NO_MEMBER_TEM-
PLATE_KEYWORD

BOOST_NO_MEMBER_TEM-
PLATE_FRI ENDS

BOOST_NO_MEMBER TEMPLATES

BOOST_NO_MS_| NT64_NUVERI C_LI M
I TS

BOOST_NO NESTED_FRI ENDSHI P

BOOST_NO_CPERATORS_| N_NAVESPACE

BOOST_NO_PARTI AL_SPECI ALI ZA-
TI ON_I MPLI CI T_DEFAULT_ARGS

BOOST_NO_POI NTER_TO_MEM-

BER_CONST

BOOST_NO_POl NTER_TO MEMBER TEM
PLATE_PARANMETERS

Section

Standard library

Compiler

Compiler

Compiler

Compiler

Standard library

Compiler

Compiler

Compiler

Compiler

Compiler

Description

There is no speciaization for numer -
ic_limts<long |ong> and nuner-
ic_limts<unsigned |ong |ong>.
<boost/limts. hpp> will then add
these specidizationsasastandard library
"fix" only if the compiler supports the
| ong | ong datatype.

The compiler does not support the special-
ization of individual member functions of
template classes.

If the compiler supports member tem-
plates, but not the templ ate keyword when
accessing member template classes.

Member template friend syntax (tem
pl ate<class P> friend class
frd;) described in the C++ Standard,
14.5.3, not supported.

Member template functions not fully
supported.

There is no speciadization for nurmer -
ic_limts<__int64> and nuner-
ic_limts<unsigned __int64>.
<boost/limits. hpp> will then add
these specializations asastandard library
"fix", only if the compiler supports the
__i nt 64 datatype.

Compiler doesn't allow a nested class to
access private members of its containing
class. Probably Borland/CodeGesar specif-
ic.

Compiler requires inherited operator
friend functions to be defined at
namespace scope, then using'ed to boost.
Probably GCC specific. See
<boost / oper at or s. hpp>for example.

The compiler does not correctly handle
partial specializationswhich depend upon
default argumentsin the primary template.

The compiler does not correctly handle
pointers to const member functions, pre-
venting use of these in overloaded func-
tiontemplates. See<boost / f unct i on-
al . hpp> for example.

Pointers to members don't work when
used as template parameters.

13

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/operators.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/functional.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/functional.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Config

Macro

BOOST_NO_PRI VATE | N_AGGREGATE

BOOST_NO_RTTI

BOOST_NO_SFI NAE

BOOST_NO_SFI NAE_EXPR

BOOST_NO_STD_ALLOCATOR

BOOST_NO_STD_DI STANCE

BOOST_NO_STD_| TERATOR

BOOST_NO_STD_| TERATOR TRAI TS

BOOST_NO_STD_LOCALE

BOOST_NO_STD_MESSAGES

BOOST_NO_STD_M N_MAX

BOOST_NO_STD _OUTPUT_| TERATCR AS-
SI GN

BOOST_NO_STD_TYPEI NFO

BOOST_NO_STD_USE_FACET

BOOST_NO_STD_WSTREAMBUF

Section

Compiler

Compiler

Compiler

Compiler

Standard library

Standard library

Standard library

Standard library

Standard library

Standard library

Standard library

Standard library

Standard library

Standard library

Standard library

Description

The compiler misreads 8.5.1, treating
classes as non-aggregate if they contain
private or protected member functions.

The compiler may (or may not) have the
typeid operator, but RTTI on the dynamic
type of an object is not supported.

The compiler does not support the "Sub-
gtitution Failure Is Not An Error" meta
programming idiom.

The compiler does not support usage of
SFINAE with arbitrary expressions.

The C++ standard library does not provide
astandardsconformingst d: : al | ocat -
or.

The platform does not have aconforming
version of st d: : di st ance.

The C++ implementation fails to provide
thestd::iterator class.

The compiler does not provide astandard
compliant implementation of
std::iterator_traits.Notethatthe
compiler may still have a non-standard
implementation.

Thestandard library lacksst d: : | ocal e.

The standard library lacks a conforming
std: : messages facet.

The C++ standard library does not provide
themi n() and max() templatefunctions
that should bein <al gori t hne.

Defined if the standard library's output
iterators are not assignable.

The <typeinfo> header declares
t ype_i nf o in the global namespace in-
stead of namespace std.

The standard library lacks a conforming
std::use_facet.

The standard library's implementation of
st d: : basi c_streanbuf <wchar _t>is
either missing, incomplete, or buggy.

14

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro

BOOST_NO_STD_WSTRI NG

BOOST_NO_STDC_NAMESPACE

BOOST_NO_STRI NGSTREAM

BOOST_NO_SWPRI NTF

BOOST_NO_TEMPLATE_PARTI AL_SPE-

Cl ALI ZATI ON

BOOST_NO_TEMPLATED | OSTREAMS

BOCST_NO TEMPLATED | TERATOR CON
STRUCTORS

BOOST_NO_TEMPLATE_TEMPLATES

BOOST_NO_TYPEI D

BOOST_NO TYPENAME_W TH_CTOR

BOOST_NO_UNREACHABLE_RETURN_DE-
TECTI ON

BOOST_NO_USI NG _DECLARATI CN_OVER-
LOADS_FROM TYPENAME_BASE

Section

Standard library

Compiler, Platform

Standard library

Platform

Compiler

Standard library

Standard library

Compiler

Compiler

Compiler

Compiler

Compiler

Description

The standard library lacks
std::wstring.

The contents of C++ standard headersfor
Clibrary functions (the<c. . . > headers)
have not been placed in namespace std.
Thistestisdifficult - somelibraries"fake"
thestd C functions by adding using declar-
ationsto import them into namespace std,
unfortunately they don't necessarily catch
all of them...

The C++ implementation does not provide
the <sst r ean» header.

The platform does not have aconforming
version of swprintf.

Class template partiadl speciaization
(14.5.4 [temp.class.spec]) not supported.

The standard library does not provide
templated iostream classes.

The standard library does not provide
templated iterator constructors for its
containers.

The compiler does not support template
template parameters.

The compiler does not support the typeid
operator at al.

The typename keyword cannot be used
when creating atemporary of a Dependent

type.

If areturn is unreachable, then no return
statement should be required, however
some compilers insist on it, while other
issue a bunch of warnings if it isin fact
present.

The compiler will not accept a using de-
claration that brings a function from a
typename used as a base class into a de-
rived class if functions of the same name
are present in the derived class.

15

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro Section Description

BOOST_NO_USI NG TEMPLATE Compiler The compiler will not accept ausing de-
claration that imports atemplate class or
function from another namespace. Origin-
ally aBorland specific problem with im-
portsto/from the globa namespace, exten-
ded to MSV C6 which has a specific issue
with importing template classes (but not
functions).

BOOST_NO VO D _RETURNS Compiler The compiler does not allow avoid func-

tion to return the result of calling another
void function.

void f() {}
g() {

voi d return f(); }

Macros that describe optional features

Thefollowing macros describe features that are not required by the C++ standard. The macro isonly defined if the featureis present.

16

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro
BOOST_HAS_BETHREADS

BOOST_HAS_CLOCK_GETTI ME

BOOST_HAS_DI RENT_H

BOOST_HAS_EXPML

BOOST_HAS_FTI ME

BOOST_HAS_GETSYSTEMT| MEASFI LE-

TI ME

BOOST_HAS_GETTI MEOFDAY

BOOST_HAS_HASH

BOOST_HAS_| NT128

BOOST_HAS LOGLP

BOOST_HAS_MACRO USE_FACET

BOOST_HAS_MS_| NT64

BOOST_HAS_NANCSLEEP

BOOST_HAS_NL_TYPES_H

Section
Platform

Platform

Platform

Platform

Platform

Platform

Platform

Standard library

Compiler

Platform

Standard library

Compiler

Platform

Platform

Description
The platform supports BeOS style threads.

The platform has the POSIX API
cl ock_getti me.

The platform has the POSIX header
<di rent. h>.

The platform has the functions expnt,
expmif and expnil in<mat h. h>

The platform has the Win32 APl type
FTIME.

The platform hasthe Win32 APl GetSys-
temTimeAsFileTime.

The platform has the POSIX API get -
ti neof day.

The C++ implementation provides the
(SGI) hash set and hash map classes.
W hen defined,
BOOST_HASH_SET_HEADER and
BOOST_HASH LI ST_HEADERWill contain
the names of the header needed to access
hash_set and hash_map;
BOOST_STD_EXTENSI ON_NAMESPACE
will provide the namespace in which the
two class templates reside.

The compiler has __int 128 and un-
si gned __i nt 128 asnativetypeswhich
are distinct from all the regular C++ in-

teger types.

The platform has the functions | og1p,
| oglpf and|l oglpl in<math. h>.

The standard library lacks a conforming
std::use_facet, but has a macro
_USE(l oc, Type) that does the job.
Thisis primarily for the Dinkumware std
lib.

The compiler supportsthe i nt 64 data
type.

The platform has the POSIX API
nanosleep.

