render

Boost.Lambda

Jaakko Jarvi <jarvi at cs tamu edu>
Copyright © 1999-2004 Jaakko Jarvi, Gary Powell

Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file LI -
CENSE_1_0. t xt or copy at http://www.boost.org/LICENSE_1_0.txt)

Table of Contents

F =W 101 1< | PP PTTRUPP 2
€T 1 g To IS = T (= o PP SOPPTTRP 3
INSEAITING TNE THOFAIY ... ettt e e e e et e b e e e e et e e e e aba s 3
Conventions USEd iN thiS HOCUMENTieii ettt ettt e et e et et e e et b e e e et e e e era s 3
Fgu oo (¥ oi [l RSP PPT TR UPPPTNN 4
Lo LA A= o] o PSPPSR 4
INtroduction tO [amMDOA EXPIESSIONScceetieeiiti ettt et e et ettt e ettt e e et et e e et et e e e eate e e e eetereeeesbanaaeees 5
USING TN TTDIANY .. ee ettt ettt ettt et e et e et e e bt e et e bh e e e e e be e e e ee bt e e e eebe e eeenbaaeaees 7
INEFOAUCIONY EXBIMPIES ...ttt e ettt e et e et e e et et e e et et e e et et e e e e ebaaes 7
Parameter and return types of 1ambda fUNCLOrSiiiiiii e 8
About actual arguments to 1ambBOa FUNCLOISiiiiii e et e e e e e et e eees 8
Storing bound arguments in [ambAa fUNCLIONSuiiiii e 9
Lambda expressioNS iN ELAIIS ittt et et e e e e e e ab e aen 10
PLACENOIAEN'S ... e et ettt e e e e 10
1001 2 (0 =0 =SS o] TP PPTR PPN 10
BN EXPIESSIONStueeeeit ettt ettt ettt ettt ettt ettt oot eh et et oot e e et e et e et e e e e s 12
Overriding the dedUCE FEIUIM TYPE ... ceete ettt ettt et e ettt e e ettt e e et ettt e et ebt e e e eetb e neeeentaeeeen 16
Delaying constants @nd VANTADIESiiiiiieeiii e ettt e et et e et e 17
Lambda expressions fOr CONLIOl SEIUCTUNESu. ittt ettt e e et e e e et e e e e et aeeeeraaeeees 19
(o= oL (o S PP PPT TR PPPPT 21
COoNSIIUCEION BN GESIIUCTION ...t ettt e et ettt e e et et e e et et e e et et e e et et e e et ab e e e entanas 22
SPECial [aMDUA EXPIESSIONS ... ettt ettt ettt e ettt e et ettt e et ettt e e et et e e et ab e et e e b e e e eab e e eerb e aaes 23
CastS, SIZEOF AN TYPEIT ...ttt et e ettt e ettt e e et et e et e e e et et e n e e e e b e e e e rr e aae 26
Nesting STL algorithm iNVOCELIONSccuuieeiiii ettt et e et e et e et e e e e b e e e e raa s 26
Extending return type dedUCTION SYSLEIM iiiie e e ettt ettt e ettt e e et et e e e et b r e e e eeba e e eenbaaaeeens 28
PractiCal CONSIAEIAITIONS cieett ettt ettt e et e e et e e e ettt e et e ekt e et et e e et e b e e et et e e et st e e e enba s 32
PEITOMMIBINCE ... ettt et ettt e et et e et e e e e 32
ADOUL COMPITING ettt ettt oottt ettt e e ettt e ettt bt e e et et r e et ee b s e e e ee bt e e e eebnraeeenbnnaeeenes 33
o= o 1 TP PP 33
Relation t0 Other BOOSE [IDFAITESui ittt e et e et e et e e e et e e e e eaa s 35
BOOSE FUNCLION ...ttt ettt e et e et s e et et s e et et e et e et e e et et e e e e nna e e eneas 35
BOOSE BINQ ...ttt ettt ettt e et e e e et e e et e et e e e e e s 35
1600011 1] o 0 o] = ST TPPPT TR 37
Rationale for some Of the deSIGN QECISIONSuuuiiiii ettt e et e et e e et e e e e e e e 38
LamBAa fUNCLOr @Y ...t e e et e et e ettt e e et et e e et et e e et et r e e e eebe e e eeebanaeeen 38
(2] ol oo = o] 1|V APPSO UPPPTTP 38
1

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

In a nutshell

The Boost Lambda Library (BLL inthe sequel) isaC++ template library, which implements aform of lambda abstractionsfor C++.
The term originates from functional programming and lambda cal culus, where alambda abstraction defines an unnamed function.
The primary motivation for the BLL isto provide flexible and convenient meansto define unnamed function objectsfor STL algorithms.
In explaining what the library is about, aline of code says more than a thousand words; the following line outputs the elements of
some STL container a separated by spaces:

for_each(a.begin(), a.end(), std::cout << _1 << ' '");
The expression st d: : cout << _1 << ' ' definesaunary function object. The variable _1 is the parameter of this function, a

placeholder for the actual argument. Within each iteration of f or _each, the function is called with an element of a as the actual
argument. This actual argument is substituted for the placeholder, and the “body” of the function is evaluated.

The essence of BLL isletting you define small unnamed function objects, such as the one above, directly on the call site of an STL
algorithm.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

Getting Started
Installing the library

Thelibrary consistsof includefilesonly, hencethereisnoinstallation procedure. Theboost include directory must beontheinclude
path. There are a number of include files that give different functionality:

| ambda/ | anbda. hpp defines lambda expressions for different C++ operators, see the section called “ Operator expressions’.
I anmbda/ bi nd. hpp defines bi nd functions for up to 9 arguments, see the section called “Bind expressions’.

I anbda/ i f . hpp defineslambdafunction equivalentsfor if statements and the conditional operator, seethe section called “ Lambda
expressions for control structures’ (includes| anbda. hpp).

| ambda/ | oops. hpp defines lambda function equivalent for looping constructs, see the section called “Lambda expressions for
control structures’.

| anmbda/ swi t ch. hpp defines lambda function equivalent for the switch statement, see the section called “Lambda expressions
for control structures’.

| anmbda/ const r uct . hpp providestoolsfor writing lambda expressions with constructor, destructor, new and del ete invocations,
see the section called “ Construction and destruction” (includes| anbda. hpp).

| ambda/ cast s. hpp provides lambda versions of different casts, aswell assi zeof andt ypei d, see the section called “ Cast
expressions”.

| anmbda/ except i ons. hpp givestoolsfor throwing and catching exceptionswithin lambda functions, the section called “ Excep-
tions’ (includes| ambda. hpp).

| anbda/ al gori t hm hpp andl ambda/ nuneri c. hpp (cf. standard al gor t i hmand nuner i ¢ headers) alow nested STL agorithm
invocations, see the section called “Nesting STL algorithm invocations’.

Any other header filesin the package are for internal use. Additionally, the library depends on two other Boost Libraries, the Tuple
[tuple] and the type traits [type traits] libraries, and on the boost / r ef . hpp header.

All definitions are placed in the namespace boost : : | anbda and its subnamespaces.

Conventions used in this document

In most code examples, we omit the namespace prefixes for names in the st d and boost : : | anbda namespaces. Implicit using
declarations

usi ng namespace std;
usi ng nanespace boost:: | anbda;

are assumed to be in effect.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

Introduction

Motivation

The Standard Template Library (STL) [STL94], now part of the C++ Standard Library [C++98], isageneric container and algorithm
library. Typically STL algorithms operate on container elements viafunction objects. These function objects are passed as arguments
to the algorithms.

Any C++ construct that can be called with the function call syntax isafunction object. The STL contains predefined function objects
for some common cases (such aspl us, | ess andnot 1). Asan example, one possibleimplementation for the standard pl us template
is:

tenpl ate <class T>
struct plus : public binary_function<T, T, T> {
T operator()(const T& i, const T& j) const {
return i + j;
}
H

The base class bi nary_f uncti on<T, T, T> contains typedefs for the argument and return types of the function object, which
are needed to make the function object adaptable.

In addition to the basic function object classes, such asthe one above, the STL contains binder templatesfor creating aunary function

object from an adaptable binary function object by fixing one of the arguments to a constant value. For example, instead of having
to explicitly write afunction object class like:

class plus_1 {

int _i;
publi c:
plus_1(const int& i) : _i(i) {}
int operator()(const int&j) { return _i +j; }

b

the equivalent functionality can be achieved with the pl us template and one of the binder templates (bi nd1st). E.g., thefollowing
two expressions create function objectswith identical functionalities; when invoked, both return the result of adding 1 to the argument
of the function object:

plus_1(1)
bi nd1st (pl us<i nt>(), 1)

The subexpression pl us<i nt >() inthelatter lineisabinary function object which computes the sum of two integers, and bi nd1st
invokesthis function object partially binding the first argument to 1. As an example of using the above function object, the following
code adds 1 to each element of some container a and outputs the results into the standard output stream cout .

transforn(a. begin(), a.end(), ostream.iterator<int>(cout),
bi nd1st (pl us<i nt>(), 1));

To make the binder templates more generally applicable, the STL contains adaptors for making pointers or references to functions,
and pointersto member functions, adaptable. Finally, some STL implementations contai n function composition operations as extensions
to the standard [SGI02].

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

All these tools aim at one goal: to make it possible to specify unnamed functionsin a call of an STL algorithm, in other words, to
pass code fragments as an argument to a function. However, this goal is attained only partially. The simple example above shows
that the definition of unnamed functions with the standard tools is cumbersome. Complex expressions involving functors, adaptors,
binders and function composition operations tend to be difficult to comprehend. In addition to this, there are significant restrictions
in applying the standard tools. E.g. the standard binders alow only one argument of a binary function to be bound; there are no
bindersfor 3-ary, 4-ary etc. functions.

