Parsing Strings and Trees withParse::Eyapp
(An Introduction to Compiler Construction)

Casiano Rodriguez-Leon
Dpto. Estadktica, I.0. y Computadin
Universidad de La Laguna
La Laguna, 38271, Spain
casiano@ull.es

Abstract 2 a = b+2;
3 a = 2=x(ath) *(2-4/2); # is zero

Parse::Eyapp (Extended yapp) is a collection of mod- print a;
ules that extends Francois Desarmenien Parse::Yapp 1.95.d = (a = at+l) *4-b;
Eyapp extends yacclyapp syntax with functionalities li&e ¢ = ax*b+d;
named attributes, EBNF-like expressions, modifiable de- print c;
fault action, automatic syntax tree building, semi-auttima8 print d
abstract syntax tree building, translation schemes, tegg r
ular expressions, tree transformations, scope analygis su
port, and directed acyclic graphs among others. This ar{ .sub 'main’ :main

and the output is an equivalent PIR:

ticle teaches you the basics of Compiler Construction ang Jocal num a, b, c, d

Parse::Eyapp by building a translator from infix expression 3 b =5

to Parrot Intermediate Representation. 4 a=b+2
5 a = 0 # expression at line 3
6 print "a = " # above was

1 Introduction 7 print a # reduced to zero
8 print "\n" # at compile time

Almost any Perl programmer knows whRarsingis 9 a=a+1l

about. One of the strengths of Perl is its excellence fd? $N5 = a * 4

text analysis. Additionally to its embedded regular expresl d=3$N5-b

sion capacities, modules likearse::RecDescent [1] 12 $N7 = a = b

andParse::Yapp [2] make easier the task of text undef3 c=$N7 +d

standing and text transformation. This is in clear contrd<t print "¢ = "

with the absence of Perl 5 generic tdogsving support for 15 print ¢

the subsequent stages of text processing. The exceptioribe- print "\n"

ing the moduleLanguage::AttributeGrammar 3. 17 print "d ="

Parrot does well in this chapter, having the Parrot Gramm&r print d

Engine (PGE) [4] and the Tree Grammar Engine (TGE) [3P print "\n"

Parse::Eyapp (Extended vyapp) is a collec20 .end
tion of modules that extends Francois Desa_lrmenienYou can download the code for this example from
Parse::Yapp 105 AUY yapp program runs without http://nereida.deioc.ull.es/ pl/eyapsimple/source.tg
changes witteyapp . Additionally Parse::Eyapp pro-
vides new functionalities like named attributes, EBNFeli
expressions, modifiable default actions, abstract synfax The Phases of a Translator
tree building and translation schemes. It also provides a
language for tree transformations. This article introduce The code below (fileexamples/infix2pir.pl)
the basics of translator construction witarse::Eyapp displays the stages of the translatdrexical and syntax
through an example that compiles infix expressions imgalysis, tree transformations and decorations, address a
Parrot Intermediate Representation (PIR)[6]. The input§§nments, code generation and peephole optimizalibe
the program will be a (semicolon separated) list of infstmplicity of the considered language (no types, no control

expressions, like: structures) permits the skipping obntext handlingalso
calledsemantic analysjs Context handling includes jobs
1 b =25 like type checkinglive analysis etc. Don’t get overflowed

There are however very good specific ones, for examplextcand 1O S0 much termi_n0|09y: The incoming sections will ex-

http://nereida.deioc.ull.es/~pl/eyapsimple/source.tgz

my $parser = Infix->new();
Set input
$parser->YYData->{INPUT}

= slurp_file($filename, 'inf);

Lexical and syntax analysis
my $t = $parser->YYParse(
yylex => \&Infix::Lex,

yyerror => \&Infix::Err);

Tree transformations
$t->s(our @algebra);

Address assignment

our $reg_assign;
$reg_assign->s($t);