The platform hasan <nl _t ypes. h>.

render

17

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro

BOOST_HAS_NRVO

BOOST_HAS_PARTI AL_STD ALLOCATOR

BOOST_HAS PRAGVA_ ONCE

BOOST_HAS_PTHREAD DELAY_NP

BOOST_HAS PTHREAD MUTEXATTR SET-

TYPE

BOOST_HAS PTHREAD_YI ELD

BOOST_HAS_PTHREADS

BOOST_HAS_SCHED YI ELD

BOOST_HAS_SG _TYPE_TRAI TS

BOOST_HAS_STDI NT_H

BOOST_HAS_SLI ST

BOOST_HAS_STLP_USE_FACET

Section

Compiler

Standard Library

Compiler

Platform

Platform

Platform

Platform

Platform

Compiler, Standard library

Platform

Standard library

Standard library

Description

Indicated that the compiler supports the
named return value optimization (NRVO).
Used to select the most efficient imple-
mentation for some function. See
<boost / oper at or s. hpp>for example.

The standard library has a partially con-
forming std::allocator class, but
without any of the member templates.

The compiler recognizes the #pr agma
once directivewhich tellsthat the contain-
ing header should be included only once
while preprocessing the current trand ation
unit. The pragma may improve compile
times of large projects with some com-
pilers.

The platform has the POSIX API
pt hread_del ay_np.

The platform has the POSIX AP
pt hread_mut exattr_settype.

The platform has the POSIX API
pt hread_yi el d.

The platform support POSIX style
threads.

The platform has the POSIX API
sched_yi el d.

The compiler has native support for SGI
style typetraits.

The platform hasa <st di nt . h>

The C++ implementation provides the
(SGI) dist class. When defined,
BOOST_SLI ST_HEADER will contain the
name of the header needed to access
sl i st and BOOST_STD EXTEN
SI ON_NAVESPACE will provide the
namespace in which sl i st resides.

The standard library lacks a conforming
std:: use_facet, but hasaworkaround
class-version that does the job. This is
primarily for the STL port std lib.

18

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/operators.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro Section Description

BOOST_HAS TR1_ARRAY Standard library Thelibrary hasaTR1 conforming version
of <ar ray>. This macro is only guaran-
teed to be defined after including one of
the headers from Boost. TR1. Further this
macro is now deprecated in favour of
BOOST_NO_CXX11 HDR_ARRAY.

BOOST_HAS TR1_COWVPLEX OVERLOADS Standard library The library has aversion of <conpl ex>
that supports passing scalars to the com-
plex number algorithms.

BOOST_HAS_TR1_COMPLEX_I N- Standard library The library has aversion of <conpl ex>
VERSE_TRI G that includes the new inverse trig func-
tions from TRL1.

BOOST_HAS TR1_REFERENCE WRAPPER Standard library Thelibrary hasTR1 conforming reference
wrappersin <f unct i onal >. Thismacro
isonly guaranteed to be defined after in-
cluding one of the headers from
Boost. TR1. Further this macro is now
deprecated in favour of
BOOST_NO_CXX11 HDR FUNCTION-
AL.

BOOST_HAS TR1_RESULT_OF Standard library The library has a TR1 conforming res-
ult_of template in <f uncti onal >. This
macro is only guaranteed to be defined
after including one of the headers from
Boost. TR1. Further this macro is now
deprecated in favour of
BOOST_NO_CXX11 HDR_FUNCTION-
AL.

BOOST_HAS_TR1_MEM FN Standard library The library has a TR1 conforming
mem_fnfunctiontemplatein<f unct i on-
al >. Thismacro is only guaranteed to be
defined after including one of the headers
from Boost. TR1. Further this macro is
now deprecated in favour of
BOOST_NO_CXX11 HDR FUNCTION-
AL.

BOOST_HAS_TR1_BI ND Standard library The library has a TR1 conforming bind
functiontemplatein<f unct i onal >. This
macro is only guaranteed to be defined
after including one of the headers from
Boost. TR1. Further this macro is now

deprecated in favour of
BOOST_NO _CXX11 HDR_FUNCTION-
AL.

19

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro Section Description

BOOST_HAS TR1_FUNCTI ON Standard library The library has a TR1 conforming func-
tion class template in <f uncti onal >.
This macro is only guaranteed to be
defined after including one of the headers
from Boost. TR1. Further this macro is
now deprecated in favour of
BOOST_NO_CXX11 HDR FUNCTION-
AL.

BOOST_HAS_TR1_HASH Standard library The library has a TR1 conforming hash
functiontemplatein <f unct i onal >. This
macro is only guaranteed to be defined
after including one of the headers from
Boost. TR1. Further this macro is now
deprecated in favour of
BOOST_NO_CXX11 HDR FUNCTION-
AL.

BOOST_HAS_TR1_SHARED PTR Standard library The library has a TR1 conforming
shared_ptr class template in
<menor y>. Thismacroisonly guaranteed
to be defined after including one of the
headers from Boost.TR1. Further this
macro is now deprecated in favour of
BOOST_NO_CXX11 SMART PTR.

BOOST_HAS TR1_RANDOM Standard library Thelibrary hasaTR1 conforming version
of <r andonp. Thismacroisonly guaran-
teed to be defined after including one of
the headers from Boost. TR1. Further this
macro is now deprecated in favour of
BOOST_NO_CXX11 HDR_RANDOM.

BOOST_HAS TR1_REGEX Standard library Thelibrary hasaTR1 conforming version
of <r egex>. This macro is only guaran-
teed to be defined after including one of
the headersfrom Boost. TR1. Further this
macro is now deprecated in favour of
BOOST_NO_CXX11 HDR_REGEX.

BOOST_HAS_TR1_TUPLE Standard library Thelibrary hasaTR1 conforming version
of <t upl e>. This macro is only guaran-
teed to be defined after including one of
the headers from Boost. TR1. Further this
macro is now deprecated in favour of
BOOST_NO_CXX11 HDR TUPLE.

BOOST_HAS_TR1_TYPE_TRAI TS Standard library Thelibrary hasaTR1 conforming version
of <t ype_traits>. This macro is only
guaranteed to be defined after including
one of the headers from Boost. TR1. Fur-
ther this macro is now deprecated in fa-
v 0 u r o f
BOOST NO CXX11 HDR TYFE TRAITS

20

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro

BOOST_HAS_TRL_UTI LI TY

BOOST_HAS_TRL_UNORDERED MAP

BOOST_HAS_TR1_UNORDERED SET

BOOST_HAS_TR1L

BOOST_HAS_THREADS

BOOST_HAS TWO ARG USE_FACET

BOOST_HAS_UNI STD_H

BOOST_HAS_W NTHREADS

BOOST_MBVC_STD_| TERATOR

Section

Standard library

Standard library

Standard library

Standard library

Platform, Compiler

Standard library

Platform

Platform

Standard library

Description

The library has the TR1 additions to
<utility> (tuple interfface to
st d: : pai r). Thismacro isonly guaran-
teed to be defined after including one of
the headers from Boost. TR1. Further this
macro is now deprecated in favour of
BOOST_NO_CXX11 HDR_TUPLE.

Thelibrary hasaTR1 conforming version
of <unordered_map>. This macro is
only guaranteed to be defined after includ-
ing one of the headers from Boost. TR1.
Further this macro is now deprecated in
f avour o f
BOOST_NO_CXX11_HDR_UN-
ORDERED_MAP.

Thelibrary hasaTR1 conforming version
of <unordered_set>. This macro is
only guaranteed to be defined after includ-
ing one of the headers from Boost. TR1.
Further this macro is now deprecated in
f avour o f
BOOST_NO_CXX11 HDR_UN-
ORDERED_SET.

Implies all the other BOOST_HAS_TR1_*
macros should be set.

Defined if the compiler, in its current
trandation mode, supports multiple
threads of execution.

The standard library lacks a conforming
std::use facet, but has a two argument
version that doesthejob. Thisisprimarily
for the Rogue Wave std lib.

The Platform provides <uni st d. h>.

The platform supports M SWindows style
threads.

Microsoft's broken version of
std::iterator isheingused. Thisim-
pliesthat st d: : i t er at or takesnomore
than two template parameters.

render

21

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro Section Description

BOOST_MBVC6_NMEMBER TEMPLATES Compiler Microsoft Visual C++ 6.0 has enough
member template idiosyncrasies (being
polite) that BOOST_NO MEMBER TEM
PLATES is defined for this compiler.
BOOST_MSVC6_MEMBER TEMPLATES is
defined to allow compiler specific work-
arounds. Thismacro gets defined automat-
ically if BOOST_NO MEMBER TEMPLATES
is not defined - in other words this is
treated as a strict subset of the features
required by the standard.

BOOST_HAS STDI NT_H Platform There are no 1998 C++ Standard headers
<stdi nt. h> or <cstdint >, although
the 1999 C Standard does include
<stdi nt. h>.If <st di nt. h>ispresent,
<boost/ st di nt . h> can make good use
of it, so a flag is supplied (signaling
presence; thus the default is not present,
conforming to the current C++ standard).

Macros that describe possible C++ future features

The following macros describe features that may be included in some future | SO C++ standard, but have not yet been approved for
inclusion in the language.

Macro Description

BOOST_HAS_CONCEPTS The compiler supports concepts.

Macros that describe C++11 features not supported

The following macros describe features in the 2011 1SO C++ standard, formerly known as C++0x, that are not yet supported by a
particular compiler or library.