The Boost Lambda Library provides solutions for the problems described above:

» Unnamed functions can be created easily with an intuitive syntax. The above example can be written as:

transforn{a. begin(), a.end(), ostream.iterator<int>(cout),
1+ _1);

or even more intuitively:
for_each(a.begin(), a.end(), cout << (1 + _1));

» Most of the restrictions in argument binding are removed, arbitrary arguments of practically any C++ function can be bound.

» Separate function composition operations are not needed, as function composition is supported implicitly.

Introduction to lambda expressions

Lambda expression are common in functional programming languages. Their syntax varies between languages (and between different
forms of lambda calculus), but the basic form of alambda expressionsis:

| anbda x; ... Xu.€

A lambda expression defines an unnamed function and consists of:

« the parameters of thisfunction: x; ... x,.
* the expression e which computes the value of the function in terms of the parametersx, ... x,.

A simple example of alambda expression is

| ambda x y. x+y

Applying the lambda function means substituting the formal parameters with the actual arguments:

(lambda x y.x+y) 2 3 =2 + 3 =5

Inthe C++ version of lambdaexpressionsthel anbda x; ... x,partismissingand theformal parameters have predefined names.
In the current version of the library, there are three such predefined formal parameters, called placeholders: _1, 2 and _3. They
refer to the first, second and third argument of the function defined by the lambda expression. For example, the C++ version of the
definition

| anbda x y. x+y

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

Hence, there is no syntactic keyword for C++ lambda expressions. The use of a placeholder as an operand implies that the operator
invocation isalambda expression. However, thisistrue only for operator invocations. Lambda expressions containing function calls,
control structures, casts etc. require special syntactic constructs. Most importantly, function calls need to be wrapped inside abi nd
function. As an example, consider the lambda expression:

| ambda x y.foo(x,y)
Rather thanf oo(_1, _2), the C++ counterpart for this expression is:
bi nd(foo, _1, _2)

We refer to thistype of C++ lambda expressions as bind expressions.

A lambda expression defines a C++ function object, hence function application syntax is like calling any other function object, for
instance: (_1 + _2)(i, j).

Partial function application
A bind expression isin effect a partial function application. In partial function application, some of the arguments of afunction are

bound to fixed values. The result is another function, with possibly fewer arguments. When called with the unbound arguments, this
new function invokes the original function with the merged argument list of bound and unbound arguments.

Terminology

A lambdaexpression definesafunction. A C++ lambda expression concretely constructs afunction object, a functor, when eval uated.
We use the name lambda functor to refer to such afunction object. Hence, in the terminology adopted here, the result of evaluating
alambda expression is alambda functor.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

Using the library

The purpose of this section is to introduce the basic functionality of the library. There are quite alot of exceptions and special cases,
but discussion of them is postponed until later sections.

Introductory Examples

In this section we give basic examples of using BLL lambda expressionsin STL algorithm invocations. We start with some simple
expressions and work up. First, we initialize the elements of a container, say, al i st , tothevalue1:

list<int> v(10);
for_each(v.begin(), v.end(), _1 = 1);

Theexpression _1 = 1 creates alambda functor which assignsthe value 1 to every element in vt

Next, we create a container of pointers and make them point to the elements in the first container v:

vector<int*> vp(10);
transforn(v.begin(), v.end(), vp.begin(), & 1);

The expression & 1 creates afunction object for getting the address of each element in v. The addresses get assigned to the corres-
ponding elementsin vp.

The next code fragment changes the values in v. For each element, the function f oo is called. The original value of the element is
passed as an argument to f oo. The result of f oo isassigned back to the element:

int foo(int);
for_each(v.begin(), v.end(), _1 = bind(foo, _1));

The next step isto sort the elements of vp:

sort (vp. begin(), vp.end(), *_1 > *_2);

Inthiscall tosort, we are sorting the elements by their contents in descending order.

Finally, the following f or _each call outputs the sorted content of vp separated by line breaks:
for_each(vp. begin(), vp.end(), cout << *_ 1 << '\n");
Note that a normal (non-lambda) expression as subexpression of a lambda expression is evaluated immediately. This may cause

surprises. For instance, if the previous example is rewritten as

for_each(vp. begin(), vp.end(), cout << '\n' << *_1);

L strictly taken, the C++ standard definesf or _each as a non-modifying sequence operation, and the function object passed to f or _each should not modify
its argument. The requirements for the arguments of f Or _each are unnecessary strict, since as long as the iterators are mutable, f or _each accepts afunction
object that can have side-effects on their argument. Nevertheless, it is straightforward to provide another function templatewith thefunctionality ofst d: : f or _each
but more fine-grained requirements for its arguments.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

the subexpression cout << '\ n' isevaluated immediately and the effect isto output asingle line break, followed by the elements
of vp. The BLL provides functions const ant and var to turn constants and, respectively, variables into lambda expressions, and
can be used to prevent the immediate evaluation of subexpressions:

for_each(vp. begin(), vp.end(), cout << constant('\n') << *_1);
These functions are described more thoroughly in the section called “Delaying constants and variables’

Parameter and return types of lambda functors

During the invocation of alambda functor, the actual arguments are substituted for the placehol ders. The placeholders do not dictate
the type of these actual arguments. The basic ruleisthat alambda function can be called with arguments of any types, aslong asthe
lambda expression with substitutions performed is avalid C++ expression. As an example, the expression _1 + _2 createsabinary
lambda functor. It can be called with two objects of any types A and B for which oper at or +(A, B) isdefined (and for which BLL
knows the return type of the operator, see below).

C++ lacks amechanism to query atype of an expression. However, this precise mechanismiscrucia for theimplementation of C++
lambda expressions. Consequently, BLL includes a somewhat complex type deduction system which uses a set of traits classes for
deducing the resulting type of lambda functions. It handles expressions where the operands are of built-in types and many of the
expressions with operands of standard library types. Many of the user defined types are covered as well, particularly if the user
defined operators obey normal conventions in defining the return types.

There are, however, cases when the return type cannot be deduced. For example, suppose you have defined:
C operator+(A, B);

The following lambda function invocation fails, since the return type cannot be deduced:
Aa, Bb; (_1+ 2)(a, b);

There are two alternative solutions to this. The first is to extend the BLL type deduction system to cover your own types (see the
section called “ Extending return type deduction system”). The second isto use a special lambda expression (r et) which definesthe
return type in place (see the section called “ Overriding the deduced return type’):

A a; Bb; ret<C(_1 + _2)(a, b);
For bind expressions, the return type can be defined as a template argument of the bind function as well:

bi nd<i nt >(foo, _1, _2);

About actual arguments to lambda functors

A general restriction for the actual argumentsis that they cannot be non-const rvalues. For example:

i, j): Il ,ok
1, 2); [/ error (!)

Thisrestriction is not as bad as it may look. Since the lambda functors are most often called inside STL-algorithms, the arguments
originate from dereferencing iterators and the dereferencing operators seldom return rvalues. And for the cases where they do, there
are workarounds discussed in the section called “ Rvalues as actual arguments to lambda functors’.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

Storing bound arguments in lambda functions

By default, temporary const copies of the bound arguments are stored in the lambda functor. This means that the value of a bound
argument isfixed at the time of the creation of the lambda function and remains constant during the lifetime of the lambda function
object. For example:

int i = 1;
(L1 =2, 1 +i)(i);

The comma operator is overloaded to combine lambda expressions into a sequence; the resulting unary lambda functor first assigns
2 to its argument, then adds the value of i to it. The value of the expression in the last line is 3, not 4. In other words, the lambda
expression that iscreated is| anbda x. (x = 2, x + 1) ratherthan!l anmbda x. (x = 2, x + i).

Assaid, thisisthe default behavior for which there are exceptions. The exact rules are as follows:

» Theprogrammer can control the storing mechanismwithr ef andcr ef wrappers[ref]. Wrapping an argument withr ef , or cr ef ,
instructs the library to store the argument as a reference, or as a reference to const respectively. For example, if we rewrite the
previous example and wrap the variablei withr ef , we are creating the lambda expression | anbda x. (x = 2, x + i) and
the value of the expression in the last line will be 4:

—~ -
|

=l
I =

2, _1 +ref(i))(i);

Notethat r ef and cref aredifferent from var and const ant . While the |atter ones create |lambda functors, the former do not.
For example:

int i;
var (i)
ref (i)

1; // ok
1; // not ok, ref(i) is not a |lanbda functor

Thefunctionsr ef and cr ef mostly exist for historical reasons, and r ef can always be replaced with var , and cr ef with con-
st ant _r ef . Seethe section called “Delaying constants and variables’ for details. Ther ef andcr ef functionsare general purpose
utility functions in Boost, and hence defined directly in the boost namespace.

 Array types cannot be copied, they are thus stored as const reference by default.

» For some expressions it makes more sense to store the arguments as references. For example, the obvious intention of the lambda
expressioni += _1 isthat callsto the lambda functor affect the value of the variablei , rather than some temporary copy of it.
As another example, the streaming operators take their leftmost argument as non-const references. The exact rules are;

» Theleft argument of compound assignment operators (+=, * =, etc.) are stored as references to non-const.

« If theleft argument of << or >> operator is derived from an instantiation of basi c_ost r eamor respectively from basi c_i s-
t r eam the argument is stored as a reference to non-const. For all other types, the argument is stored as a copy.

 In pointer arithmetic expressions, non-const array types are stored as non-const references. Thisisto prevent pointer arithmetic
making non-const arrays const.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

Lambda expressions in details

This section describes different categories of lambda expressions in details. We devote a separate section for each of the possible
forms of alambda expression.