Code generation
$t->bud(our @translation);
my $dec = build_dec();
peephole_optimization($t->{tr});

output_code(\$t->{tr}, \$dec);

sub Lex {
my($parser)=shift;

for ($parser->YYData->{INPUT}) {

m{G[\t] *}gc;
m{\G\n}gc

and $lineno++;
m{\G([0-9]+(?:\.[0-9]+)?)}gc

and return(NUM’,$1);
m{\Gprint}gc

and return(PRINT’, 'PRINT);
M{\G([A-Za-z][A-Za-z0-9_] *)}gc

and return(VAR’,$1);
m{\G(.)}gc

and return($1,$1);
return(”,undef); # End of input

Lexical analyzers can have a non negligible impact in
the overall performance. Ways to speed up this stage can be
found in the works of Simoes [7] and Tambouras [8].

4 Syntax Analysis

The compiler uses the parser for infix expressions that

was generated from the Eyapp gramrirdix.eyp

section 4) using the command:

$ eyapp Infix.eyp
$Is -tr | tail -1
Infix.pm

It also uses the module containing different families oétr
transformations that are described in tBeIR.trg

(explained in sections 5 and 7):

$ treereg -m main I2PIR.trg
$Is -tr | tail -1

I2PIR.pm

$ head -1 12PIR.pm
package main;

The code below shows the body of the grammar (file
Infix.eyp). Eyapp syntax very much resembles the syn-
tax of old cherishegacc [9]. An Eyapp program has three
parts: head bodyandtail. Each part is separated from the
former by the symbo%% The head section contains dec-
larations, code support and directives. The grammar rules
gescribing the language - and the semantic actions that in-
dicate how evaluate the attributes associated with the sym-
bols - reside in the body section. The tail section includes
Perl code that gives support to the semantic actions. Com-
monly the lexical analyzer and error diagnostic subroustine
go there.

The option-m main tellstreereg to place the transfor-o;|of NEG

mations inside thenain namespace.

3 Lexical Analysis

%right =’ # Head section
%left -+

Y%left '+

Y%tree

%%

line: # Body section

Lexical Analysis decomposes the input stream in a se-sts <%name EXPS + ;>
guence of lexical units callehkens Associated with each;
token is itsattribute which carries the corresponding inforsts:
mation. In the code example below the attribute associated %name PRINT
with tokenNUMs its numerical value and the attribute as- PRINT leftvalue
sociated with tokeVARs the actual string. Each time | exp
the parserrequires a new token, the lexer returns the cau-
ple (token, attribute) that matched. Some tokensxp:
- like PRINT - do not carry any special information. In %name NUM NUM

such cases, just to keep the protocol simple, the lexem®tur
the couplgtoken, token) . Using Eyapp terminology
such tokens are callegl/ntactic tokensOn the other side,
Semantic tokerare those tokens - liIkKéARor NUM whose
attributes transport useful information. When the end of in-

| %name VAR VAR

| %name ASSIGN leftvalue '=" exp
| Y%oname PLUS exp '+ exp

| %name MINUS exp -’ exp

| %name TIMES exp '+’ exp

| %name NEG The%prec directive can be used when a rhs is involved

- exp %prec NEG in a conflict and has no tokens inside or it has but the prece-
| " exp) dence of the last token leads to an incorrect interpretation
; A rhs can be followed by an option&prec token di-
leftvalue : %name VAR VAR rective giving the production the precedence oftibieen
%% exp: - exp %prec NEG { -$_[1] }

tail section
This solves the conflict in- NUM - NUM between

4.1 Ambiguities and Conflicts (- NUM) - NUM and- (NUM - NUM). SinceNEGhas
more priority thari-" the first interpretation will win.