22

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro

BOOST_NO_CXX11_ADDRESSOF

BOOST_NO_CXX11_AL| GNAS

BOOST_NO CXX11_ALLOCATOR

BOOST_NO_CXX11_ATOM C_SMART PTR

BOOST_NO_CXX11_HDR ATOM C
BOOST_NO_CXX11_HDR ARRAY
BOOST_NO_CXX11_HDR_CHRONO

BOOST_NO_CXX11_HDR CODECVT

BOOST_NO_CXX11_HDR CONDI TI ON_VARI ABLE

BOOST_NO CXX11 HDR FORWARD LI ST

BOOST_NO_CXX11_HDR FUNCTI ONAL

BOOST_NO_CXX11_HDR FUTURE

BOOST_NO CXX11 HDR | NI TI ALI ZER LI ST

BOOST_NO_CXX11_HDR MUTEX
BOOST_NO CXX11_ HDR RANDOM
BOOST_NO CXX11_ HDR RATI O
BOOST_NO CXX11_ HDR REGEX
BOOST_NO CXX11_HDR_SYSTEM ERROR
BOOST_NO CXX11_ HDR THREAD
BOOST_NO CXX11 HDR TUPLE
BOOST_NO CXX11_HDR_TYPEI NDEX
BOOST_NO CXX11_HDR TYPE_TRAI TS
BOOST_NO CXX11 HDR UNORDERED MAP
BOOST_NO CXX11 HDR UNORDERED_SET

BOOST_NO_CXX11_| NLI NE_NAVESPACES

Description

The standard library header <memory> has no working
std::addressof.

The compiler does not support the al i gnas keyword.

The standard library does not provide a C++11 version of
std::al |l ocat or in <memory>.

The standard library <memory> does not support atomic smart
pointer operations.

The standard library does not provide header <atomic>.
The standard library does not provide header <array>.
The standard library does not provide header <chrono>.
The standard library does not provide header <codecvt>.

The standard library does not provide header <condition_vari-
able>.

The standard library does not provide header <forward_list>.

The standard library does not provide a C++11 compatible ver-
sion of <functional>.

The standard library does not provide header <future>.

The standard library does not provide header <initializer_list>.
The standard library does not provide header <mutex>.

The standard library does not provide header <random>.

The standard library does not provide header <ratio>.

The standard library does not provide header <regex>.

The standard library does not provide header <system_error>.
The standard library does not provide header <thread>.

The standard library does not provide header <tuple>.

The standard library does not provide header <typeindex>.
The standard library does not provide header <type traits>.
The standard library does not provide header <unordered_map>.
The standard library does not provide header <unordered_set>.

The compiler does not support inline namespaces.

23

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro

BOOST_NO_CXX11_SMART PTR

BOOST_NO_CXX11_STD ALl GN

BOOST_NO CXX11_ AUTO DECLARATI ONS

BOOST_NO_CXX11_AUTO MULTI DECLARATI ONS

BOOST_NO CXX11 CHARL6 T
BOOST_NO CXX11 CHAR32 T
BOOST_NO CXX11_ TEMPLATE_ALI ASES
BOOST_NO CXX11_ CONSTEXPR
BOOST_NO CXX11 DECLTYPE

BOOST_NO CXX11_ DECLTYPE_N3276

BOOST_NO_CXX11_DEFAULTED_FUNCTI ONS
BOOST_NO_CXX11_DELETED FUNCTI ONS

BOOST_NO CXX11 EXPLI CI T_CONVERS| ON_OPERATORS

BOOST_NO_CXX11_EXTERN TEMPLATE

BOOST_NO_CXX11_FUNCTI ON_TEMPLATE_DEFAULT ARGS

BOOST_NO_CXX11_LAMBDAS

BOOST_NO CXX11_ LOCAL_CLASS TEMPLATE_PARANETERS

BOOST_NO_LONG_LONG

BOOST_NO CXX11_ NOEXCEPT
BOOST_NO CXX11 NULLPTR
BOOST_NO_CXX11_ RANGE_BASED FOR

BOOST_NO_CXX11_RAW LI TERALS

Description

The standard library header <memory> has no shared ptr and
unique_ptr.

The standard library header <memory> has no working
std::align.

The compiler does not support type deduction for variables de-
clared with the aut o keyword (auto var = ...;).

The compiler does not support type deduction for multiple
variablesdeclared withtheaut o keyword (aut o var = ...,

*ptr o= ...;).

The compiler does not support type char 16_t .
The compiler does not support typechar 32_t .
The compiler does not support template aliases.
The compiler does not support const expr .
The compiler does not support decl t ype.

The compiler does not support the extension to decl t ype de-
scribed in N3276, accepted in Madrid, March 2011.

The compiler does not support defaulted (= def aul t) functions.
The compiler does not support deleted (= del et e) functions.

The compiler does not support explicit conversion operators
(explicit operator T()).

The compiler does not support explicit instantiation forward
declarations for templates (ext ern tenpl ate ...).

The compiler does not support default template arguments for
function templates.

The compiler does not support Lambdas.

The compiler does not allow to pass local classes as template
parameters (this macro intentionally does not control passing
of unnamed types as template parameters, see a'so N2657).
The compiler does not support | ong | ong.

The compiler does not support noexcept .

The compiler does not support nul | ptr.

The compiler does not support range-based for statements.

The compiler does not support raw string literals.

24

render

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3276.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Config

Macro

BOOST_NO_CXX11_REF_QUALI FI ERS

BOOST_NO_CXX11_RVALUE_REFERENCES

BOOST_NO_CXX11 SCOPED ENUMS

BOOST_NO_CXX11_STATI C_ASSERT

BOOST_NO_CXX11_STD UNORDERED

BOOST_NO CXX11 TRAI LI NG RESULT TYPES

BOOST_NO CXX11_UNI CODE_LI TERALS

BOOST_NO_CXX11_UNI FI ED_I NI TI ALI ZATI ON_SYNTAX

BOOST_NO_CXX11_USER DEFI NED LI TERALS
BOOST_NO CXX11_ VARI ADI C_TEMPLATES

BOOST_NO_CXX11_VARI ADI C_MACROS

Description

The compiler does not support ref-qualifiers on member func-
tions as described in N2439.

The compiler does not support r-value references.

The compiler does not support scoped enumerations (enum
cl ass).

The compiler does not support st ati c_assert.

The standard library does not support <unordered_map> and
<unordered_set>.

The compiler does not support the new function result type
specification syntax (e.g. auto foo(T) -> T;).

The compiler does not support Unicode (u8, u, U) literals.

The compiler does not support the C++11 Unified Initialization
Syntax.

The compiler does not support user defined literals.
The compiler does not support variadic templates.

The compiler does not support variadic macros.

Macros that allow use of C++11 features with C++03 compilers

The following macros alow use of C++11 features even with compilers that do not yet provide compliant C++11 support.

25

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2439.htm
http://en.wikipedia.org/wiki/C%2B%2B0x#Uniform_initialization
http://en.wikipedia.org/wiki/C%2B%2B0x#Uniform_initialization
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro Description

BOOST_ALI GNVENT(X) , BOOST_NO_ALI GNVENT Some compilersdon't support theal i gnas keyword but provide
other means to specify alignment (usually, through compiler-
specific attributes). The macro BOOST_ALI GNMVENT(X) will
expand to the al i gnas(X) keyword if the compiler supports
it or to some compiler-specific attribute to achieve the specified
alignment. If no such compiler-specific attribute is known then
BOOST_ALI GNMENT(X) will expand to nothing and
BOOST_NO_ALI GNVENT will bedefined. Unlikenativeal i gnas,
X must always be a compile-time integer constant. The macro
can be used to specify alignment of types and data:

struct BOOST_ALI GNMENT(16) my_data
{

}
BOOST_ALI GNVENT(8) int arr[32];

char c[16];

BOOST_CONSTEXPR Some compilersdon't support the use of const expr . Thismacro
expands to nothing on those compilers, and const expr else-
where. For example, when defining a constexpr function or
constructor replace:

constexpr tuple();
with:

BOOST_CONSTEXPR t upl () ;

BOOST_CONSTEXPR_OR_CONST Some compilersdon't support the use of const expr . Thismacro
expands to const on those compilers, and const expr else-
where. For example, when defining const expr variablesreplace:

static constexpr U ntType xor_nask = a;
with:

stati c BOOST_CONSTEXO
PR_OR_CONST Ul nt Type xor_nask = a;

BOOST_STATI C_CONSTEXPR Thisisashortcut for st ati ¢ BOOST_CONSTEXPR_OR_CONST.
For example, when defining const expr variables replace:

static constexpr U ntType xor_nmask = a;
with:

BOOST_STATI C_CONSTEXPR Ul nt Type xor _mask = a;

26

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Config

Macro

BOOST_DEFAULTED_FUNCTI ON(f un,

body)

Description

This macro is intended to be used within a class definition in
order to declare a default implementation of function f un. For
the compilers that do not support C++11 defaulted functions
the macro will expand into an inline function definition with
the body implementation. For example:

struct my_struct

{
BOOST_DEFAULTED _FUNCTI ON(ny_struct (), {})
1
is equivalent to:

struct my_struct

{
}

my_struct() = default;

or:

struct my_struct

{
b

my_struct() {}

27

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro Description

BOOST_DELETED_FUNCTI ON(f un) This macro is intended to be used within a class definition in
order to declare a deleted function f un. For the compilers that
do not support C++11 deleted functions the macro will expand
into a private function declaration with no definition. Since the
macro may change the access mode, it is recommended to use
this macro at the end of the class definition. For example:

struct noncopyabl e
{
BOOST_DELETED FUNCTI ON(noncopyabl e(honcopyO
abl e const&))
BOOST_DELETED_FUNCTI ON(noncopyabl e& oper O
at or= (noncopyabl e const &))