Placeholders

The BLL defines three placeholder types: pl acehol der 1_t ype, pl acehol der 2_t ype and pl acehol der 3_t ype. BLL hasa
predefined placeholder variable for each placeholder type: 1, 2 and _3. However, the user is not forced to use these placeholders.
It is easy to define placeholders with alternative names. Thisis done by defining new variables of placeholder types. For example:

boost: : | anbda: : pl acehol der1_type X;
boost: : | anbda: : pl acehol der 2_type Y;
boost: : | anbda: : pl acehol der 3_type Z;

With these variables defined, X += Y * Zisequivalentto_1 += 2 * _3.

The use of placeholders in the lambda expression determines whether the resulting function is nullary, unary, binary or 3-ary. The
highest placeholder index is decisive. For example:

1 +5 /'l unary
1 1+ 1 /1 unary
1+ 2 /'l binary
bi nd(f, _1, 2, _3) // 3-ary
3 + 10 /1 3-ary

Notethat thelast line creates a 3-ary function, which adds 10 toitsthird argument. Thefirst two arguments are discarded. Furthermore,
lambda functors only have a minimum arity. One can always provide more arguments (up the number of supported placehol ders)
that isreally needed. The remaining arguments are just discarded. For example:

int i, j, k;
_1(i, g, k) /1 returns i, discards j and k
(_2 + _2)(i, j, k) // returns j+j, discards i and k

See the section called “ Lambda functor arity ” for the design rationale behind this functionality.

In addition to these three placeholder types, thereisalso afourth placeholder typepl acehol der E_t ype. The use of thisplaceholder
is defined in the section called “Exceptions” describing exception handling in lambda expressions.

When an actual argument is supplied for a placeholder, the parameter passing mode is always by reference. This means that any
side-effects to the placeholder are reflected to the actual argument. For example:

int i = 1;
(L1 += 2)(i); /1 i is now 3
(++_1, cout << _1)(i) // i is now 4, outputs 4

Operator expressions

Thebasicruleisthat any C++ operator invocation with at least one argument being alambda expression isitself alambdaexpression.
Almost all overloadable operators are supported. For example, the following is avalid lambda expression:

cout << _1, _2[_3] = _1 && false

10

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

However, there are some restrictions that originate from the C++ operator overloading rules, and some special cases.

Operators that cannot be overloaded
Some operators cannot be overloaded at al (: :, ., . *). For some operators, the requirements on return types prevent them to be

overloaded to create lambda functors. These operatorsare- >. , - >, new, new|] , del et e, del et e[] and ?: (the conditional oper-
ator).

Assignment and subscript operators

These operators must be implemented as class members. Consequently, the left operand must be alambda expression. For example:

i /1 ok
i = _1; /1 not ok. i is not a | anbda expression

Thereisasimple solution around this limitation, described in the section called “ Delaying constants and variables’. In short, the | eft
hand argument can be explicitly turned into alambda functor by wrapping it with aspecial var function:;

var(i) = _1; // ok
Logical operators
Logical operators obey the short-circuiting evaluation rules. For example, in the following code, i is never incremented:

bool flag = true; int i = 0;
(_1 || ++_2)(flag, i);

Comma operator

Comma operator is the “ statement separator” in lambda expressions. Since comma is also the separator between arguments in a
function call, extra parenthesis are sometimes needed:

for_each(a.begin(), a.end(), (++_1, cout << _1));

Without the extra parenthesisaround ++_1, cout << _1, the codewould beinterpreted as an attempt to call f or _each with four
arguments.

The lambda functor created by the comma operator adheres to the C++ rule of always evaluating the left operand before the right
one. In the above example, each element of a isfirst incremented, then written to the stream.

Function call operator

The function call operators have the effect of evaluating the lambda functor. Calls with too few arguments lead to a compile time
error.

Member pointer operator

The member pointer operator oper at or - >* can be overloaded freely. Hence, for user defined types, member pointer operator is
no special case. The built-in meaning, however, isasomewhat more complicated case. The built-in member pointer operator isapplied
if the left argument is a pointer to an object of some class A, and the right hand argument is a pointer to a member of A, or a pointer
to amember of a class from which A derives. We must separate two cases:

11

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

» Theright hand argument is a pointer to adata member. In this case the lambda functor simply performs the argument substitution
and calls the built-in member pointer operator, which returns areference to the member pointed to. For example:

struct A{ int d; };
A* a = new A();

(a ->* &A::d); /'l returns a reference to a->d
(_1 ->* &A:r:d)(a); // likew se

e Theright hand argument is a pointer to a member function. For a built-in call like this, the result is kind of a delayed member
function call. Such an expression must be followed by a function argument list, with which the delayed member function call is
performed. For example:

struct B { int foo(int); };
B* b = new B();

(b ->* &B::fo00) /1 returns a delayed call to b->foo

/1 a function argunent |ist rmust follow
(b ->* &B::fo0)(1) /1 ok, calls b->foo(1)
(_1 ->* &B::foo0)(b); /1 returns a delayed call to b->foo,

/1 no effect as such
(.1 -> &B::foo)(b)(1); // calls b->foo(1)

Bind expressions

Bind expressions can have two forms;

bi nd(target-function, bind-argunment-Ilist)
bi nd(target-nmenber-function, object-argument, bind-argument-|ist)

A bind expression delays the call of afunction. If thistarget function isn-ary, then the bi nd- ar gunent - 1 i st must contain n argu-
ments as well. In the current version of the BLL, 0 <=n <=9 must hold. For member functions, the number of arguments must be
at most 8, as the object argument takes one argument position. Basically, the bi nd- ar gunent - 1'i st must be avalid argument list
for the target function, except that any argument can be replaced with a placeholder, or more generally, with a lambda expression.
Note that also the target function can be alambda expression. The result of a bind expression is either a nullary, unary, binary or 3-
ary function object depending on the use of placeholdersin the bi nd- ar gunent - I i st (seethe section called “Placeholders”).

The return type of the lambda functor created by the bind expression can be given as an explicitly specified template parameter, as
in the following example;

bi nd<RET>(t arget-function, bind-argument-1|ist)

Thisisonly necessary if the return type of the target function cannot be deduced.

The following sections describe the different types of bind expressions.

Function pointers or references as targets

The target function can be a pointer or areference to afunction and it can be either bound or unbound. For example:

12

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

X foo(A, B, O; Aa Bb; Cc;
bi nd(foo, _1, _2, c)(a, b);
bi nd(& oo, _1, 2, c)(a, b);

bind(_1, a, b, c)(foo);

The return type deduction always succeeds with this type of bind expressions.

Note, that in C++ it is possible to take the address of an overloaded function only if the addressisassigned to, or used asan initializer
of, avariable, the type of which solvesthe amibiguity, or if an explicit cast expression is used. This means that overloaded functions
cannot be used in bind expressions directly, e.g.:

voi d foo(int);
voi d foo(float);
int i;

bi nd(& oo, _1)(i); /1 error
void (*pfl)(int) = &foo;

bind(pf1, _1)(i); /1 ok
bi nd(static_cast<void(*)(int)>(&o00), _1)(i); // ok

Member functions as targets

The syntax for using pointers to member function in bind expression is:

bi nd(target-nenber-function, object-argument, bind-argunment-|ist)

The object argument can be areference or pointer to the object, the BLL supports both cases with a uniform interface:

bool A::foo(int) const;
A a;
vector<int> ints;

find if(ints.begin(), ints.end(), bind(&A :foo, a, _1));
find_if(ints.begin(), ints.end(), bind(&A: :foo, &, _1));

Similarly, if the object argument is unbound, the resulting lambda functor can be called both via a pointer or areference:

bool A::foo(int);
i st<A> refs;
| i st<A*> pointers;

find_ if(refs.begin(), refs.end(), bind(&A\: :foo, _1, 1));
find_if(pointers.begin(), pointers.end(), bind(&A :foo, _1, 1));

Even though the interfaces are the same, there are important semantic differences between using a pointer or areference asthe object
argument. The differences stem from the way bi nd-functionstake their parameters, and how the bound parameters are stored within
the lambda functor. The object argument has the same parameter passing and storing mechanism as any other bind argument slot
(see the section called “ Storing bound arguments in lambda functions”); it is passed as a const reference and stored as a const copy
in the lambda functor. This creates some asymmetry between the lambda functor and the original member function, and between
seemingly similar lambda functors. For example:

13

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

class A{

int i; nutable int j;

publi c:

AGint i, int jj) :i(ii), j@Gi) {};
void set _i(int x) { i =x; };

void set_j(int x) const { j = Xx; };

b

When a pointer is used, the behavior iswhat the programmer might expect:

A a(0,0); int k = 1;
bi nd(&A: :set _i, &, _1)(k); // a.i =1
bi nd(&A: :set _j, &, _1)(k); // a.j ==1

Even though a const copy of the object argument is stored, the original object a is still modified. Thisis since the object argument
isapointer, and the pointer is copied, not the abject it pointsto. When we use a reference, the behaviour is different:

A a(0,0); int k = 1;
bi nd(&A: :set _i, a, _1)(k); // error; a const copy of a is stored.

/1 Cannot call a non-const function set i
bi nd(&A: :set _j, a, _1)(k); // a.j == 0, as a copy of a is nodified

To prevent the copying from taking place, one can usether ef or cr ef wrappers(var and const ant _r ef would do aswell):

bi nd(&A: :set_i, ref(a), _1)(k); // a.j ==
bi nd(&A: :set _j, cref(a), _1)(Kk); // a.j ==

Note that the preceding discussion is relevant only for bound arguments. If the object argument is unbound, the parameter passing
mode is always by reference. Hence, the argument a is not copied in the calls to the two lambda functors below:

A a(0,0);
bi nd(&A: :set _i, _1, 1)(a); // ai ==1
bi nd(&A::set _j, _1, 1)(a); // a.j == 1

Member variables as targets

A pointer to amember variable is not really afunction, but the first argument to the bi nd function can nevertheless be a pointer to
amember variable. Invoking such a bind expression returns a reference to the data member. For example;

struct A { int data; };
A a;
bi nd(&A: : data, _1)(a) = 1; /] a.data ==

The cv-qualifiers of the object whose member is accessed are respected. For example, the following triesto writeinto a const location:

const A ca = a;
bi nd(&A: : data, _1)(ca) = 1; /'l error

14

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

Function objects as targets

Function objects, that is, class objects which have the function call operator defined, can be used astarget functions. In general, BLL
cannot deduce the return type of an arbitrary function object. However, there are two methods for giving BLL this capability for a
certain function object class.

