Compute the rank of an integer matrix in place over a finite field by Gaussian elimination.
More...
|
| MatrixRank (const Ring &_r=Ring(), const _RandomPrime &_rp=_RandomPrime()) |
| Constructor.
|
|
template<class IMatrix > |
long | rank (const IMatrix &A) const |
| compute the integer matrix A by modulo a random prime, Monto-Carlo.
|
|
template<class IRing > |
long | rank (const BlasMatrix< IRing > &A) const |
| Specialisation for BlasMatrix.
|
|
template<class Row > |
long | rank (const SparseMatrix< Ring, Row > &A) const |
| Specialisation for SparseMatrix Computation done by mapping to a random modular matrix.
|
|
long | rankIn (BlasMatrix< Field > &Ap) const |
| Specialisation for BlasMatrix (in place).
|
|
template<class Field , class Row > |
long | rankIn (SparseMatrix< Field, Row > &A) const |
| Specialisation for SparseMatrix, in place.
|
|
template<class _Ring, class _Field, class _RandomPrime = PrimeIterator<>>
class LinBox::MatrixRank< _Ring, _Field, _RandomPrime >
Compute the rank of an integer matrix in place over a finite field by Gaussian elimination.
- Bug:
- there is no generic
rankIn
method.