The former grammar is ambiguous. For instance, an ex- .
pression likexp ' exp followed by a minus- can 4-2 Building the AST
be worked in more than one way. If we have an input like
NUM - NUM - NURhe activity of a LALR(1) parser (the Parse::Eyapp facilitates the construction of abstract
family of parsers to which Eyapp belongs) consists of a §¥htax trees (AST) through titétree directive. Nodes in
guence ofshift and reduce actionsA shift actionhas as the AST are blessed in the productioame. A rhs can
consequence the reading of the next tokemeduce action be namedusing the%name IDENTIFIER directive. For
is finding a production rule that matches and substitutieg #chrhs namea class/package with nanfieENTIFIER is
right hand sidg(rhs) of the production by théeft hand side created.
(lhs). For inputNUM - NUM - NUNhe activity will be ~ Symbolic tokens (likeNUM PRINTor VAR are con-
as follows (the dot is used to indicate where the next inisiflered by defaulsemantic tokens String literals (like

token is): + , ' , etc.) are - unless explictly declared using
thesemantic token directive - consideredyntactic to-
.NUM - NUM - NUM # shift kens When building the AST syntactic tokens do not yield
NUM.- NUM - NUM # reduce exp: NUM new nodes. Semantic tokens however have their own. Thus
exp.- NUM - NUM # shift when feed with inpub=2* a the generated parser produces
exp -.NUM - NUM # shift the following AST2:
exp - NUM.- NUM # reduce exp: NUM
exp - exp.- NUM # shift/reduce conflict EXPS(
ASSIGN(
up to this point two different decisions can be taken: the VAR(TERMINAL[b]),
next description can be TIMES(
NUM(TERMINAL[2]),
exp.- NUM # reduce by exp: exp -’ exp VAR(TERMINAL[a]))
or:)
')
exp - exp ~NUM # shift " Nodes of the AST are hashes that candeeoratedwith

{new keys/attributes. The only reserved fieldlisldren

which is a reference to the array of children. Nodes named

exp: exp - exp TERMINALare built from the tokens prO\{ided by the lex-
That is also the reason for the precedence declarati% analyzer. The coupl¢Stoken, Sattribute)

in the head section. Another kind of conflicts aeeluce- returned by the lexical analyzer is stored under the keys

reduce conflicts They arise when more that rhs can be ajpkén andattr . TERMINAL nodes also have the at-

plied for a reduction action ributechildren which is set to an anonymous empty list.

By associating priorities with tokens the programmer Cg)rtser\,/e,the ab,ser,lce'bERMlNALnodes correspor:ldlng to

tell Eyapp what syntax tree to build in casecoiflict 0, ens= anq o ,If we change thg status of: .and
The declaration%ononassoc , %left and%right de- N tosemantic using the?esemantic token direc-

clare and associate @riority with the tokens that follow tive:

them. Tokens declared inthe same line have the same prece- opcemantic token ° *’ '=’

dence. Tokens declared in lines below have more prege- %right =’

dence than those declared above. Thus, in the examplegwe ™ i

are saying that’” and’-" have the same precedence but

higher than'=" . The final effect of-" having greater we get a - concrete - syntax tree:

precedence thai¥’ is that an expression lika=4-5 is

interpreted as=(4-5) and not aga=4)-5 . The use of EXPS(

%left appliedto-" indicates that - in case of ambiguity ASSIGN(

and a match between precedences - the parser must build the VAR(TERMINAL[b]),

Fre_e‘corregp(l)nqmg\tg aleft parentheSizaﬂon- THeS;9 2The information between brackets shows the attributd ERMINAL

that is called ashift-reduce conflict the parser mus
decide whether to shifNUMor to reduce by the rule

TERMINAL[=], What happened? The bypass is applied to the rhs

TIMES(2> exp . Though the rhs has two symbols, tokeh
NUM(TERMINAL[2]), is a syntactic token and &kee-construction-timenly exp
TERMINAL[*], is left. The bypassoperation applies when building this
VAR(TERMINALJa]) node. This undesiredypasscan be avoided applying the

) # TIMES no bypass directive to the production:

) # ASSIGN
) exp : %no bypass NEG

- exp %prec NEG

Let us now consider the inp@t (a+1) . The parser yields)
Now the AST for-a * 2 is correct:

the tree:
EXPS(TIMES(NEG(VAR),NUM))
EXPS(
TIMES(Eyapp provides operatons * and? for the creation of
NUM(lists and optionals as in:
TERMINAL[Z]), line: sts <EXPS + ';'>
exp_14(

PLUS(which states that éine is made of a non empty list of
VAR(TERMINALJa]), EXPSseparated by semicolons. By default the class hame
NUM(TERMINAL[1])) for such listis_ PLUS_LIST . The%namedirective can be

) # PLUS used to modify the default name:

) # TIMES .
) line: sts <%name EXPS + ;>

)) Explicit actions can be specified by the programmer.
,TYVO fea,tL,Jres are noticeable: the parenthesus_ Ep: They are managed as anonymous subroutines that receive as
(exp) had no name and got automatically on'f:'\'rguments the attributes of the symbols in the rule and are
exp_14_. Thename of a rhsby default result_s from CON"axecuted each time reductionby that rule occurs. When
catenating the left hand side of _the rule with the O_rd"}‘%,nning under th@btree directive this provides a mech-
number of the rulé The second is that nod&p_14 IS nicm to influence the shape of the AST. Observe how-
useless and can be suppressed. ever that the grammar in the example is cledractions:

The %tree directive can be accompanied of thg,rge:-Eyapp allowed us to produce a suitable AST without
%bypass clause. A%tree bypass produces an a“'writing any explicit actions

tomatic bypassof any node with only one child aree-
construction-timeA bypass operationonsists irreturning .
the only child of the node being visited to the father of tﬁe Tree Transformations
node and re-typing (re-blessing) the node in the name of the

productiorf. Once we have the AST we can transform it using the

Changing the lin&%tree by %tree bypass in file Treeregexpanguage. The code below(infi_lféPIR.trg) .
Infix.eyp we get a more suitable AST for inpu§howsaset of al'geb'ra|c tree transform.atlo.ns whose goal is
2+ (a+l) : to produce machine independent optimizations.

{ # Example of support code
EXPS(TIMES(NUM([2],PLUS(VAR[a],NUM[1]))) use List::Util qw(reduce);
my %Op = (PLUS=>'+, MINUS => -

The nodeexp_14 has disapeared in this version TIMES=>' »’, DIV => /);
since thebypass operatiorapplies to the rhs of the rulg
exp: (" exp) : Tokens’(" and’)’ are syntac- algebra = fold wxz zxw neg;

tic tokens and therefore #&ee construction timenly one
child is left. Observe also the absencd&RMINALnodes. fold: /TIMES|PLUS|DIV|MINUS/:b(NUM, NUM)
Bypass clearly applies to rulexp: NUM andexp: VAR => {
since they have only one element on their rhs. Thereforemy $op = $Op{ref($b)};
the TERMINALnode is re-blessed aUMandVARrespec- $NUM[0]->{attr} = eval
tively. "$NUM[0]->{attr} $op $NUMI[1]->{attr}";
A consequence of the global scope application of$ [0] = $NUM[O];
%tree bypass is that undesired bypasses may occyr.

Consider the tree rendered for inpat=* 2: zxw: TIMES(NUM, .) and {$NUM->{attr}==0}
=> { $ [0] = $NUM }
EXPS(TIMES(NEG,NUM)) wxz: TIMES(., NUM) and {$NUM->{attr}==0}

SAs it in theoutput file. The.output il b => { $.[0] = SNUM }
s it appears in theoutpu ile. The.outpu ile can be gener- .
ated using thev option ofeyapp neg: NEG(NUM)

4If the production has an explicit name. Otherwise there is @0 ™ { $ANl:JA|\1/|'>{3f:“:} = :$NUM'>{attr};