The result_type typedef

The BLL supports the standard library convention of declaring the return type of a function object with a member typedef named
resul t _type inthe function object class. Here is a simple example:

struct A {

typedef B result_type;
B operator()(X, Y, 2);
b

If afunction object does not definear esul t _t ype typedef, the method described below (si g template) is attempted to resolve the
return type of the function object. If afunction object definesbothresul t _t ype andsi g, resul t _t ype takes precedence.

The sig template

Another mechanism that make BLL aware of the return type(s) of afunction object is defining member template struct si g<Ar gs>
with atypedef t ype that specifies the return type. Here is a simple example:

struct A {

tenpl ate <class Args> struct sig { typedef B type; }
B operator() (X Y, 2);

s

The template argument Ar gs isat upl e (or more precisely acons list) type [tuple], where the first element is the function object
typeitself, and the remaining el ements are the types of the arguments, with which the function object is being called. Thismay seem
overly complex compared to defining theresul t _t ype typedef. Howver, there are two significant restrictions with using just a
simple typedef to express the return type:

1. If the function object defines several function call operators, there is no way to specify different result types for them.

2. If the function call operator is atemplate, the result type may depend on the template parameters. Hence, the typedef ought to be
atemplate too, which the C++ language does not support.

Thefollowing code shows an example, where the return type depends on the type of one of the arguments, and how that dependency
can be expressed with the si g template:

15

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

struct A {

/1 the return type equals the third argunent type:
tenpl ate<class T1l, class T2, class T3>
T3 operator()(const T1& t1, const T2& t2, const T3& t3) const;

tenpl ate <cl ass Args>
class sig {
/1 get the third argunent type (4th el ement)
t ypedef typenane
boost::tuples::element<3, Args>:.:type T3;
public:
t ypedef typenane
boost::renmove_cv<T3>::type type;

The elements of the Ar gs tuple are always non-reference types. Moreover, the element types can have a const or volatile qualifier
(jointly referred to as cv-qualifiers), or both. Thisis since the cv-qualifiers in the arguments can affect the return type. The reason
for including the potentially cv-qualified function object type itself into the Ar gs tuple, isthat the function object class can contain
both const and non-const (or volatile, even const volatile) function call operators, and they can each have a different return type.

Thesi g template can be seen as ameta-function that maps the argument type tuple to the result type of the call made with arguments
of the typesin the tuple. As the exampl e above demonstrates, the template can end up being somewhat complex. Typical tasks to be
performed are the extraction of the relevant types from the tuple, removing cv-qualifiers etc. See the Boost type_traits [type_traits]
and Tuple[type traits] librariesfor toolsthat can aid in these tasks. The si g templates are arefined version of asimilar mechanism
first introduced in the FC++ library [fct++].

Overriding the deduced return type

The return type deduction system may not be able to deduce the return types of some user defined operators or bind expressionswith
classobjects. A special lambda expression typeis provided for stating the return type explicitly and overriding the deduction system.
To state that the return type of the lambda functor defined by the lambda expression e is T, you can write:

ret<T>(e);

The effect is that the return type deduction is not performed for the lambda expression e at all, but instead, T is used as the return
type. Obviously T cannot be an arbitrary type, the true result of the lambda functor must be implicitly convertible to T. For example:

A a; B b;
C operator+(A, B);
int operator*(A, B);

ret<D>(_1 + _2)(a, b); /] error (C cannot be converted to D)
ret<C(_1 + _2)(a, b); /1 ok
ret<float>(_1 * _2)(a, b); // ok (int can be converted to float)
struct X {

Y operator(int)();
b
X x; int i;
bi nd(x, _1)(i); /] error, return type cannot be deduced
ret<y>(bind(x, _1))(i); Il ok

For bind expressions, there is a short-hand notation that can be used instead of r et . The last line could alternatively be written as:

16

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

bi nd<z>(x, _1)(i);

Thisfeature is modeled after the Boost Bind library [bind].

Note that within nested lambda expressions, ther et must be used at each subexpression where the deduction would otherwise fail.
For example:

A a; Bb;
C operator+(A, B); D operator-(C);

ret<D>(- (_1 + _2))(a, b); // error
ret<D>(- ret<C(_1 + _2))(a, b); // ok

If you find yourself using r et repeatedly with the same types, it is worth while extending the return type deduction (see the section
called “Extending return type deduction system”).

Nullary lambda functors and ret

As stated above, the effect of r et isto prevent the return type deduction to be performed. However, there is an exception. Due to
the way the C++ template instantiation works, the compiler is always forced to instantiate the return type deduction templates for
zero-argument lambda functors. This introduces a slight problem with r et , best described with an example:

struct F { int operator()(int i) const; };
F f;

bind(f, _1); /] fails, cannot deduce the return type
ret<int>(bind(f, _1)); // ok

bi nd(f, 1); /] fails, cannot deduce the return type
ret<int>(bind(f, 1)); [/ fails as well!

The BLL cannot deduce the return types of the above bind calls, as F does not define the typedef r esul t _t ype. One would expect
ret tofix this, but for the nullary lambda functor that results from a bind expression (last line above) this does not work. The return
type deduction templates are instantiated, even though it would not be necessary and the result is a compilation error.

The solution to thisis not to use ther et function, but rather define the return type as an explicitly specified template parameter in
the bi nd call:

bi nd<i nt>(f, 1); /1 ok

The lambda functors created with r et <T>(bi nd(arg-1ist)) and bi nd<T>(arg-1ist) have the exact same functionality —
apart from the fact that for some nullary lambda functors the former does not work while the latter does.

Delaying constants and variables

The unary functions const ant, const ant _ref and var turn their argument into a lambda functor, that implements an identity
mapping. The former two are for constants, the latter for variables. The use of these delayed constants and variables is sometimes
necessary due to the lack of explicit syntax for lambda expressions. For example:

for_each(a. begin(), a.end(), cout << _1 << ' ');
for_each(a.begin(), a.end(), cout << ' ' << _1);

17

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

The first line outputs the elements of a separated by spaces, while the second line outputs a space followed by the elements of a

without any separators. The reason for thisisthat neither of the operandsof cout << ' ' isalambdaexpression, hencecout <<
' isevaluated immediately. To delay the evaluation of cout << ' ', one of the operands must be explicitly marked as alambda

expression. This is accomplished with the const ant function:

for_each(a.begin(), a.end(), cout << constant(' ') << _1);

Thecal constant (' ') createsanullary lambdafunctor which storesthe character constant' ' and returnsareferencetoit when
invoked. The function const ant _r ef is similar, except that it stores a constant reference to its argument. The const ant and
consant _r ef areonly needed when the operator call has side effects, like in the above example.

Sometimes we need to delay the evaluation of a variable. Suppose we wanted to output the elements of a container in a numbered
list:

int index = 0O;
for_each(a.begin(), a.end(), cout << ++index << ':' << 1 << '\n');
for_each(a.begin(), a.end(), cout << ++var(index) << ':' << 1 << '\n');

Thefirst f or _each invocation does not do what we want; i ndex isincremented only once, and its value is written into the output
stream only once. By using var to makei ndex alambda expression, we get the desired effect.

In sum, var (x) creates a nullary lambda functor, which stores a reference to the variable x. When the lambda functor is invoked,
areferenceto x isreturned.

Naming delayed constants and variables

It is possible to predefine and name a delayed variable or constant outside a lambda expression. The templates var _t ype, con-
stant _t ype and const ant _r ef _t ype servefor this purpose. They are used as:

var _type<T>::type del ayed_i(var(i));
constant _type<T>::type del ayed_c(constant(c));

The first line defines the variable del ayed_i which is adelayed version of the variablei of type T. Analogously, the second line
defines the constant del ayed_c as adelayed version of the constant c. For example:

int i =0; int j;
for_each(a.begin(), a.end(), (var(j) = _1, _1 =var(i), var(i) =var(j)));

is equivalent to:

int i =0; int j;
var_type<int>::type vi(var(i)), vj(var(j));
for_each(a.begin(), a.end(), (vj = _1, 1 =vi, vi =vVj));

Here is an example of naming a delayed constant:

const ant _type<char>::type space(constant(' '));
for_each(a. begin(),a.end(), cout << space << _1);

18

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

About assignment and subscript operators

As described in the section called “Assignment and subscript operators’, assignment and subscripting operators are always defined
as member functions. This means, that for expressions of theformx = y or x[y] to beinterpreted as|lambda expressions, the left-
hand operand x must be alambda expression. Consequently, it is sometimes necessary to use var for this purpose. We repeat the
example from the section called “Assignment and subscript operators’:

int i;
i = _1; Il error
var(i) = _1; /Il ok

Note that the compound assignment operators +=, - = etc. can be defined as non-member functions, and thus they are interpreted as
lambda expressions even if only the right-hand operand is alambda expression. Nevertheless, it is perfectly ok to delay the left op-
erand explicitly. For example,i += _1isequivdenttovar (i) += _1.

