Point Cloud Library (PCL)  1.11.1
transformation_estimation_dq.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  *
38  */
39 
40 #ifndef PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_DQ_HPP_
41 #define PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_DQ_HPP_
42 
43 #include <pcl/common/eigen.h>
44 
45 
46 namespace pcl
47 {
48 
49 namespace registration
50 {
51 
52 template <typename PointSource, typename PointTarget, typename Scalar> inline void
54  const pcl::PointCloud<PointSource> &cloud_src,
55  const pcl::PointCloud<PointTarget> &cloud_tgt,
56  Matrix4 &transformation_matrix) const
57 {
58  const auto nr_points = cloud_src.size ();
59  if (cloud_tgt.size () != nr_points)
60  {
61  PCL_ERROR("[pcl::TransformationEstimationDQ::estimateRigidTransformation] Number "
62  "or points in source (%zu) differs than target (%zu)!\n",
63  static_cast<std::size_t>(nr_points),
64  static_cast<std::size_t>(cloud_tgt.size()));
65  return;
66  }
67 
68  ConstCloudIterator<PointSource> source_it (cloud_src);
69  ConstCloudIterator<PointTarget> target_it (cloud_tgt);
70  estimateRigidTransformation (source_it, target_it, transformation_matrix);
71 }
72 
73 
74 template <typename PointSource, typename PointTarget, typename Scalar> void
76  const pcl::PointCloud<PointSource> &cloud_src,
77  const std::vector<int> &indices_src,
78  const pcl::PointCloud<PointTarget> &cloud_tgt,
79  Matrix4 &transformation_matrix) const
80 {
81  if (indices_src.size () != cloud_tgt.size ())
82  {
83  PCL_ERROR("[pcl::TransformationDQ::estimateRigidTransformation] Number or points "
84  "in source (%zu) differs than target (%zu)!\n",
85  indices_src.size(),
86  static_cast<std::size_t>(cloud_tgt.size()));
87  return;
88  }
89 
90  ConstCloudIterator<PointSource> source_it (cloud_src, indices_src);
91  ConstCloudIterator<PointTarget> target_it (cloud_tgt);
92  estimateRigidTransformation (source_it, target_it, transformation_matrix);
93 }
94 
95 
96 template <typename PointSource, typename PointTarget, typename Scalar> inline void
98  const pcl::PointCloud<PointSource> &cloud_src,
99  const std::vector<int> &indices_src,
100  const pcl::PointCloud<PointTarget> &cloud_tgt,
101  const std::vector<int> &indices_tgt,
102  Matrix4 &transformation_matrix) const
103 {
104  if (indices_src.size () != indices_tgt.size ())
105  {
106  PCL_ERROR("[pcl::TransformationEstimationDQ::estimateRigidTransformation] Number "
107  "or points in source (%zu) differs than target (%zu)!\n",
108  indices_src.size(),
109  indices_tgt.size());
110  return;
111  }
112 
113  ConstCloudIterator<PointSource> source_it (cloud_src, indices_src);
114  ConstCloudIterator<PointTarget> target_it (cloud_tgt, indices_tgt);
115  estimateRigidTransformation (source_it, target_it, transformation_matrix);
116 }
117 
118 
119 template <typename PointSource, typename PointTarget, typename Scalar> void
121  const pcl::PointCloud<PointSource> &cloud_src,
122  const pcl::PointCloud<PointTarget> &cloud_tgt,
123  const pcl::Correspondences &correspondences,
124  Matrix4 &transformation_matrix) const
125 {
126  ConstCloudIterator<PointSource> source_it (cloud_src, correspondences, true);
127  ConstCloudIterator<PointTarget> target_it (cloud_tgt, correspondences, false);
128  estimateRigidTransformation (source_it, target_it, transformation_matrix);