A Treeregexp programs is madetaferegexpules that de- 6 Resource Allocation

scribe what subtrees match and how transform them:

wxz: TIMES(.,, NUM) and {$NUM->{attr}==0}
=> { $_[0] = $NUM }

The back-end of the translator starts with resource as-
signment. The only resource to consider here is memory.
We have to assign a memory location and/or machine regis-

A rule has aname(wxz in the example), derm describ- ter to each of the variables and inner nodes in the AST. The

ing the shape of the subtree to matdhMES(., NUM)"

final target machine, Parrot, is a register based intenprete

and two optional fields: @emantic conditiorexpliciting with 32 floating point registers. On top of the Parrot ma-
the attribute constraints (the code after the reserved wohihe is a layer named Parrot Intermediate Representation
and) and somdransformation cod¢hat tells how to mod- (PIR). The PIR language and its compilan¢c) make re-

ify the subtree (the code after the big arrew). Each rule markably easier the task of mapping variables to registers:
is translated into a subroutirfewith name the treerexexpPIR provides an infinite number of virtual numeric registers
rule name Therefore, after compilation a subroutinz named$N1, $N2, etc. and solves the problem of mapping

will be available. The dot in théerm TIMES(., NUM)

variables into registers via Graph Coloring [10].

matches any tree. The semantic condition states that the
attr entry of nodeNUMmust be zero. Theansformation {{ my $num = 1; # closure
code- that will be applied only if the matching succeeded - sub new_N_register {

substitutes the whole subtree by its right child.

References to the nodes associated with s@hASS

return '$N.$num++;

}

appearing in th@erm section can be accessed inside the

semantic parts through the lexical varial3€LASS If
there is more than one node the associated variablgetg assign: $x

@CLASSVariable$_[0]
that matched.

Nodes inside germcan be described using linear regular

expressions like in thiold transformation:

JTIMES|PLUS|DIV|MINUS/:b(NUM, NUM)

In such cases an optional identifier to later refer the node

that matched can be specifidalif the example).
Tree transformations can be grouped in families:

algebra = fold wxz zxw neg;

:>{

refers to the root of the subtree if (ref($x) =~ /VAR|NUMY/) {

$x->{reg} = $x->{attr};
return 1;

}

it (ref($x) =~ /ASSIGN/) {
$x->{reg} = $x->child(0)->{attr};
return 1;

}
$_[0]->{reg} = new_N_register();

As it shows the code above (in fil2PIR.trg), the re-

_ Suchfamilies - and the objects they collect - are availaig e allocation stage is limited to assign virtual regist
inside the client program (read anew the code of the d”YSrthe inner nodes

in section 2). Thus, it holds the AST resulting from the A treeregexp term lik&x matches any node and creates

parsing phase, we can call its metrofor substitute) with

args the@algebra family:
$t->s(our @algebra);
The s method ofParse::Eyapp::Node

6 proceeds
to apply all the transformation in the famil@algebra

a lexical variablebx containing a reference to the node that
matched.

In between Treeregexp rules the programmer can insert
Perl code between curly brackets. The code will be inserted
verbatin at that relative point by theeereg compiler.

The Parse::Eyapp::YATW object$reg_assign

to tree$t until none of them matches. Thus, for iNpWenerated by the compiler is available inside the main drive

a = 2x(a+b) *(2-4/2)

EXPS(
ASSIGN(

VARIa],

TIMES(
TIMES(NUM[2],PLUS(VAR[a], VAR[b])),
MINUS(NUM[2],DIV(NUM[4],NUM[2])

)

)
)

which is transformed by the cet->s(@algebra) in:

EXPS(ASSIGN(VAR[a],NUMIO0]))

5The sub must be accessed through a pagse::Eyapp::YATW
object. YATW stands folret Another Tree Walker

the parser produces the tree: (revise sectioh 2):

our $reg_assign;
$reg_assign->s($t);

Now we have an ASTecoratedwith a new attributeeg .
The following session with the debugger illustrates the way
to expose the AST and its attributes:

$ perl -wd infix2pir.pl simple5.inf
main::(59): my $filename = shift;
DB<1> c 72

-ax?2

EXPS(TIMES(NEG(VAR),NUM)) # The AST

"Without the outer curly brackets. If it weren't for the sedqpair of
curly brackets the lexical variabnum would be visible up to the end of

We have stopped the execution just before the call{t@mur %s; }

$reg_assign->s($t) . The AST for input-a * 2 was t_assign: ASSIGN($v, $e) => {

displayed. $s{$v->{attr}} = "num";

main:(72); $req assign->s($1): } $ASSIGN->{tr} = "$v->{reg} = $e->{reg}

DB<2> n

main::(75): $t->bud(our @translation); The translation of the root nodEXPS consists of concate-

After the register assignment phase the nodes have br(]eaethng the translations of its children:

decorated with the attributéreg . To display a tree we usg[

the str method ofParse::Eyapp::Node . Thestr sub cat_trans {
method traverses the syntax tree dumping the type of the my $t = shift;
node being visited in a string. If the node being visited has

a methodnfo it will be executed and its result inserted be- my $tr = "

tween$DELIMITERs into the string. The package variable for ($t->children) {
$INDENT® controls the way the tree is displayed. Thus, the (ref($_) =~ m{NUM|VAR|TERMINAL})

next three commands display the AST and the values of the or $tr .= cat_trans($_)."\n"
reg attributes: }
DB<2> *TIMES::info = *NEG:info = \ Sr .= $t>{u}
*VAR:info= *NUM:info=sub {$_[0{reg}} }
DB<3> $Parse::Eyapp::Node::INDENT=2 }
ODB<,4> X $t->str # Decorated tree t list: EXPS(@S)
=> {
EXP
TIf/I(ES[$N2](SEXPS->{tr} = ™
my @tr = map { cat_trans($) } @S;
NEG[$N1](
VAR[a] SEXPS->{tr} =
) reduce { "$a\n$b" } @tr if @tr;
NUM[2] }
) # TIMES The treeregex@ Snatches the children of tHEXPSnode.
) # EXPS The associated lexical variab@Scontains the references

Observe that no registers were allocated for variables é%gqe nodes that méa\tched.
numbers. The methodbud? of Parse::Eyapp::Node nodes

makes a bootom up traversing of the AST applying to

. the node being visited the only one transformation that
7 Code Generation matche&. After the call

The translation is approached as a particular caseef $t->bud(our @translation);
decoration Eac_h node is decorate_d with a new att”bm%h_e attribute$t->{trans} contains a translation to PIR
trans - that will held the translation for such node. T
X) . or the whole tree.
compute it, we must define transformations for each of the

types in the AST:

_ 8 Peephole Transformations
translation = t num t var t op t_neg

Lassign t_list t print; The namepeephole optimizetomes from the image of

Some of these transformations are straightforward: ~sliding a small window over the target code attempting to
replace patterns of instructions by better ones. If we have

t_num: NUM a look at the code generated in the previous phase for the
=> { SNUM->{tr} = $NUM->{attr} } inputa = 5-b *2 we see that produces:
t op: /TIMES|PLUS|DIVIMINUS/:b($x, $y)
=> { $Nl =bx*x 2
my $op = $Op{ref($b)}; $N2 = 5 - $N1
$b->{tr} = "$b->{reg} = $x->{reg}" a = $N2

$op $y->{reg}’; PIR allows memory instructions involving three arguments

} likea = b + c. This fact and the observation thBiN2
To keep track of the involved variables a hash is used ds ased only once lead us to conclude that the former trans-
rudimentary symbol table: lation can be changed to:

80ther Parse::Eyapp::Node variables governing the be- °Bottom-Up Decorator

havior of str are: PREFIXES, $STRSER $FOOTNOTEHEADER 1%Whenbud is applied the family of transformations musinstitute a
$FOOTNOTESER, $FOOTNOTHEEFT, $FOOTNOTERIGHT and partition of the AST classes, i.e. for each node one and only one transfo