Lambda expressions for control structures

BLL defines several functionsto createlambdafunctorsthat represent control structures. They all takelambdafunctors as parameters
and return voi d. To start with an example, the following code outputs all even elements of some container a:

for_each(a. begin(), a.end(),
if_then(_1 %2 == 0, cout << _1))

The BLL supports the following function templates for control structures:

i f_then(condition, then_part)

if_then_else(condition, then_part, else_part)
if_then_else_return(condition, then_part, else_part)
whi | e_| oop(condition, body)

whil e_l oop(condition) // no body case

do_whi | e_| oop(condi tion, body)
do_whil e_l oop(condition) // no body case
for_loop(init, condition, increnment, body)
for_loop(init, condition, increnent) // no body case
switch_statement(...)

The return types of all control construct lambda functor is voi d, except for i f _t hen_el se_r et ur n, which wraps a call to the
conditional operator

condition ? then_part : el se_part

The return type rules for this operator are somewhat complex. Basically, if the branches have the same type, this type is the return
type. If thetype of the branches differ, one branch, say of type A, must be convertibleto the other branch, say of typeB. In thissituation,
the result type is B. Further, if the common typeis an lvalue, the return type will be an Ivalue too.

Delayed variables tend to be commonplace in control structure lambda expressions. For instance, here we use the var function to
turn the arguments of f or _| oop into lambda expressions. The effect of the code is to add 1 to each element of a two-dimensional

array:

19

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

int a[5][10]; int i;
for_each(a, a+5,
for_loop(var(i)=0, var(i)<10, ++var(i),
_Afvar(i)] +=1));

The BLL supports an alternative syntax for control expressions, suggested by Joel de Guzmann. By overloading the oper at or []
we can get a closer resemblance with the built-in control structures:

if_(condition)[then_part]
if_(condition)[then_part].else_[else_part]
whil e_(condition)[body]

do_[body] . whi | e_(condi tion)

for_(init, condition, increnment)[body]

For example, using this syntax thei f _t hen example above can be written as:

for_each(a. begin(), a.end(),
if ((1%2==0)[cout << _11])

As more experience is gained, we may end up deprecating one or the other of these syntaces.

Switch statement

The lambda expressions for swi t ch control structures are more complex since the number of cases may vary. The general form of
aswitch lambda expression is:

swi tch_statenment (condition
case_st at enent <| abel >(| anbda expr essi on),
case_st at enent <| abel >(| anbda expr essi on),

def aul t _statenent (| anbda expressi on)

)

The condi ti on argument must be a lambda expression that creates a lambda functor with an integral return type. The different
cases are created with the case_st at enent functions, and the optional default case with thedef aul t _st at enent function. The
case labels are given as explicitly specified template argumentsto case_st at enent functionsand br eak statementsareimplicitly
part of each case. For example, case_st at enent <1>(a) , where a is some lambda functor, generates the code:

case 1:
eval uate | anbda functor a;
br eak;

Theswi t ch_st at enent function is specialized for up to 9 case statements.

As a concrete example, the following code iterates over some container v and ouptuts “zero” for each 0, “one” for each 1, and
“other: n” for any other value n. Note that another lambda expression is sequenced after the swi t ch_st at enent to output aline
break after each element:

20

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

std::for_each(v.begin(), v.end(),
(

swi t ch_st at enent (
_1
case_st at enent <0>(std:: cout << constant("zero")),
case_statenment <1>(std::cout << constant("one")),
defaul t _statenent (cout << constant("other: ") << _1)

).

cout << constant("\n")

)
)

Exceptions

The BLL provides lambda functors that throw and catch exceptions. Lambda functors for throwing exceptions are created with the
unary functiont hr ow_except i on. The argument to this function is the exception to be thrown, or alambda functor which creates
the exception to be thrown. A lambda functor for rethrowing exceptionsis created with the nullary r et hr ow function.

Lambda expressions for handling exceptions are somewhat more complex. The general form of alambda expression for try catch
blocksis asfollows:

try_catch(
| anbda expression,
cat ch_excepti on<type>(| anbda expressi on),
cat ch_excepti on<type>(| anbda expressi on),

catch_al | (I anbda expression)

)

Thefirst lambda expression isthe try block. Each cat ch_except i on defines a catch block where the explicitly specified template
argument defines the type of the exception to catch. The lambda expression within the cat ch_except i on defines the actions to
take if the exception is caught. Note that the resulting exception handlers catch the exceptions as references, i.e., cat ch_excep-
tion<T>(...) resultsin the catch block:

catch(T&e) { ... }

The last catch block can aternatively be a call to cat ch_except i on<t ype> or to cat ch_al |, which is the lambda expression
equivalenttocatch(...).

The Example 1, “ Throwing and handling exceptions in lambda expressions.” demonstrates the use of the BLL exception handling
tools. Thefirst handler catches exceptions of typef oo_except i on. Note the use of _1 placeholder in the body of the handler.

The second handler shows how to throw exceptions, and demonstrates the use of the exception placeholder _e. It isa specia place-
holder, which refers to the caught exception object within the handler body. Here we are handling an exception of type st d: : ex-
cept i on, which carries a string explaining the cause of the exception. This explanation can be queried with the zero-argument
member function what . The expression bi nd(&st d: : excepti on: : what, _e) createsthelambdafunction for making that call.
Notethat _e cannot be used outside of an exception handler lambda expression. The last line of the second handler constructs anew
exception object and throwsthat witht hr ow except i on. Constructing and destructing objectswithin lambdaexpressionsisexplained
in the section called “ Construction and destruction”

Finally, the third handler (cat ch_al |) demonstrates rethrowing exceptions.

21

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

Example 1. Throwing and handling exceptionsin lambda expressions.

for _each(
a. begin(), a.end(),
try_catch(
bi nd(foo, _1), /1 foo may throw

cat ch_excepti on<f oo_excepti on>(
cout << constant (" Caught foo_exception: ")
<< "foo was called with argument =" << _1

),
cat ch_exception<std: : excepti on>(
cout << constant (" Caught std::exception: ")
<< bind(&std::exception::what, _e),
t hr ow_excepti on(bi nd(construct or<bar_exception>(), _1)))

)
catch_al | (
(cout << constant ("Unknown"), rethrow))

)
)
);

Construction and destruction

Operators new and del et e can be overloaded, but their return types are fixed. Particularly, the return types cannot be lambda
functors, which prevents them to be overloaded for lambda expressions. It is not possible to take the address of a constructor, hence
constructors cannot be used astarget functionsin bind expressions. The sameistruefor destructors. Asaway around these constraints,
BLL defines wrapper classes for new and del et e calls, as well as for constructors and destructors. Instances of these classes are
function objects, that can be used as target functions of bind expressions. For example:

int* a[10];
for_each(a, a+10, _1 = bind(new ptr<int>()));
for_each(a, a+10, bind(delete ptr(), _1));

The new _pt r <i nt >() expression creates a function object that calls new i nt () when invoked, and wrapping that inside bi nd
makes it a lambda functor. In the same way, the expression del et e_pt r () creates a function object that invokes del et e on its
argument. Notethat new_pt r <T>() cantakeargumentsaswell. They are passed directly to the constructor invocation and thus allow
callsto constructors which take arguments.

Asan example of constructor callsin lambda expressions, the following code readsintegers from two containersx andy, constructs
pairs out of them and inserts them into a third container:

vector<pair<int, int> > v;
transform(x. begin(), x.end(), y.begin(), back_inserter(v),
bi nd(constructor<pair<int, int> >(), _1, _2));

Table 1, “ Construction and destruction related function objects.” listsall the function objectsrelated to creating and destroying objects,
showing the expression to create and call the function object, and the effect of evaluating that expression.

22

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

Table 1. Construction and destruction related function objects.

Function object call Wrapped expression
constructor<T>()(arg_list) T(arg_list)
destructor()(a) a. ~A(), wherea isof type A
destructor()(pa) pa- >~A() , where pa is of type A*
new ptr<T>()(arg_list) new T(arg_list)

new array<T>()(sz) new T[sz]

delete_ptr()(p) delete p

del ete_array() (p) delete p[]

Special lambda expressions

Preventing argument substitution

When alambdafunctor iscalled, the default behavior isto substitute the actual argumentsfor the placeholderswithin all subexpressions.
This section describes the tools to prevent the substitution and eval uation of a subexpression, and explains when these tools should
be used.

The arguments to a bind expression can be arbitrary lambda expressions, e.g., other bind expressions. For example:

int foo(int); int bar(int);

int i
bi nd(f oo, bind(bar, _1))(i);

The last line makes the call f oo(bar (i)); Note that the first argument in a bind expression, the target function, is no exception,
and can thus be abind expression too. Theinnermost lambdafunctor just hasto return something that can be used asatarget function:
another lambda functor, function pointer, pointer to member function etc. For example, in the following code the innermost lambda
functor makes a selection between two functions, and returns a pointer to one of them:

int add(int a, int b) { return a+b; }
int mul(int a, int b) { return a*b; }

int(*)(int, int) add_or_nul (bool x) {
return x ? add : nmul;

}

bool condition; int i; int j;

bi nd(bi nd(&add_or_mul, 1), 2, _3)(condition, i, j):
Unlambda

A nested bind expression may occur inadvertently, if thetarget function isavariablewith atypethat depends on atemplate parameter.
Typicaly the target function could be a formal parameter of a function template. In such a case, the programmer may not know
whether the target function is alambda functor or not.

23

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

Consider the following function template:

t enpl at e<cl ass F>
int nested(const F& f) {
int Xx;

bind(f, _1)(x);

Somewhere inside the function the formal parameter f is used as atarget function in abind expression. In order for thisbi nd call
to bevalid, f must be a unary function. Suppose the following two callsto nest ed are made:

int foo(int);

int bar(int, int);

nest ed(&f 00) ;

nest ed(bi nd(bar, 1, _1));

Both are unary functions, or function objects, with appropriate argument and return types, but the latter will not compile. In the latter
call, the bind expression inside nest ed will become:

bi nd(bi nd(bar, 1, _1), _1)

When thisisinvoked with x, after substituitions we end up trying to call

bar (1, x)(x)

whichisan error. The call to bar returnsint, not a unary function or function object.