1
is equivalent to:

struct noncopyabl e

{
noncopyabl e(noncopyabl e const & = del ete;
noncopyabl e& operator= (noncopyl

abl e const&) = delete

}
or.

struct noncopyabl e
{ .
private:
noncopyabl e(noncopyabl e const &) ;
noncopyabl e& operator= (noncopyl
abl e const &) ;

b

28

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro Description

If BOOST_NO_CXX11_NOEXCEPT isdefined (i.e. C++03 compli-

BOOST_NOEXCEPT - .
- ant compilers) these macros are defined as:

BOOST_NOEXCEPT_OR_NOTHROW
BOOST_NOEXCEPT_| F(Pr edi cat e)
BOOST_NOEXCEPT_EXPR(Expr essi on) #defi ne BOOST_NOEXCEPT
#def i ne BOOST_NCEXCEPT_OR_NOJ
THROW t hr ow()
#def i ne BOOST_NCEXCEPT_| F(Predi c
ate)
#def i ne BOOST_NOEXCEPT_EXPR(ExO
pression) false

If BOOST_NO _CXX11_NOEXCEPT is not defined (i.e. C++11
compliant compilers) they are defined as:

#def i ne BOOST_NOEXCEPT noexcept
#def i ne BOOST_NOEXCEPT_OR_NOJ
THROW noexcept

#def i ne BOOST_NCEXCEPT_| F(Predi cJ
ate) noexcept ((Predicate))

#def i ne BOOST_NOEXCEPT_EXPR(ExO
pr essi on) noexcept ((Expression))

BOOST_MSVC _ENABLE_2012_NOV_CTP For Microsoft Visual C++ 2012, enable the C++11 features
supplied by the November 2012 Community Technology Pre-
view. These features are not automatically enabled because the
CTPis non-supported apha code that is not recommended for
production use. This macro must be defined before including
any Boost headers, and must be defined for all trandlation units
in the program, including Boost library builds. This macro will
no longer have any effect once an official Microsoft release
supports the CTP features.

Boost Helper Macros

The following macros are either simple helpers, or macros that provide workarounds for compiler/standard library defects.

29

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro Description

BOOST_WORKAROUND This macro is used where a compiler specific workaround is
required that is not otherwise described by one of the other
Boost.Config macros. To use the macro you must first

#i ncl ude <boost/detail/workaround. hpp>
usageisthen:

#i f BOOST_WORKAROUND(MACRONAME, CONDI TI ON)
/1 wor karound code goes here...
#el se
/1 Standard conform ng code goes here...
#endi f

where MACRONANE is amacro that usually describesthe version
number to be tested against, and CONDI TI ON is a comparison
operator followed by a value. For example BOOST_WORK-
AROUND(BOOST_I NTEL, <= 1010) would evaluate to 1 for
Intel C++ 10.1 and earlier.

The macro can aso be used with BOOST _TESTED AT if all
current compiler versions exhibit the issue, but the issue is ex-
pected to be fixed at some later point.

For example BOOST_WORKAROUND(__ BORLANDC _,
BOOST_TESTED_AT(0x590)) would normally evaluate to 1
for all valuesof __ BORLANDC __ unless the macro BOOST_DE-
TECT_OUTDATED_WORKAROUNDS is defined, in which case
evaluatesto (__BORLANDC _ <= 0x590).

Note: the ultimate source of documentation for thismacroisin
boost/detail/workaround.hpp.

BOOST_PREVENT_MACRO_SUBSTI TUTI ON Sometimes you have a function name with the same name as a
C macro, for example "min" and "max" member functions, in
which case one can prevent the function being expanded as a
macro using:

sonecl ass. mi n BOOST_PREVENT _MACRO SUBSTI TUD
TION(argl, arg2);

The following also works in most, but not all, contexts:

(sonecl ass. max) (argl, arg2);

BOOST_DEDUCED_TYPENAME Some compilersdon't support the use of typenamefor dependent
types in deduced contexts. This macro expands to nothing on
those compilers, and typename el sawhere. For exampl e, replace:
tenplate <class T> void f (T, typenane T::type);
with: tenplate <class T> void f(T, BOOST_DE-
DUCED_TYPENAME T::type);

30

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/detail/workaround.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Config

Macro

BOOST_HASH_MAP_HEADER

BOOST_HASH_SET_HEADER

BOOST_SLI ST_HEADER

BOOST_STD_EXTENSI ON_NANESPACE

BOOST_STATI C_CONSTANT(Type, assi gnment)

BOOST_UNREACHABLE_RETURN(r esul t)

Description

The header to include to get the SGI hash_map class. This
macro isonly available if BOOST_HAS HASH is defined.

The header to include to get the SGI hash_set class. This
macro isonly available if BOOST_HAS_HASH is defined.

The header to include to get the SGI sl i st class. This macro
isonly availableif BOOST_HAS_SLI ST is defined.

The namespace used for std library extensions (hashtable classes
etc).

On compilers which don't allow in-class initialization of static
integral constant members, we must use enums as aworkaround
if we want the constants to be available at compile-time. This
macro gives us a convenient way to declare such constants. For
exampleinstead of:

struct foof
static const int value = 2;

}
use:

struct foof
BOOST_STATI C_CONSTANT(i nt, value = 2);
}

Normally evaluates to nothing, but evaluates to return x; if the
compiler requires areturn, even when it can never be reached.

31

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Config

Macro

BOOST_FALLTHROUGH

Description

The BOOST_FALLTHROUGH macro can be used to annotate
implicit fall-through between switch labels:

switch (x) {
case 40:
case 41:
if (truth_is out _there) {
++X;
BOOST _FALLTHROUGH, // Use instead O
of /along with annotations in
/1 comments.
} else {
return x;

}

case 42:

Asshownintheexample above, theBOOST _FALLTHROUGH
macro should be followed by a semicolon. It is designed to
mimic control-flow statements like 'break;’, so it can be placed
in most places where 'break;' can, but only if there are no state-
ments on the execution path between it and the next switch label.

When compiled with Clang >3.2 in C++11 mode, the
BOOST FALLTHROUGH macro is expanded to
[[clang::fallthrough]] attribute, whichisanalysed when
performing switch labels fall-through diagnostic (-Wimplicit-
fallthrough'). See clang documentation on language extensions
for details.

When used with unsupported compilers, the BOOST_FALL-
THROUGH macro has no effect on diagnostics.

In either case this macro has no effect on runtime behavior and
performance of code.

32

httpo://www.renderx.com/

http://clang.llvm.org/docs/LanguageExtensions.html#clang__fallthrough
http://clang.llvm.org/docs/LanguageExtensions.html#clang__fallthrough
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro

BOOST_EXPLI CI T_TEMPLATE_TYPE(t) BOOST_EXPLI -
Cl T_TEMPLATE_NON _TYPE(t,v) BOOST_APPEND EXPLI -
Cl T_TEMPLATE_TYPE(t) BOOST_APPEND EXPLI CI T_TEM
PLATE_NON_TYPE(t, v)

BOOST_USE_FACET(Type, | oc)

Description

Some compilers silently "fold" different function template in-
stantiations if some of the template parameters don't appear in
the function parameter list. For instance:

#i ncl ude <i ostreanr
#i ncl ude <ostreanr
#i ncl ude <typeinfo>

tenplate <int n>
void f() { std::cout << n <<' "; }

tenpl ate <typename T>
void g() { std::cout << typeid(T).nane() <<' [

int main() {
f<1>();
f<2>();
g<int>();
g<doubl e>();
}

incorrectly outputs 2 2 doubl e doubl e on VC++ 6. These
macros, to be used in the function parameter list, fix the problem
without effects on the calling syntax. For instance, in the case
above write:

tenplate <int n>
voi d f(BOOST_EXPLI Cl T_TEM]
PLATE_NON TYPE(int, n)) { ... }

tenpl ate <typenanme T>
voi d g(BOOST_EXPLI Cl T_TEM]
PLATE_TYPE(T)) { ... }

Beware that they can declare (for affected compilers) adummy
defaulted parameter, so they

a) should be always invoked at the end of the parameter list
b) can't be used if your function template is multiply declared.

Furthermore, in order to add any needed comma separator, an
APPEND _* version must be used when the macro invocation
appears after anormal parameter declaration or after the invoc-
ation of another macro of this same group.

When the standard library does not have a conforming
std: : use_facet therearevariousworkaroundsavailable, but
they differ from library to library. Thismacro provides a consist-
ent way to access a locale's facets. For example, replace:
std::use_facet <Type>(loc); with: BOOST_USE_FA-
CET(Type, |oc); Notedonotaddast d: : prefix tothefront
of BOOST_USE_FACET.