$N1 = b * 2 12

a=5-3%N1

Acknowledgements

Perl regular expressions constitute a formidable tool to im This work has been supported by the (FEDER) and
plemenipeephole optimizationThe regexp below finds patPy the Spanish Ministry of Education and Science in-

terns

$N# = something
IDENT = $N#

side the ‘Plan Nacional de+D+i’ with contract number
TIN2005-08818€04-04. Thanks To Francois Desarme-
nien. Parse::Eyapp

shares a large percentage of code

with Parse::Yapp

and substitutes them BPENT = something

sub peephole_optimization {
$ [0] =
s{(\$N\d+)\s
([a-zA-Z_J\w
{$3 = $2}gx;
} (2]

*=\s * (. *\n)\s *

*)\s *=\s *\1} s

9 Output Generation 3]
Emitting the code is the simplest of all the phases. Since
Parrot requires all the variables to be declared, a comma
separated strinfidec is built concatenating the keys of the[4]
symbol table hasBbs The code is then indented and the
different components are articulated through a HERE docu-
ment: (5]

sub output_code {

my ($trans, $dec) = @_; (6]
Indent
$$trans

s/ \t/gm;

[7]

Output the code

print << "TRANSLATION";
.sub 'main’ :main
\t.local num $$dec
$$trans
.end
TRANSLATION

The call tooutput_code finishes the job:
output_code(\$t->{trans}, \$dec);

(8]

9]

(10]

10 Conclusions and Future Work (11]

There is a shortage of compiler toolkits in CPAN/Perl 5.
It will be beneficial to have a CPAN wider covering of trans-
lator components: attribute grammars, tree transformatio
tools and code generator generators (see iburg [11]).

This work presentedParse::Eyapp , a work in
progress in that directionyacc andParse::Yapp pro-
grammers will feel at home iRarse::Eyapp . Addition-
ally to the beneficial mature approach to parsing provided
by Yacc -like parser generator®arse::Eyapp delivers
a set of extensions that give support to the later phases of
text processing.

11 About the Author

Casiano Rodriguez-Leon is a Professor of Computer Sci-
ence at Universidad de La Laguna. His research focuses on

References

Damian Conway. Parse::RecDescent, Generate

Recursive-Descent ParseilSPAN, 2003.

Francois DesarmenienParse::Yapp, Perl extension
for generating and using LALR parseiSPAN, 2001.

Luke PalmerLanguage::AttributeGrammar, Attribute
grammars for doing computations over tregSPAN,
2006.

Patrick Michaud. Parrot Grammar Engine (PGE)
CPAN, 2007.

Allison Randal. TGE, A tree grammar engin€PAN,
2007.

Allison Randal, Dan Sugalski, and Leopold Toetsch.
Perl 6 and Parrot Essentials, Second Editi@iReilly
Media, Inc., 2004.

Alberto Manuel Simoes. Cooking Perl with fleXhe
Perl Review0(3), May 2002.

loannis TambourasParse::Flex, The Fastest Lexer in
the West CPAN, 2006.

Stephen C. Johnson and Ravi Sethi. Yacc: a Parser
Generator. UNIX Vol. II: research system (10th ed.)
pages 347-374, 1990.

Preston Briggs. Register Allocation via Graph Color-
ing. Technical Report TR92-183, 24, 1998.

C. W. Fraser, D. R. Hanson, and T. A. Proebsting. En-
gineering a Simple, Efficient Code Generator Gener-
ator. ACM Letters on Programming Languages and
Systemsl(3):213-226, 1992.

	Introduction
	The Phases of a Translator
	Lexical Analysis
	Syntax Analysis
	Ambiguities and Conflicts
	Building the AST

	Tree Transformations
	Resource Allocation
	Code Generation
	Peephole Transformations
	Output Generation
	Conclusions and Future Work
	About the Author
	Acknowledgements