In the example above, the intent of the bind expression in the nest ed function isto treat f as an ordinary function object, instead
of alambdafunctor. The BLL providesthefunction template unl anmbda to expressthis: alambdafunctor wrapped insideunl anbda
is not alambda functor anymore, and does not take part into the argument substitution process. Note that for all other argument types
unl anbda is an identity operation, except for making non-const objects const.

Using unl anbda, the nest ed function iswritten as:

t enpl at e<cl ass F>
int nested(const F& f) {
int x;

bi nd(unl anbda(f), _1)(x):

Protect

Thepr ot ect functionisrelated to unlambda. It isalso used to prevent the argument substitution taking place, but whereasunl anbda
turns alambda functor into an ordinary function object for good, pr ot ect does this temporarily, for just one evaluation round. For
example:

24

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

int x =1, y = 10;
(_1 + protect(_1 + 2))(x)(y);

Thefirst call substitutes x for the leftmost _1, and results in another lambda functor x + (_1 + 2), which after the call withy
becomesx + (y + 2),andthusfinaly 13.

Primary motivation for including pr ot ect into the library, was to allow nested STL agorithm invocations (the section called
“Nesting STL algorithm invocations”).

Rvalues as actual arguments to lambda functors

Actual argumentsto the lambda functors cannot be non-const rvalues. Thisis dueto a deliberate design decision: either we have this
restriction, or there can be no side-effects to the actual arguments. There are ways around this limitation. We repeat the example
from section the section called “About actual arguments to lambda functors” and list the different solutions:

=1; int j = 2
(i, j); /1 ok

toi
1+ _2)
1+ _2)(1, 2); Il error (!)

~ e~ =

1. If thervalueisof aclasstype, the return type of the function that creates the rvalue should be defined as const. Due to an unfor-

tunate language restriction this does not work for built-in types, as built-in rvalues cannot be const qualified.

2. If the lambda function call is accessible, the neke_const function can be used to constify the rvalue. E.g.:

(_1 + _2)(make_const (1), make_const(2)); // ok

Commonly the lambda function call siteisinside a standard algorithm function template, preventing this solution to be used.

3. If neither of the above is possible, the lambda expression can be wrapped in aconst _par amet er s function. It creates another
type of lambda functor, which takes its arguments as const references. For example:

const _paraneters(_1 + _2)(1, 2); // ok

Note that const _par amet er s makes all arguments const. Hence, in the case were one of the arguments is a non-const rvalue,
and another argument needs to be passed as a non-const reference, this approach cannot be used.

4. If none of the above is possible, there is still one solution, which unfortunately can break const correctness. The solution is yet
another lambda functor wrapper, which we have named br eak _const to aert the user of the potential dangers of this function.
The br eak_const function creates alambda functor that takesits arguments as const, and casts away constness prior to the call
to the original wrapped lambda functor. For example:

int i;

(L1 += 2)(i, 2); /1 error, 2 is a non-const rval ue
const _paraneters(_1 += _2)(i, 2); // error, i beconmes const
break_const(_1 += _2)(i, 2); /1 ok, but dangerous

Note, that theresultsof br eak_const or const _par anet er s are not lambdafunctors, so they cannot be used as subexpressions
of lambda expressions. For instance:

25

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

break_const(_1 + _2) + _3; // fails.
const _paraneters(_1 + _2) + _3; // fails.

However, this kind of code should never be necessary, since calls to sub lambda functors are made inside the BLL, and are not
affected by the non-const rvalue problem.

Casts, sizeof and typeid

Cast expressions

TheBLL definesitscounterpartsfor thefour cast expressionsst at i ¢c_cast ,dynani c_cast ,const _cast andrei nter pret _cast.
TheBLL versionsof the cast expressionshavetheprefix | | _. Thetypeto cast toisgiven asan explicitly specified template argument,
and the sole argument is the expression from which to perform the cast. If the argument is alambda functor, the lambda functor is
evaluated first. For example, thefollowing codeuses! | _dynani c_cast to count the number of der i ved instancesin the container
a:

cl ass base {};
cl ass derived : public base {};

vect or <base*> a;
int count = 0O;
for _each(a. begin(), a.end(),
i f_then(ll_dynani c_cast<derived*>(_1), ++var(count)));

Sizeof and typeid

TheBLL counterpartsfor these expressionsarenamed| | _si zeof andl | _t ypei d. Both take one argument, which can bealambda
expression. The lambda functor created wrapsthe si zeof ort ypei d call, and when the lambda functor is called the wrapped oper-
ation is performed. For example:

vect or <base*> a;

for_each(a. begin(), a.end(),
cout << bind(&ype_info::nanme, |l _typeid(*_1)));

Herel | _t ypei d creates alambda functor for calling t ypei d for each element. The result of at ypei d call is an instance of the
t ype_i nf o class, and the bind expression creates a lambda functor for calling the name member function of that class.

Nesting STL algorithm invocations

The BLL definescommon STL algorithms as function object classes, instances of which can be used as target functionsin bind ex-
pressions. For example, the following code iterates over the elements of atwo-dimensional array, and computes their sum.

int a[100][200];
int sum= 0;

std::for_each(a, a + 100,
bind(l1::for_each(), _1, _1 + 200, protect(sum+= _1)));

TheBLL versions of the STL algorithms are classes, which define the function call operator (or several overloaded ones) to call the
corresponding function templates in the st d namespace. All these structs are placed in the subnamespace boost : : | anbda: | | .

26

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

Note that there is no easy way to express an overloaded member function call in alambda expression. This limits the usefulness of
nested STL algorithms, as for instance the begi n function has more than one overloaded definitions in container templates. In gen-
eral, something analogous to the pseudo-code below cannot be written:

std:: for_each(a.begin(), a.end(),
bind(1l::for_each(), _1.begin(), _1.end(), protect(sum+= _1)));

Some aid for common special cases can be provided though. The BLL defines two helper function object classes, cal | _begi n and
cal | _end, which wrap acall to the begi n and, respectively, end functions of a container, and return the const _i t er at or type
of the container. With these hel per templates, the above code becomes:

std::for_each(a.begin(), a.end(),
bi nd(II::for_each(),
bi nd(cal |l _begin(), _1), bind(call_end(), _1),
protect(sum+= _1)));

27

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

Extending return type deduction system

In this section, we explain how to extend the return type deduction system to cover user defined operators. In many casesthisis not
necessary, as the BLL defines default return types for operators. For example, the default return type for al comparison operators
isbool , and aslong as the user defined comparison operators have a bool return type, there is no need to write new specializations
for the return type deduction classes. Sometimes this cannot be avoided, though.

The overloadable user defined operators are either unary or binary. For each arity, there are two traits templates that define the return
types of the different operators. Hence, the return type system can be extended by providing more specializationsfor these templates.
The templates for unary functors are plain_return_type 1<Action, A> and return_type 1<Action, A> ,and
plain_return_type 2<Action, A B> and return_type 2<Action, A, B> respectively for binary functors.

The first parameter (Act i on) to all these templates is the action class, which specifies the operator. Operators with similar return
type rules are grouped together into action groups, and only the action class and action group together define the operator unambigu-
oudly. As an example, the action type ari t hmet i c_act i on<pl us_act i on> stands for oper at or +. The complete listing of dif-
ferent action typesis shown in Table 2, “Action types”.

The latter parameters, A in the unary case, or A and B in the binary case, stand for the argument types of the operator call. The two
sets of templates, pl ai n_return_type_nandreturn_type_n (nislor2)differinthe way how parameter types are presented
to them. For the former templates, the parameter types are always provided as non-reference types, and do not have const or volatile
qualifiers. Thismakes specializing easy, ascommonly one specialization for each user defined operator, or operator group, isenough.
On the other hand, if a particular operator is overloaded for different cv-qualifications of the same argument types, and the return
types of these overloaded versions differ, a more fine-grained control is needed. Hence, for the latter templates, the parameter types
preserve the cv-qualifiers, and are non-reference types as well. The downside is, that for an overloaded set of operators of the kind
described above, one may end up needing up to 16 r et ur n_t ype_2 specializations.

Suppose the user has overloaded the following operators for some user defined types X, Y and Z:

Z operator+(const X& const Y&);
Z operator-(const X& const Y&);

Now, one can add a specialization stating, that if the left hand argument is of type X, and the right hand one of typeY, the return type
of all such binary arithmetic operatorsis Z:

nanmespace boost {
nanmespace | anbda {

t enpl at e<cl ass Act >

struct plain_return_type_2<arithmetic_action<Act>, X Y>{
typedef Z type;

s

}
}

Having this specialization defined, BLL is capable of correctly deducing the return type of the above two operators. Note, that the
specializations must be in the same namespace, : : boost : : | anbda, with the primary template. For brevity, we do not show the
namespace definitions in the examples bel ow.