33

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Config

Macro

BOOST_HAS FACET(Type, | oc)

BOOST_NESTED _TEMPLATE

BOOST_STRI NG ZE(X)

BOOST_JO N(X, Y)

BOOST_FORCEI NLI NE

BOOST_NO NLI NE

Description

When the standard library does not have a comforming
std: : has_facet therearevariousworkaroundsavailable, but
they differ from library tolibrary. Thismacro provides aconsist-
ent way to check a local€e's facets. For example, replace:
std:: has_facet <Type>(loc); with. BOOST_HAS FA-
CET(Type, |oc); Notedonotaddast d: : prefix tothefront
of BOOST_HAS_FACET.

Member templates are supported by some compilers even though
they can't use the A:: tenpl ate nenber<U> syntax, as a
workaround replace: typedef typename A :tenplate
rebi nd<U> binder; with: typedef t ypenane
A: : BOOST_NESTED TEMPLATE r ebi nd<U> bi nder;

Converts the parameter X to a string after macro replacement
on X has been performed.

This piece of macro magic joins the two arguments together,
even when one of the argumentsisitself amacro (see 16.3.1in
C++ standard). Thisisnormally used to create amangled name
in combination with a predefined macrosucha__ LINE__.

This macro can be used in place of thei nl i ne keyword to in-
struct the compiler that the function should always be inlined.
Overuse of this macro can lead to significant bloat, while good
use can increase performancein certain cases, such ascomputa-
tion-intensive code built through generative programming
techniques.

Usage example:

tenpl at e<cl ass T>
BOOST_FORCEI NLINE T& f(T& t)

{
}

return t;

Note that use of this macro can lead to cryptic error messages
with some compilers. Consider defining it to i nl i ne before
including the Boost.Config header in order to be able to debug
errors more easily.

This macro can be used in place of thei nl i ne keyword to in-
struct the compiler that the function should never be inlined.
One should typically use this macro to mark functions that are
unlikely to be called, such as error handling routines.

Usage example:

BOOST_NO NLI NE voi d handl e_er(
ror(const char* descr)

{
}

I

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro Description

BOOST_NORETURN This macro can be used before the function declaration or
definition to instruct the compiler that the function does not re-
turn normally (i.e. with ar et ur n statement or by leaving the
function scope, if the function return typeisvoi d). The macro
can be used to mark functions that always throw exceptions or
terminate the application. Compilers that support this markup
may use this information to specifically organize the code sur-
rounding calls to this function and suppress warnings about
missing r et ur n statementsin the functions enclosing such calls.

Usage example:

BOOST_NORETURN voi d on_error_oclO
curred(const char* descr)

{
}

throw std::runtinme_error(descr);

If the compiler does not support this markup, BOOST_NORETURN
isdefined empty and an additional macro BOOST_NO NORETURN
is defined.

BOOST_LI KELY(X) BOOST_UNLI KELY(X) These macros communicate to the compiler that the conditional
expression X islikely or unlikely to yield a positive result. The
expression should result in a boolean value. The result of the
macro is an integer or boolean value equivalent to the result of
X.

The macros are intended to be used in branching statements.
The additional hint they provide can be used by the compiler to
arrange the compiled code of the branches more effectively.

Usage example:

i f (BOOST_UNLIKELY(ptr == NULL))
handl e_error("ptr is NULL");

Boost Informational Macros

Thefollowing macros describe boost features; these are, generally speaking the only boost macros that should be tested in user code.

35

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Macro

BOOST_VERSI ON

BOOST_NO | NT64_T

BOOST_NO | NTEGRAL_| NT64_T

BOOST_MBVC

BOOST_MBVC_FULL_VER

BOOST_GCC

BOOST_I NTEL

BOOST_CLANG

BOCST_W NDOWS

BOOST_DI NKUMMRE_STDLI B

BOOST_NO_WREGEX

Header

<boost/versi on. hpp>

<boost/cstdint. hpp>
<boost/stdint. h>
<boost/cstdint. hpp>

<boost/stdint. h>

<boost/confi g. hpp>

<boost/ confi g. hpp>

<boost/ confi g. hpp>

<boost/confi g. hpp>

<boost / confi g. hpp>

<boost/config. hpp>

<boost/confi g. hpp>

<boost / r egex. hpp>

Description

Describes the boost version number in
XYYYZzZ format such that:
(BOOST_VERSI ON % 100) is the sub-
minor version, ((BOOST_VERSI ON /
100) % 1000) istheminor version, and
(BOOST_VERSION / 100000) is the
major version.

Defined if there are no 64-bit integral
types: i nt 64_t, ui nt 64_t etc.

Defined if int64_t as defined by
<boost / cst di nt. hpp>isnhot usablein
integral constant expressions.

Defined if the compiler isreally Microsoft
Visual C++, as opposed to one of the
many other compilers that also define
_MSC VER. Has the same vaue as
_MSC_VER.

Defined to a normalised 9 digit version
of MSC FULL_VER (which sometimes
only has 8 digits), the macro hastheform
VVMMPPPPP where VV is the maor
version number, MM isthe minor version
number, and PPPPP is the compiler build
number.

Defined if the compiler isrealy GCC, as
opposed to one of the many other com-
pilersthat also define__ GNUC__. Hasthe
vauee __ GNUC__ * 10000 +
__GNUC MNOR__ * 100 +
__GNUC_PATCHLEVEL__.

Defined if the compiler is an Intel com-
piler, takes the same value asthe compiler
Version macro.

Defined to 1 if the compiler is the Clang
compiler.

Defined if the Windows platform API is
available.

Defined if the dinkumware standard lib-
rary isin use, takes the same value as the
Dinkumware library version macro _CP-
PLI B_VERIf defined, otherwise 1.

Defined if the regex library does not sup-
port wide character regular expressions.

render

36

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Config

Macro

BOOST_COWPI LER

BOCOST_STDLI B

BOOST_PLATFORM

Header

<boost/ confi g. hpp>

<boost/config. hpp>

<boost/confi g. hpp>

Boost Deprecated Macros

Description

Defined as a string describing the name
and version number of the compiler in
use. Mainly for debugging the configura-
tion.

Defined as a string describing the name
and version number of the standard library
in use. Mainly for debugging the config-
uration.

Defined as a string describing the name
of the platform. Mainly for debugging the
configuration.

The following have been deprecated; please use the replacements instead. They will be removed in afuture version of boost.

37

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Deprecated Macro Replacement When deprecated When removed