129 }
130 
131 
132 template <typename PointSource, typename PointTarget, typename Scalar> inline void
136  Matrix4 &transformation_matrix) const
137 {
138  const int npts = static_cast <int> (source_it.size ());
139 
140  transformation_matrix.setIdentity ();
141 
142  // dual quaternion optimization
143  Eigen::Matrix<Scalar,4,4> C1 = Eigen::Matrix<Scalar,4,4>::Zero();
144  Eigen::Matrix<Scalar,4,4> C2 = Eigen::Matrix<Scalar,4,4>::Zero();
145  Scalar *c1 = C1.data();
146  Scalar *c2 = C2.data();
147 
148  for( int i=0; i<npts; i++ ) {
149  const PointSource &a = *source_it;
150  const PointTarget &b = *target_it;
151  const Scalar axbx = a.x*b.x;
152  const Scalar ayby = a.y*b.y;
153  const Scalar azbz = a.z*b.z;
154  const Scalar axby = a.x*b.y;
155  const Scalar aybx = a.y*b.x;
156  const Scalar axbz = a.x*b.z;
157  const Scalar azbx = a.z*b.x;
158  const Scalar aybz = a.y*b.z;
159  const Scalar azby = a.z*b.y;
160  c1[0] += axbx - azbz - ayby;
161  c1[5] += ayby - azbz - axbx;
162  c1[10]+= azbz - axbx - ayby;
163  c1[15]+= axbx + ayby + azbz;
164  c1[1] += axby + aybx;
165  c1[2] += axbz + azbx;
166  c1[3] += aybz - azby;
167  c1[6] += azby + aybz;
168  c1[7] += azbx - axbz;
169  c1[11]+= axby - aybx;
170 
171  c2[1] += a.z + b.z;
172  c2[2] -= a.y + b.y;
173  c2[3] += a.x - b.x;
174  c2[6] += a.x + b.x;
175  c2[7] += a.y - b.y;
176  c2[11]+= a.z - b.z;
177  source_it++;
178  target_it++;
179  }
180 
181  c1[4] = c1[1];
182  c1[8] = c1[2];
183  c1[9] = c1[6];
184  c1[12]= c1[3];
185  c1[13]= c1[7];
186  c1[14]= c1[11];
187  c2[4] = -c2[1];
188  c2[8] = -c2[2];
189  c2[12]= -c2[3];
190  c2[9] = -c2[6];
191  c2[13]= -c2[7];
192  c2[14]= -c2[11];
193 
194  C1 *= -2.0f;
195  C2 *= 2.0f;
196 
197  const Eigen::Matrix<Scalar,4,4> A = (0.25f/float(npts))*C2.transpose()*C2 - C1;
198 
199  const Eigen::EigenSolver< Eigen::Matrix<Scalar,4,4> > es(A);
200 
201  ptrdiff_t i;
202  es.eigenvalues().real().maxCoeff(&i);
203  const Eigen::Matrix<Scalar,4,1> qmat = es.eigenvectors().col(i).real();
204  const Eigen::Matrix<Scalar,4,1> smat = -(0.5f/float(npts))*C2*qmat;
205 
206  const Eigen::Quaternion<Scalar> q( qmat(3), qmat(0), qmat(1), qmat(2) );
207  const Eigen::Quaternion<Scalar> s( smat(3), smat(0), smat(1), smat(2) );
208 
209  const Eigen::Quaternion<Scalar> t = s*q.conjugate();
210 
211  const Eigen::Matrix<Scalar,3,3> R( q.toRotationMatrix() );
212 
213  for( int i=0; i<3; ++i )
214  for( int j=0; j<3; ++j)
215  transformation_matrix(i,j) = R(i,j);
216 
217  transformation_matrix(0,3) = -t.x();
218  transformation_matrix(1,3) = -t.y();
219  transformation_matrix(2,3) = -t.z();
220 }
221 
222 } // namespace registration
223 } // namespace pcl
224 
225 #endif /* PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_DQ_HPP_ */
226 
Iterator class for point clouds with or without given indices.
std::size_t size() const
Definition: point_cloud.h:459
void estimateRigidTransformation(const pcl::PointCloud< PointSource > &cloud_src, const pcl::PointCloud< PointTarget > &cloud_tgt, Matrix4 &transformation_matrix) const
Estimate a rigid rotation transformation between a source and a target point cloud using dual quatern...
std::vector< pcl::Correspondence, Eigen::aligned_allocator< pcl::Correspondence > > Correspondences
std::size_t size() const
Size of the range the iterator is going through.