Itispossibleto specialize on the level of an individual operator aswell, in addition to providing a specialization for a group of oper-
ators. Say, we add a new arithmetic operator for argument types X and Y:

X operator*(const X& const Y&);

28

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

Our first rule for all arithmetic operators specifies that the return type of this operator is z, which obviously is not the case. Hence,
we provide anew rule for the multiplication operator:

t enpl at e<>

struct plain_return_type_2<arithmetic_action<multiply_action> X Y> {
t ypedef X type;

b

The specializations can define arbitrary mappings from the argument types to the return type. Suppose we have some mathematical
vector type, templated on the element type:

tenpl ate <class T> class ny_vector;

Suppose the addition operator is defined between any two ny_vect or instantiations, as long as the addition operator is defined
between their element types. Furthermore, the element type of theresulting my_vect or isthe same asthe result type of the addition
between the element types. E.g., adding my_vect or <i nt > and my_vect or <doubl e> resultsin ny_vect or <doubl e>. The BLL
hastraits classesto perform the implicit built-in and standard type conversions between integral, floating point, and complex classes.
Using BLL tools, the addition operator described above can be defined as:

tenpl ate<cl ass A, class B>
ny_vector<typenane return_type 2<arithnetic_action<plus_action> A, B> :type>
oper at or +(const ny_vector<A>& a, const my_vector& b)
{
t ypedef typenane
return_type_ 2<arithnetic_action<plus_action> A B> :type res_type;
return ny_vector<res_type>();

}

To alow BLL to deduce the type of ny_vect or additions correctly, we can define:

tenpl at e<cl ass A, class B>
class plain_return_type_2<arithnetic_action<plus_action>,
ny_vect or <A>, ny_vector > {
t ypedef typenane

return_type_2<arithmetic_action<plus_action> A B> :type res_type;

publi c:
t ypedef ny_vector<res_type> type;

b

Note, that we are reusing the existing specializationsfor the BLL r et ur n_t ype_2 template, which require that the argument types
are references.

29

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

Table 2. Action types

+ arithmetic_action<pl us_action>

- arithnetic_acti on<m nus_acti on>

* arithmetic_action<nultiply_action>

/ arithnetic_action<divi de_acti on>

% arithnetic_acti on<renmai nder _acti on>
+ unary_arithmetic_action<plus_action>

- unary_arithmetic_action<m nus_action>
& bi twi se_acti on<and_acti on>
| bi twi se_acti on<or _acti on>

~ bi twi se_acti on<not action>

n bi twi se_acti on<xor_action>

<< bitwi se_action<leftshift_action_no_streanp
>> bitwi se_action<rightshift_acti on_no_streanr
&& | ogi cal _acti on<and_acti on>

| | ogi cal _acti on<or _acti on>

! | ogi cal _acti on<not _acti on>

< rel ational _action<less_action>

> rel ati onal _acti on<greater_acti on>

<= rel ati onal _acti on<l essorequal _acti on>

>= rel ati onal _acti on<great erorequal _acti on>

== rel ati onal _acti on<equal _acti on>
I = rel ati onal _acti on<not equal _acti on>
+= arithneti c_assi gnment _acti on<pl us_acti on>

-= arithnetic_assi gnment _acti on<mi nus_acti on>

*= arithmetic_assi gnnent _acti on<mnul tiply_action>
/= arithneti c_assi gnment _acti on<di vi de_acti on>
% arithneti c_assi gnment _acti on<r emai nder _acti on>
&= bi twi se_assi gnment _acti on<and_acti on>

30

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

<<=

>>=

++

++

- >*

bi twi se_assi gnment _acti on<or _acti on>

bi twi se_assi gnnent _act i on<xor _acti on>

bi twi se_assi gnment _acti on<l eftshift_action>

bi twi se_assi gnnent _acti on<rightshift_action>
pre_i ncrenent _decrenent _acti on<i ncrenent _acti on>
pre_i ncrenent _decr enment _act i on<decr enent _act i on>

post _i ncrenent _decrenment _acti on<i ncrenment _ac-
tion>

post _i ncrenent _decrenent _acti on<decrenent _ac-
tion>

ot her _acti on<address_of _action>
ot her _action<contents_of action>
ot her _acti on<conma_acti on>

ot her _acti on<nenber _poi nter _acti on>

31

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

Practical considerations

Performance

In theory, al overhead of using STL algorithms and lambda functors compared to hand written loops can be optimized away, just
as the overhead from standard STL function objects and binders can. Depending on the compiler, this can also be true in practice.
We ran two tests with the GCC 3.0.4 compiler on 1.5 GHz Intel Pentium 4. The optimization flag -03 was used.

In thefirst test we compared lambda functors against explicitly written function objects. We used both of these stylesto define unary
functions which multiply the argument repeatedly by itself. We started with the identity function, going up to x°. The expressions
werecaledinsideast d: : t r ansf or mloop, reading theargument fromonest d: : vect or <i nt > and placing the result into another.
The length of the vectors was 100 elements. The running times are listed in Table 3, “Test 1”. We can observe that there is no signi-
ficant difference between the two approaches.

In the second test we again used st d: : t r ansf or mto perform an operation to each el ement in a 100-element long vector. Thistime
the element type of the vectors was doubl e and we started with very simple arithmetic expressions and moved to more complex
ones. The running times are listed in Table 4, “Test 2". Here, we also included classic STL style unnamed functions into tests. We
do not show these expressions, asthey get rather complex. For example, the last expression in Table 4, “ Test 2" written with classic
STL tools contains 7 calls to conpose2, 8 callsto bi nd1st and atogether 14 constructor invocations for creating mul ti pl i es,
m nus and pl us objects. In thistest the BLL expressions are a little slower (roughly 10% on average, less than 14% in all cases)
than the corresponding hand-written function objects. The performance hit is a bit greater with classic STL expressions, up to 27%
for the simplest expressios.

Thetests suggest that the BLL does not introduce aloss of performance compared to STL function objects. With areasonable optim-
izing compiler, one should expect the performance characteristics be comparable to using classic STL. Moreover, with simple ex-
pressions the performance can be expected to be close to that of explicitly written function objects. Note however, that evaluating a
lambda functor consist of a sequence of callsto small functionsthat are declared inline. If the compiler failsto actually expand these
functions inline, the performance can suffer. The running time can more than double if this happens. Although the above tests do
not include such an expression, we have experienced this for some seemingly simple expressions.

Table3. Test 1
expression lambda expression hand-coded function object
X 240 230
X*X 340 350
X*X* X 770 760
X*X*X*X 1180 1210
X*X*X*X*X 1950 1910

CPU time of expressions with integer multiplication written as alambda expression and as a traditional hand-coded function object
class. The running times are expressed in arbitrary units.

32

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

Table4. Test 2
expression lambda expression classic STL expression hand-coded function object
ax 330 370 290
-ax 350 370 310
ax-(a+x) 470 500 420
(ax-(at+x))(a+x) 620 670 600
((ax) - (a+x))(bx - (b+x))(ax - 1660 1660 1460

(b+x))(bx - (a+x))

CPU time of arithmetic expressions written as lambda expressions, as classic STL unnamed functions (using conpose2, bi nd1st
etc.) and astraditional hand-coded function object classes. Using BLL terminology, a and b are bound argumentsin the expressions,
and x is open. All variables were of typesdoubl e. The running times are expressed in arbitrary units.

Some additional performance testing with an earlier version of the library is described [Jar00].

About compiling

The BLL usestemplatesrather heavily, performing numerous recursive instantiations of the same templates. This has (at least) three
implications:

» Whileit is possible to write incredibly complex lambda expressions, it probably isn't a good idea. Compiling such expressions
may end up requiring alot of memory at compile time, and being slow to compile.

» Thetypes of lambda functors that result from even the simplest lambda expressions are cryptic. Usually the programmer doesn't
need to deal with the lambda functor types at all, but in the case of an error in alambda expression, the compiler usually outputs
the types of the lambda functors involved. This can make the error messages very long and difficult to interpret, particularly if
the compiler outputs the whole chain of template instantiations.

» The C++ Standard suggests atemplate nesting level of 17 to help detect infinite recursion. Complex lambda templates can easily
exceed thislimit. Most compilers allow a greater number of nested templates, but commonly require the limit explicitly increased
with a command line argument.

Portability

The BLL works with the following compilers, that is, the compilers are capable of compiling the test cases that are included with
the BLL:

+ GCC3.04
* KCC 4.0f with EDG 2.43.1

» GCC 2.96 (failswith one test case, theexcept i on_t est . cpp resultsin an internal compiler error.)

Test coverage
The following list describes the test files included and the features that each file covers:

* bind_tests_sinple. cpp:Bindexpressionsof different arities and types of target functions: function pointers, function objects
and member functions. Function composition with bind expressions.

* bind_tests_sinple_function_references.cpp : Repeats al tests from bi nd_t est s_si npl e. cpp where the target
function is afunction pointer, but uses function references instead.