BOOST_NO 0X_HDR ARRAY BOOST_NO CXX11 HDR AR- Boost 1.50
RAY

BOOST_NO 0X HDR CHRONO BOCBT NO OXX11 HDR CHRONO Boost 1.50

BOOST_NO_0X_HDR CODECVT BOOST_NO _CXX11_HDR CO- Boost 1.50
DECVT

BOOST_NO _0X_HDR CONDI - BOOST_NO CXX11 _HDR CON+ Boost 1.50

TI ON_VARI ABLE DI TI ON_VARI ABLE

BOOST_NO 0X HDR FOR- BOOST _NO CXX11 HDR FOR Boost 1.50

WARD LI ST WARD LI ST

BOOST_NO 0X_HDR_FUTURE BOOST_NO CXX11_HDR FU- Boost 1.50
TURE

BOOST_NO OX HDR INITIAL- BOOST_NO CXX11_HDR INI- Boost 1.50

| ZER LI ST TI ALI ZER LI ST

BOOST_NO_ I NI TI AL- BOOST_NO CXX11 HDR IN - Boost 1.50

| ZER LI STS TI ALI ZER LI ST

BOOST_NO 0X HDR MUTEX BOOST_NO CXX11 HDR MJ Boost 1.50
TEX

BOOST_NO_0X_HDR_RANDOM BOOST_NO CXX11 _HDR RAN- Boost 1.50
DOM

BOOST_NO 0X_HDR RATIO BOOST_NO CXX11 HDR RA- Boost 1.50
TI O

BOOST_NO 0X HDR REGEX BOOST NO CXX11 HDR RECEX Boost 1.50

BOOST_NO_OX_HDR_SYS- BQOOST_NO CxXX11_HDR SYS- Boost 1.50

TEM _ERROR TEM_ERROR

BOOST_NO 0X_HDR THREAD BOCST_NO CXX11_HDR THREAD Boost 1.50

BOOST_NO 0X _HDR TUPLE BOOST_NO CXX11 HDR TWPLE Boost 1.50

BOCST NO OX HOR TYPE TRA TS BIST NDOXIL HRTYFE TRA TS Boost 1.50

BOOST_NO OX HDR TYPEIN- BOOST_NO CXX11 HDR TYPEHN- Boost 1.50

DEX DEX

BOOST_NO_0X_HDR_UN- BOOST_NO CXX11 HDR UN- Boost 1.50

ORDERED _SET ORDERED_SET

BOOST_NO 0X_ HDR_UN- BOOST_NO CXX11 HDR UN- Boost 1.50

ORDERED MAP ORDERED MAP

BOOST_NO_STD_UNORDERED BOOST_NO CXX11_HDR UN- Boost 1.50
ORDERED_SET

38

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Config

Deprecated Macro Replacement When deprecated When removed
BOOST_NO AUTO DECLARA- BOOST_NO CXX11 AUTO DE- Boost 1.51
TI ONS CLARATI ONS
BOOST _NO AUTO MULTI DE- BOOST _NO CXX11 AUTO ML- Boost 1.51
CLARATI ONS TI DECLARATI ONS
BOOST_NO _CHAR16_T BOOST_NO CXX11_CHARL6 T Boost 1.51
BOOST_NO_CHAR32_T BOOST _NO CXX11_CHAR32_ T Boost 1.51
BOOST_NO TEMPLATE ALI- BOOST_NO CXX11 TEM Boost 1.51
ASES PLATE_ALI ASES
BOOST_NO_CONSTEXPR BOOST_NO CXX11_CONSTEX- Boost 1.51
PR
BOOST_NO_DECLTYPE BOOST_NO CxXX11_DECLTYPE Boost 1.51
BOOST_NO DECLTYPE N3276 BOOST_NO CXX11 DECL- Boost 1.51
TYPE_N3276
BOOST _NO DEFAULTED FUNG BOOST_NO CXX11 DEFAUL- Boost 1.51
TI ONS TED_FUNCTI ONS
BOOST_NO _DELETED FUNC- BOOST_NO_CXX11_ DE- Boost 1.51
TI ONS LETED_FUNCTI ONS
BOOST_NO EXPLI CI T_CON- BOOST_NO CXX11 EXPLI- Boost 1.51
VERSI ON_OPERATORS Cl T_CONVERSI ON_OPERAT-
CRS
BOOST_NO EXTERN TEM- BOOST_NO CXX11 EX- Boost1.51
PLATE TERN_TEMPLATE
BOOST_NO_FUNCTI ON_TEM BOOST_NO_CXX11_FUNC- Boost 1.51
PLATE_DEFAULT_ARGS TI ON_TEMPLATE_DE-
FAULT_ARGS
BOOST_NO_LAMBDAS BOOST_NO _CXX11_LAMBDAS Boost 1.51
BOOST_NO_LOC- BOOST_NO CXX11 LOC- Boost1.51
AL_CLASS TEMPLATE PARA- AL _CLASS TEMPLATE PARA-
VETERS METERS
BOOST_NO_NOEXCEPT BOOST_NO CXX11 NOEXCEPT Boost 1.51
BOOST_NO_NULLPTR BOOST_NO _CXX11_NULLPTR Boost 1.51
BOOST_NO RAW LI TERALS BOOST_NO CXX11 _RAWLIT- Boost 1.51
ERALS
BOOST _NO RVALUE REFER- BOOST NO OXX11 RVALLE RE~ Boost 1.51
ENCES ERENCES
BOOST_NO_SCOPED ENUMS BOOST_NO OXX11_SOOPED ENMS - Boost 1.51
39

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Deprecated Macro Replacement When deprecated When removed

BOOST_NO STATI C ASSERT BOOST_NO _CXX11 STAT- Boost 1.51
| C_ASSERT

BOOST_NO STD UNORDERED BOOST_NO CXX11 STD UN- Boost 1.51
ORDERED

BOOST_NO UNI CODE_LI TER- BOOST_NO_CXX11_ UNI - Boost 1.51

ALS CODE_LI TERALS

BOOST_NO UNI FI ED_I Nl - BOOST_NO_CXX11 UNI- Boost1.51

TI ALI ZATI ON_SYNTAX FI ED | N TI ALI ZATI ON_SYN-
TAX

BOOST_NO VARI ADI C TEM BOOST_NO CXX11 VARI AD- Boost 1.51

PLATES | C TEMPLATES

BOOST_NO VARI ADI C MAC- BOOST_NO CXX11_VARI AD- Boost 1.51

ROS | C_MACRCS

BOOST_NO _NUMERI C_LI M BOOST_NO_CXX11_NUMER- Boost 1.51

| TS_LONEST ICLIMTS

BOOST_HAS STATI C ASSERT BOOST _NO CXX11 STAT- Boost 1.53
| C_ASSERT (negated)

BOOST_HAS VAR ADI C TMPL BOOST_NO CXX11_VARI AD- Boost 1.53
| C_TEMPLATES (negated)

BOOST_HAS RVALUE _REFS BGOST_NO OXX11 RVALLE RE~ Boost 1.53
ERENCES (negated)

BOOST_HAS CHAR16 T BOOST_NO CXX11 CHARL6 T Boost 1.53
(negated)

BOOST_HAS CHAR32_T BOOST_NO CXX11_CHAR32_ T Boost 1.53

(negated)

Macros for libraries with separate source code

Thefollowing macros and hel per headers are of useto authorswhose librariesinclude separate source code, and are intended to address
several issues:

» Controlling shared library symbol visibility
» Fixing the ABI of the compiled library
 Selecting which compiled library to link against based upon the compilers settings

See Guidelines for Authors of Boost Libraries Containing Separate Source

Macros controlling shared library symbol visibility

Some compilers support C++ extensions that control which symbols will be exported from shared libraries such as dynamic shared
objects (DSO's) on Unix-like systems or dynamic-link libraries (DLL's) on Windows.

40

render

httpo://www.renderx.com/

http://svn.boost.org/trac/boost/wiki/Guidelines/Separate
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

The Microsoft VC++ compiler has long supplied __decl spec(dl | export) and __decl spec(dl | inport) extensionsfor this
purpose, as do virtually all other compilers targeting the Windows platform.

Modern versions of the GNU GCC compiler providethe __attribute_ ((visibility("default"))) extensionto indicate
that asymbol should be exported. All other symbolsmay be hidden by using the- f vi si bi | i t y- hi dden or-fvi si bility-nms-com
pat compiler switches.

Boost supplies several macrosto makeit easier to manage symbol visibility in away that is portable between compilers and operating
systems.

Macro Description

BOOST_SYMBOL_EXPORT Defines the syntax of a C++ language extension that indicates
asymbol isto be exported from ashared library. If the compiler
has no such extension, the macro is defined with no replacement
text.

BOOST_SYMBOL_| MPORT Defines the syntax of a C++ language extension that indicates
asymbol isto beimported from ashared library. If the compiler
has no such extension, the macro is defined with no replacement
text.

BOOST_SYMBOL_VI SI BLE Defines the syntax of a C++ language extension that indicates
asymbol isto be globaly visible. If the compiler has no such
extension, the macro is defined with no replacement text. Needed
for classesthat are not otherwise exported, but are used by RTTI.
Examplesinclude classfor objectsthat will bethrown asexcep-
tionsor used indynamic_casts, across shared library boundaries.
For example, aheader-only exception classmight look likethis:

cl ass BOOST_SYMBOL_VI SI BLE ny_exception : pubO
lic std::runtime_error { ... };

Without BOOST_SYMBOL_VISIBLE, it would beimpossible
to catch my_exception thrown from a shared library compiled
by GCC with the -fvisibility=hidden option.

BOOST_HAS DECLSPEC The compiler has C++ extensions __decl spec(dl | export)
and _ decl spec(dllinport) to control export/import of
symbols from shared libraries. Deprecated. This macro is no
longer necessary since BOOST _SYMBOL EXPORT and
BOOST_SYMBOL_IMPORT are now supplied. It is provided
to support legacy code.

Typical usage:
boost/foo/config.hpp

41

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Config

#i f defined(BOOST_ALL_DYN LINK) || defined(BOOST_FOO DYN LI NK)
if defined(BOOST_FOO_SOURCE)

defi ne BOOST_FOO DECL BOOST_SYMBOL_EXPORT

el se

defi ne BOOST_FOO DECL BOOST_SYMBOL_| MPORT

endif

#el se

defi ne BOOST_FOO _DECL

#endi f

boost/foo/foo.hpp

#i ncl ude <boost/f oo/ config. hpp>
cl ass BOOST_FOO DECL bar { ... };

voi d BOOST_FOO DECL f();

boost/libs/foo/sr c/foo.cpp

#def i ne BOOST_FOO_SOURCE
#i ncl ude <boost/f oo/ foo. hpp>

voi d BOOST_FOO DECL f ()
{

_—

ABI Fixing

When linking against a pre-compiled library it vital that the ABI used by the compiler when building the library matches exactly the
ABI used by the code using the library. In this case ABI means things like the struct packing arrangement used, the name mangling
scheme used, or the size of some types (enum types for example). This is separate from things like threading support, or runtime
library variations, which have to be dealt with by build variants. To put thisin perspective there is one compiler (Borland's) that has
so many compiler options that make subtle changes to the ABI, that at least in theory there 3200 combinations, and that's without
considering runtime library variations. Fortunately these variations can be managed by #pr agma's that tell the compiler what ABI
to use for the types declared in your library. In order to avoid sprinkling #pr agma's all over the boost headers, there are some prefix
and suffix headers that do the job. Typical usageis:

my_library.hpp

42

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Config

#i fndef MY_I NCLUDE_GUARD
#def i ne MY_I NCLUDE_GUARD

/1 all includes go here:

#i ncl ude <boost/config. hpp>

#i ncl ude <what ever >

#i ncl ude <boost/config/abi _prefix. hpp> // nust be the | ast #include
nanespace boost {

/1 your code goes here

}

#i ncl ude <boost/config/abi _suffix. hpp> // pops abi _prefix.hpp pragnas

#endif // include guard

my_library.cpp
/'l nothing special need be done in the inplenmentation file

The user can disable this mechanism by defining BOOST_DI SABLE_ABI _HEADERS, or they can define BOOST_ABI _PREFI X and/or
BOOST_ABI _SUFFI X to point to their own prefix/suffix headersif they so wish.