33

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

bi nd_t ests_advanced. cpp : Contains tests for nested bind expressions, unl anbda, pr ot ect, const _par aneters and
br eak_const . Tests passing lambda functors as actual argumentsto other lambda functors, currying, and using the si g template
to specify the return type of afunction object.

oper at or _tests_sinpl e. cpp : Testsusing all operators that are overloaded for lambda expressions, that is, unary and binary
arithmetic, bitwise, comparison, logical, increment and decrement, compound, assignment, subscrict, address of, dereference, and
comma operators. The streaming nature of shift operatorsis tested, as well as pointer arithmetic with plus and minus operators.

menber _poi nt er _t est. cpp : The pointer to member operator is complex enough to warrant a separate test file.

control _structures. cpp : Testsfor the looping and if constructs.

swi tch_construct. cpp: Includestestsfor all supported arities of the switch statement, both with and without the default case.
exception_test. cpp:Includestestsfor throwing exceptionsand for try/catch constructs with varying number of catch blocks.

constructor_tests. cpp : Contains tests for constructor, destructor, new ptr, del ete_ptr, new array and de-
lete_array.

cast _test.cpp: Testsfor thefour cast expressions, aswell ast ypei d and si zeof .

extending_return_type_traits.cpp : Tests extending the return type deduction system for user defined types. Contains
several user defined operators and the corresponding specializations for the return type deduction templ ates.

i s_instance_of test.cpp :Includestestsfor aninternally used traits template, which can detect whether agiven typeisan
instance of a certain template or not.

bl | _and_functi on. cpp : Containstestsfor using boost : : f unct i on together with lambda functors.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

Relation to other Boost libraries

Boost Function

Sometimes it is convenient to store lambda functorsin variables. However, the types of even the simplest lambda functors are long
and unwieldy, and it isin general unfeasible to declare variables with lambda functor types. The Boost Function library [function]
defines wrappers for arbitrary function objects, for example lambda functors; and these wrappers have types that are easy to type
out. For example:

boost::function<int(int, int)>f = _1 + _2;
boost::function<int&int& > g = (_1 += 10);
int i =1, j =2

f(i, j); I/ returns 3

g(i); /1 sets i to = 11;

The return and parameter types of the wrapped function object must be written explicilty as the template argument to the wrapper
template boost : : f unct i on; even when lambda functors, which otherwise have generic parameters, are wrapped. Wrapping a
function object with boost : : functi on introduces a performance cost comparable to virtual function dispatch, though virtual
functions are not actually used. Note that storing lambda functorsinside boost : : f unct i on introduces a danger. Certain types of
lambda functors may store references to the bound arguments, instead as taking copies of the arguments of the lambda expression.
When temporary lambda functor objects are used in STL algorithm invocations this is always safe, as the lambda functor gets de-
structed immediately after the STL a gortihm invocation is completed. However, alambdafunctor wrapped insideboost : : f uncti on
may continue to exist longer, creating the possibility of dangling references. For example:

int* sum= new int();

*sum = 0;

boost::function<int&(int)> counter = *sum += _1;
counter(5); // ok, *sum= 5;

del ete sum

counter(3); // error, *sum does not exist anynore

Boost Bind

TheBoost Bind [bind] library has partially overlapping functionality with the BLL. Basically, the Boost Bind library (BB in the sequel)
implements the bind expression part of BLL. There are, however, some semantical differerences.

TheBLL and BB evolved separately, and have different implementations. This means that the bind expressions from the BB cannot
be used within bind expressions, or within other type of lambda expressions, of the BLL. The same holdsfor using BLL bind expres-
sionsin the BB. Thelibraries can coexist, however, asthe names of the BB library areinboost namespace, whereasthe BLL names
areinboost : : | anbda namespace.

The BLL requiresacompiler that isreasonably conformant to the C++ standard, whereasthe BB library is more portable, and works
with alarger set of compilers.

The following two sections describe what are the semantic differences between the bind expressionsin BB and BLL.

First argument of bind expression
In BB the first argument of the bind expression, the target function, is treated differently from the other arguments, as no argument
substitution takes place within that argument. In BLL the first argument is not a special case in this respect. For example:

35

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Lambda

t enpl at e<cl ass F>

int foo(const F& f) {
int x;
bi nd(f, _1)(x);

}

int bar(int, int);
nest ed(bi nd(bar, 1, _1));

The bind expression inside f oo becomes:

bi nd(bi nd(bar, 1, _1), _1)(x)

The BLL interpretesthisas:

bar (1, x)(x)

whereas the BB library as

bar (1, x)

bi nd(unl anbda(f), _1)(x);

as explained in the section called “Unlambda’.

To get this functionality in BLL, the bind expression inside the f oo function can be written as:

The BB library supports up to nine placeholders, while the BLL defines only three placeholders. The rationale for not providing
more, isthat the highest arity of the function objects accepted by any STL algorithmistwo. The placeholder count iseasy to increase
in the BB library. In BLL it is possible, but more laborous. The BLL currently passes the actual arguments to the lambda functors
internally just as they are and does not wrap them inside a tuple object. The reason for thisis that some widely used compilers are
not capable of optimizing the intermediate tuple objects away. The creation of the intermediate tuples would cause a significant
performance hit, particularly for the simplest (and thus the most common) lambda functors. We are working on a hybrid approach,
which will allow more placeholders but not compromise the performance of simple lambda functors.

36

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

Contributors

The main body of the library was written by Jaakko Jarvi and Gary Powell. We've got outside help, suggestions and ideas from
Jeremy Siek, Peter Higley, Peter Dimov, Va entin Bonnard, William Kempf. We would particularly like to mention Joel de Guzmann
and his work with Phoenix which has influenced BLL significantly, making it considerably simpler to extend the library with new

features.

37

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

Rationale for some of the design decisions

Lambda functor arity

The highest placeholder index in alambda expression determines the arity of the resulting function object. However, thisis just the
minimal arity, as the function object can take arbitrarily many arguments; those not needed are discarded. Consider the two bind
expressions and their invocations below:

bind(g, _3, _3, _3)(x, vy, 2);

bind(g, _1, _1, 1)(x, vy, z);

Thisfirst line discards arguments x and y, and makes the call:

g(z, z, z)

whereas the second line discards argumentsy and z, and calls:

a(x, x, x)

In earlier versions of the library, the latter line resulted in a compile time error. Thisis basically atradeoff between safety and flex-
ibility, and the issue was extensively discussed during the Boost review period of the library. The main points for the strict arity
checking was that it might catch a programming error at an earlier time and that alambda expression that explicitly discardsits ar-
gumentsis easy to write:

(_3, bind(g, _1, _1, 1))(x, Vy, 2);

This lambda expression takes three arguments. The left-hand argument of the comma operator does nothing, and as comma returns
the result of evaluating the right-hand argument we end up with thecall g(x, x, x) evenwith the strict arity.

The main points against the strict arity checking were that the need to discard arguments is commonplace, and should therefore be
straightforward, and that strict arity checking does not really buy that much more safety, particularly asit isnot symmetric. For example,
if the programmer wanted to write the expression _1 + _2 but mistakenly wrote 1 + 2, with strict arity checking, the complier
would spot the error. However, if the erroneous expression was1 + _2 instead, the error would go unnoticed. Furthermore, weak
arity checking simplifies the implementation a bit. Following the recommendation of the Boost review, strict arity checking was
dropped.

Bibliography

[STLY4] A. A. Stepanov and M. Lee. The Standard Template Library. Hewlett-Packard Laboratories. 1994. www.hpl.hp.com/te-
chreports.

[SGI02] The SGI Sandard Template Library. 2002. www.sgi.com/tech/stl/.

[C++98] International Sandard, Programming Languages — C++. |SO/IEC:14882. 1998.

[Jar99] Jaakko Jarvi. C++ Function Object Binders Made Easy. . Lecture Notesin Computer Science. 1977. Springer. 2000.

[Jar00] Jaakko Jarvi. Gary Powell. The Lambda Library : Lambda Abstraction in C++. Turku Centre for Computer Science. Tech-
nical Report . 378. 2000. www.tucs.fi/publications.

38

httpo://www.renderx.com/

http://www.hpl.hp.com/techreports
http://www.hpl.hp.com/techreports
http://www.sgi.com/tech/stl/
http://www.tucs.fi/Publications/techreports/TR378.php
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Lambda

[Jar01] Jaakko Jarvi. Gary Powell. The Lambda Library : Lambda Abstraction in C++. Second Workshop on C++ Template Pro-
gramming. Tampa Bay, OOPSLA'0L. . 2001. www.oonumerics.org/tmpw01/.

[Jar03] Jaakko Jarvi. Gary Powell. Andrew Lumsdaine. The Lambda Library : unnamed functionsin C++. . Software - Practice
and Expreience. 33:259-291. 2003.

[tuple] The Boost Tuple Library. www.boost.org/libs/tuple/doc/tuple_users guide.html . 2002.
[type_traits] The Boost type traits. www.boost.org/libs/type traits/ . 2002.

[ref] Boost ref. www.boost.org/libs/bind/ref.html . 2002.

[bind] Boost Bind Library. www.boost.org/libs/bind/bind.html . 2002.

[function] Boost Function Library. www.boost.org/libs/function/ . 2002.

[fc++] TheFC++ library: Functional Programming in C++. Yannis Smaragdakis. Brian McNamara. www.cc.gatech.edu/~yannis/fc++/
. 2002.

39

httpo://www.renderx.com/

http://www.oonumerics.org/tmpw01/
http://www.boost.org/libs/tuple/doc/tuple_users_guide.html
http://www.boost.org/libs/type_traits/index.htm
http://www.boost.org/libs/bind/ref.html
http://www.boost.org/libs/bind/bind.html
http://www.boost.org/libs/function/
http://www.cc.gatech.edu/~yannis/fc++/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Lambda
	Table of Contents
	In a nutshell
	Getting Started
	Installing the library
	Conventions used in this document

	Introduction
	Motivation
	Introduction to lambda expressions
	Partial function application
	Terminology

	Using the library
	Introductory Examples
	Parameter and return types of lambda functors
	About actual arguments to lambda functors
	Storing bound arguments in lambda functions

	Lambda expressions in details
	Placeholders
	Operator expressions
	Operators that cannot be overloaded
	Assignment and subscript operators
	Logical operators
	Comma operator
	Function call operator
	Member pointer operator

	Bind expressions
	Function pointers or references as targets
	Member functions as targets
	Member variables as targets
	Function objects as targets

	Overriding the deduced return type
	Nullary lambda functors and ret

	Delaying constants and variables
	Lambda expressions for control structures
	Switch statement

	Exceptions
	Construction and destruction
	Special lambda expressions
	Preventing argument substitution
	Unlambda
	Protect

	Rvalues as actual arguments to lambda functors

	Casts, sizeof and typeid
	Cast expressions
	Sizeof and typeid

	Nesting STL algorithm invocations

	Extending return type deduction system
	Practical considerations
	Performance
	About compiling
	Portability
	Test coverage

	Relation to other Boost libraries
	Boost Function
	Boost Bind
	First argument of bind expression

	Contributors
	Rationale for some of the design decisions
	Lambda functor arity

	Bibliography