Automatic library selection

Itisessential that userslink to abuild of alibrary which was built against the same runtime library that their application will be built
against -if this does not happen then the library will not be binary compatible with their own code- and thereisahigh likelihood that
their application will experience runtime crashes. These kinds of problems can be extremely time consuming and difficult to debug,
and often lead to frustrated users and authors alike (simply selecting the right library to link against is not as easy as it seems when
their are 6-8 of them to chose from, and some users seem to be blissfully unaware that there even are different runtimes available to
them).

To solve thisissue, some compilers allow source code to contain #pr agna's that instruct the linker which library to link against, all
the user need do isinclude the headersthey need, place the compiled librariesin their library search path, and the compiler and linker
dotherest. Boost.config supportsthisviathe header <boost / conf i g/ aut o_I i nk. hpp>, beforeincluding thisheader one or more
of the following macros need to be defined:

BOOST_LI B_NAME Required: An identifier containing the basename of the library, for example 'boost_regex'.
BOOST_DYN_LI NK Optional: when set link to dll rather than static library.
BOOST_LI B_DI AGNOSTI C Optional: when set the header will print out the name of the library selected (useful for debugging).

If the compiler supports this mechanism, then it will be told to link against the appropriately named library, the actual algorithm
used to mangle the name of the library is documented inside <boost / confi g/ aut o_l i nk. hpp> and has to match that used to
create the libraries viabjam 'sinstall rules.

my_library.hpp

43

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

n

/1 Don't include auto-linking code if the user has disabled it by

/1 defining BOOST_ALL_NO LI B, or BOOST_MY_LIBRARY_NO LIB, or if this

/1l is one of our own source files (signified by BOOST_MY_LI BRARY_SOURCE)

/1
#i f | defined(BOOST_ALL_NO LI B) && !defined(BOOST_MY_LI BRARY NO LIB) && !defined(BOOST_MY_LI BO
RARY_SOURCE)

define BOOST_LIB_NAVE boost _my_library
ifdef BOOST_My_LI BRARY_DYN LI NK

defi ne BOOST_DYN LI NK

endif

include <boost/config/auto_|ink. hpp>
#endi f

my_library.cpp

/1 define BOOST_MY_LIBRARY _SOURCE so that the header knows that the

/1 library is being built (possibly exporting rather than inporting code)
I

#def i ne BOOST_My_LI BRARY_SOURCE

#i ncl ude <boost/my_library/my_library. hpp>

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Standard Integer Types

Overview

The header <boost / cst di nt . hpp> provides the typedef's useful for writing portable code that requires certain integer widths. All
typedef's are in namespace boost.

The specifications for these types are based on the ISO/IEC 9899:1999 C Language standard header <stdint.h>. The 64-bit types
required by the C standard are not required in the boost header, and may not be supplied for al platforms/compilers, because | ong
| ong isnot [yet] included in the C++ standard.

See cstdint_test.cpp for atest program.

Rationale

The organization of the Boost.Integer headers and classesis designed to take advantage of <stdint.h> typesfrom the 1999 C standard
without causing undefined behavior in terms of the 1998 C++ standard. The header <boost/cstdint.hpp> makes the standard integer
types safely available in namespace boost without placing any names in namespace st d. The intension is to complement rather
than compete with the C++ Standard Library. Should some future C++ standard include <stdint.h> and <cstdint>, then
<boost/cstdint.hpp> will continue to function, but will become redundant and may be safely deprecated.

Because these are boost headers, their names conform to boost header naming conventions rather than C++ Standard Library header
naming conventions.

Caveat emptor

Asan implementation artifact, certain C <limits.h> macro names may possibly be visible to users of <boost/cstdint.hpp>. Don't use
these macros; they are not part of any Boost-specified interface. Useboost : : i nteger _traits<>orstd::numeric_linits<>
instead.

As another implementation artifact, certain C <stdint.h> typedef names may possibly be visible in the global namespace to users of
<boost/cstdint.hpp>. Don't use these names, they are not part of any Boost-specified interface. Use the respective namesin namespace
boost instead.

Exact-width integer types

Thetypedef i nt #_t , with # replaced by the width, designates a signed integer type of exactly # bits; for examplei nt 8_t denotes
an 8-bit signed integer type. Similarly, the typedef ui nt #_t designates an unsigned integer type of exactly # bits.

These types are optional. However, if a platform supports integer types with widths of 8, 16, 32, 64, or any combination thereof,
then <boost/cstdint.hpp> does provide the corresponding typedefs.

The absence of int64 t and uint64 t isindicated by the macro BOOST_NO | NT64_T.

Minimum-width integer types

Thetypedef i nt _| east #_t , with # replaced by the width, designates a signed integer type with awidth of at |east # bits, such that
no signed integer type with lesser size has at least the specified width. Thus, i nt _I east 32_t denotes the smallest signed integer
type with awidth of at least 32 bits. Similarly, the typedef name ui nt _| east #_t designates an unsigned integer type with awidth
of at least # bits, such that no unsigned integer type with lesser size has at least the specified width.

The following minimum-width integer types are provided for al platforms:
e int_|least8_t

e int_leastl6_t

45

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/cstdint.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../test/cstdint_test.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

e int_least32_t

e uint_least8_t

e uint_least16_t

e uint_least32_t

The following types are available only if, after including <boost/cstdint.hpp>, the macro BOOST_NO_INT64_T is hot defined:
e int_least64_t

* uint_least64_t

All other minimum-width integer types are optional.

Fastest minimum-width integer types

The typedef i nt _f ast #_t , with # replaced by the width, designates the fastest signed integer type with awidth of at least # bits.
Similarly, the typedef name ui nt _f ast #_t designates the fastest unsigned integer type with awidth of at least # bits.

Thereisno guarantee that these types are fastest for all purposes. In any case, however, they satisfy the signedness and width require-
ments.

The following fastest minimum-width integer types are provided for all platforms:

e int_fast8_t

e int_fastl6 t

e int_fast32_t

* uint_fast8_t

e uint_fastl1l6 t

e uint_fast32_t

The following types are available only if, after including <boost/cstdint.hpp>, the macro BOOST_NO_INT64_T is not defined:
e int_fast64 t

e uint_fast64_t

All other fastest minimum-width integer types are optional.

Greatest-width integer types

Thetypedef i nt max_t designates asigned integer type capable of representing any value of any signed integer type.
The typedef ui nt max_t designates an unsigned integer type capable of representing any value of any unsigned integer type.

These types are provided for all platforms.

Integer Constant Macros

The following macros are always defined after inclusion of this header, these allow integer constants of at least the specified width
to be declared: INT8_C, UINT8_C, INT16_C, UINT16_C, INT32_C, UINT32_C, INTMAX_C, UINTMAX_C.

Themacros INT64_C and UINT64 _C are also defined if the the macro BOOST _NO_INT64 T is not defined.

46

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

The C99 macro _ STDC_CONSTANT_MACROS is also defined as an artifact of the implementation.

For example:

#i ncl ude <boost/cstdint. hpp>

/1l Here the constant Ox1FFFFFFFF has the correct suffix applied:
static const boost::uint64_t ¢ = | NT64_C(O0x1FFFFFFFF) ;

47

render

> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Config

Guidelines for Boost Authors

The <boost/config.hpp> header is used to pass configuration information to other boost files, allowing them to cope with platform
dependencies such as arithmetic byte ordering, compiler pragmas, or compiler shortcomings. Without such configuration information,
many current compilers would not work with the Boost libraries.

Centralizing configuration information in this header reduces the number of files that must be modified when porting libraries to
new platforms, or when compilers are updated. Ideally, no other files would have to be modified when porting to a new platform.

Configuration headers are controversial because some view them as condoning broken compilers and encouraging non-standard
subsets. Adding settings for additional platformsand maintaining existing settings can also be aproblem. In other words, configuration
headers are a necessary evil rather than a desirable feature. The boost config.hpp policy is designed to minimize the problems and
maximize the benefits of a configuration header.

Note that:

» Boost library implementers are not required to "#i ncl ude <boost/ confi g. hpp>", and are not required in any way to support
compilersthat do not comply with the C++ Standard (ISO/IEC 14882).

« If alibrary implementer wishesto support some non-conforming compiler, or to support some platform specific feature, "#i ncl ude
<boost / confi g. hpp>" isthe preferred way to obtain configuration information not available from the standard headers such
as<climts>,etc.

* If configuration information can be deduced from standard headers such as <cl i ni t s>, use those standard headers rather than
<boost/confi g. hpp>.

» Boost filesthat use macros defined in <boost / conf i g. hpp> should have sensible, standard conforming, default behavior if the
macro is not defined. This means that the starting point for porting <boost / conf i g. hpp> to anew platform is simply to define
nothing at all specific to that platform. Inthe rare case where thereis no sensible default behavior, an #error message should describe
the problem.

 If aBoost library implementer wants something added to confi g. hpp, post a request on the Boost mailing list. There is ho
guarantee such arequest will be honored; the intent is to limit the complexity of config.hpp.

» Theintent isto support only compilers which appear on their way to becoming C++ Standard compliant, and only recent releases
of those compilers at that.

» Theintent isnot to disable mainstream features now well-supported by the majority of compilers, such as namespaces, exceptions,
RTTI, or templates.

Disabling Compiler Warnings

Theheader <boost / conf i g/ war ni ng_di sabl e. hpp> can be used to disable certain compiler warningsthat are hard or impossible
to otherwise remove.

Note that:

» This header should never be included by another Boost header, it should only ever be used by alibrary source file or a test
case.

» The header should be included before you include any other header.

» This header only disables warnings that are hard or impossible to otherwise deal with, and which are typically emitted by one
compiler only, or in one compilers own standard library headers.

Currently it disables the following warnings:

48

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Config

Compiler Warning
Visual C++ 8 and later C4996: Error 'function’: was declared deprecated
Intel C++ Warning 1786: relatesto the use of "deprecated” standard library

functions rather like C4996 in Visual C++.

Adding New Defect Macros

When you need to add a new defect macro - either to fix aproblem with an existing library, or when adding anew library - distil the
issue down to a simple test case; often, at this point other (possibly better) workarounds may become apparent. Secondly always
post the test case code to the boost mailing list and invite comments; remember that C++ is complex and that sometimes what may
appear a defect, may in fact turn out to be a problem with the authors understanding of the standard.

When you namethe macro, follow the BOOST_NO_SOMETHING naming convention, so that it's obviousthat thisisamacro reporting
adefect.

Finally, add the test program to the regression tests. You will need to placethetest casein a. i pp file with the following comments
near the top:

/1 MACRO BOOST_NO_FQO
/1 TITLE: foo
/1 DESCRI PTI ON: If the conpiler fails to support foo

These comments are processed by the autoconf script, so make sure the format follows the one given. The file should be named
"boost _no_f oo. i pp", where foo isthe defect description - try and keep the file name under the Mac 30 character filename limit
though. You will also need to provide a function prototype "i nt test ()" that is declared in a namespace with the same name as
the macro, but in all lower case, and which returns zero on success:

namespace boost_no_foo {

int test()

{
/1 test code goes here:
/1
return O;

}

}

Once thetest code isin place in libs/config/test, updating the configuration test system proceeds as:

e cdintolibs/config/tools andrunbjam This generates the . cpp file test cases from the . i pp file, updates the libs/con-
fig/test/all/Jamfile.v2, confi g_t est. cpp and confi g_i nf o. cpp.

e cdintolibs/config/test/all andrunbj am MACRONAME conpil er-1i st, where MACRONAME is the name of the
new macro, and conpi | er - | i st isaspace separated list of compilersto test with.
The xxx_pass test and the xxx_fail_test should both report ** passed**.
If MACRONAME is not defined when it should be defined, xxx_pass test will not report **passed**. If MACRONAME is
defined when it should not be defined, xxx_fail_test will not report ** passed* *.

e cdintolibs/config/test andrunbjam config_info config_test conpiler-list.config_info shouldbuildand
run cleanly for all the compilersinconpi | er-1i st whileconfi g_t est should fail for those that have the defect, and pass for
those that do not.

Then you should:

* Define the defect macro in those config headers that require it.

49

httpo://www.renderx.com/

http://msdn2.microsoft.com/en-us/library/ttcz0bys(VS.80).aspx
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Document the macro in this documentation (please do not forget this step!!)
» Commit everything.
» Keep an eye on the regression tests for new failures in Boost.Config caused by the addition.

e Start using the macro.

Adding New Feature Test Macros

When you need to add a macro that describes a feature that the standard does not require, follow the convention for adding a new
defect macro (above), but call the macro BOOST_HAS_FQO, and name the test file "boost _has_f 0o. i pp". Try not to add feature
test macros unnecessarily, if thereisaplatform specific macro that can aready be used (for example_W N32, _ BEOS__,or __| i nux)
toidentify thefeature then usethat. Try to keep the macro to afeature group, or header name, rather than one specific API (for example
BOOST_HAS_NL_TYPES_H rather than BOOST_HAS_CATOPEN). |f the macro describes a POSIX feature group, then add boilerplate
code to <boost/config/suffix.hpp> to auto-detect the feature where possible (if you are wondering why we can't use POSI X feature
test macro directly, remember that many of these features can be added by third party libraries, and are not therefore identified inside
<uni st d. h>).

Modifying the Boost Configuration Headers

The aim of boost's configuration setup is that the configuration headers should be relatively stable - a boost user should not have to
recompile their code just because the configuration for some compiler that they're not interested in has changed. Separating the
configuration into separate compiler/standard library/platform sections provides for part of this stability, but boost authors require
some amount of restraint aswell, in particular:

<boost/config.hpp> should never change, don't alter thisfile.

<hoost/config/user.hpp> is included by default, don't add extra code to this file unless you have to. If you do, please remember to
update libs/config/tools/configure.in as well.

<boost/config/suffix.hpp> is aways included so be careful about modifying this file as it breaks dependencies for everyone. This
file should include only "boilerplate” configuration code, and generally should change only when new macros are added.

<boost/config/select_compiler_config.hpp>, <boost/config/select_platform_config.hpp> and <boost/config/select_stdlib_config.hpp>
are included by default and should change only if support for a new compiler/standard library/platform is added.

The compiler/platform/standard library selection code is set up so that unknown platforms are ignored and assumed to be fully
standards compliant - this gives unknown platformsa " sporting chance" of working "asis" even without running the configure script.

When adding or modifying theindividual mini-configs, assumethat future, asyet unreleased versions of compilers, have all the defects
of the current version. Although thisis perhaps unnecessarily pessimistic, it cuts down on the maintenance of these files, and exper-
ience suggests that pessimism is better placed than optimism here!

50

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../tools/configure.in
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/select_compiler_config.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/select_platform_config.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/select_stdlib_config.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Rationale

The problem with many traditional "textbook" implementations of configuration headers (where all the configuration options arein
asingle "monolithic" header) is that they violate certain fundamental software engineering principles which would have the effect
of making boost more fragile, more difficult to maintain and more difficult to use safely. You can find a description of the principles
from the following article.

The problem

Consider a situation in which you are concurrently developing on multiple platforms. Then consider adding a new platform or
changing the platform definitions of an existing platform. What happens? Everything, and thisdoesliterally mean everything, recom-
piles. Isn't it quite absurd that adding a new platform, which has absolutely nothing to do with previously existing platforms, means
that all code on all existing platforms needs to be recompiled?

Effectively, there is an imposed physical dependency between platforms that have nothing to do with each other. Essentialy, the
traditional solution employed by configuration headers does not conform to the Open-Closed Principle:

" A module should be open for extension but closed for modification."
Extending atraditional configuration header implies modifying existing code.

Furthermore, consider the complexity and fragility of the platform detection code. What if a simple change breaks the detection on
some minor platform?What if someone accidentally or on purpose (asaworkaround for some other problem) defines some platform
dependent macros that are used by the detection code? A traditional configuration header is one of the most volatile headers of the
entire library, and more stable elements of Boost would depend on it. This violates the Stable Dependencies Principle:

" Depend in the direction of stability."

After even aminor change to atraditional configuration header on one minor platform, amost everything on every platform should
be tested if we follow sound software engineering practice.

Another important issueisthat it isnot always possible to submit changesto <boost / conf i g. hpp>. Someboost usersare currently
working on platforms using tools and libraries that are under strict Non-Disclosure Agreements. In this situation it is impossible to
submit changes to atraditional monoalithic configuration header, instead some method by which the user can insert their own config-
uration code must be provided.

The solution

The approach taken by boost's configuration headers is to separate configuration into three orthogonal parts. the compiler, the
standard library and the platform. Each compiler/standard library/platform gets its own mini-configuration header, so that changes
to one compiler's configuration (for example) does not affect other compilers. In addition there are measures that can be taken both
to omit the compiler/standard library/platform detection code (so that adding support to anew platform does not break dependencies),
or to freeze the configuration completely; providing almost complete protection against dependency changes.

51

httpo://www.renderx.com/

http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Config

Acknowledgements

Beman Dawes provided the original conf i g. hpp and part of this document.

Vesa Karvonen provided a description of the principles (seerationale) and put together an early version of the current configuration
Ssetup.

John Maddock put together the configuration current code, the test programs, the configuration script and the reference section of
this document.

Matias Capeletto converted the docs to quickbook format.

Numerous boost members, past and present, have contributed fixes to boost's configuration.

52

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Config
	Table of Contents
	Configuring Boost for Your Platform
	Using the default boost configuration
	The <boost/config.hpp> header
	Using the configure script
	User settable options
	Advanced configuration usage
	Example 1: creating our own frozen configuration
	Example 2: skipping files that you don't need
	Example 3: using configure script to freeze the boost configuration

	Testing the boost configuration

	Boost Macro Reference
	Macros that describe C++03 defects
	Macros that describe optional features
	Macros that describe possible C++ future features
	Macros that describe C++11 features not supported
	Macros that allow use of C++11 features with C++03 compilers
	Boost Helper Macros
	Boost Informational Macros
	Boost Deprecated Macros
	Macros for libraries with separate source code
	Macros controlling shared library symbol visibility
	ABI Fixing
	Automatic library selection

	Standard Integer Types
	Overview
	Rationale
	Caveat emptor
	Exact-width integer types
	Minimum-width integer types
	Fastest minimum-width integer types
	Greatest-width integer types
	Integer Constant Macros

	Guidelines for Boost Authors
	Disabling Compiler Warnings
	Adding New Defect Macros
	Adding New Feature Test Macros
	Modifying the Boost Configuration Headers

	Rationale
	The problem
	The solution

	Acknowledgements

