
Parsing Strings and Trees withParse::Eyapp
(An Introduction to Compiler Construction)

Casiano Rodriguez-Leon
Dpto. Estad́ıstica, I.O. y Computación

Universidad de La Laguna
La Laguna, 38271, Spain

casiano@ull.es

Abstract

Parse::Eyapp (Extended yapp) is a collection of mod-
ules that extends Francois Desarmenien Parse::Yapp 1.05.
Eyapp extends yacc/yapp syntax with functionalities like
named attributes, EBNF-like expressions, modifiable de-
fault action, automatic syntax tree building, semi-automatic
abstract syntax tree building, translation schemes, tree reg-
ular expressions, tree transformations, scope analysis sup-
port, and directed acyclic graphs among others. This ar-
ticle teaches you the basics of Compiler Construction and
Parse::Eyapp by building a translator from infix expressions
to Parrot Intermediate Representation.

1 Introduction

Almost any Perl programmer knows whatParsing is
about. One of the strengths of Perl is its excellence for
text analysis. Additionally to its embedded regular expres-
sion capacities, modules likeParse::RecDescent [1]
andParse::Yapp [2] make easier the task of text under-
standing and text transformation. This is in clear contrast
with the absence of Perl 5 generic tools1 giving support for
the subsequent stages of text processing. The exception be-
ing the moduleLanguage::AttributeGrammar [3].
Parrot does well in this chapter, having the Parrot Grammar
Engine (PGE) [4] and the Tree Grammar Engine (TGE) [5].

Parse::Eyapp (Extended yapp) is a collec-
tion of modules that extends Francois Desarmenien
Parse::Yapp 1.05 : Any yapp program runs without
changes witheyapp . Additionally Parse::Eyapp pro-
vides new functionalities like named attributes, EBNF-like
expressions, modifiable default actions, abstract syntax
tree building and translation schemes. It also provides a
language for tree transformations. This article introduces
the basics of translator construction withParse::Eyapp
through an example that compiles infix expressions into
Parrot Intermediate Representation (PIR)[6]. The input to
the program will be a (semicolon separated) list of infix
expressions, like:

1 b = 5;

1There are however very good specific ones, for example, forXMLand
HTMLsupport and symbolic mathematics

2 a = b+2;
3 a = 2 * (a+b) * (2-4/2); # is zero
4 print a;
5 d = (a = a+1) * 4-b;
6 c = a * b+d;
7 print c;
8 print d

and the output is an equivalent PIR:

1 .sub ’main’ :main
2 .local num a, b, c, d
3 b = 5
4 a = b + 2
5 a = 0 # expression at line 3
6 print "a = " # above was
7 print a # reduced to zero
8 print "\n" # at compile time
9 a = a + 1

10 $N5 = a * 4
11 d = $N5 - b
12 $N7 = a * b
13 c = $N7 + d
14 print "c = "
15 print c
16 print "\n"
17 print "d = "
18 print d
19 print "\n"
20 .end

You can download the code for this example from
http://nereida.deioc.ull.es/ pl/eyapsimple/source.tgz

2 The Phases of a Translator

The code below (fileexamples/infix2pir.pl)
displays the stages of the translator:Lexical and syntax
analysis, tree transformations and decorations, address as-
signments, code generation and peephole optimization. The
simplicity of the considered language (no types, no control
structures) permits the skipping ofcontext handling(also
calledsemantic analysis). Context handling includes jobs
like type checking, live analysis, etc. Don’t get overflowed
for so much terminology: The incoming sections will ex-
plain in more detail each of these phases.

http://nereida.deioc.ull.es/~pl/eyapsimple/source.tgz

my $parser = Infix->new();
Set input
$parser->YYData->{INPUT}

= slurp_file($filename, ’inf’);

Lexical and syntax analysis
my $t = $parser->YYParse(

yylex => \&Infix::Lex,
yyerror => \&Infix::Err);

Tree transformations
$t->s(our @algebra);

Address assignment
our $reg_assign;
$reg_assign->s($t);

Code generation
$t->bud(our @translation);
my $dec = build_dec();

peephole_optimization($t->{tr});

output_code(\$t->{tr}, \$dec);

The compiler uses the parser for infix expressions that
was generated from the Eyapp grammarInfix.eyp (see
section 4) using the command:

$ eyapp Infix.eyp
$ ls -tr | tail -1
Infix.pm

It also uses the module containing different families of tree
transformations that are described in theI2PIR.trg file
(explained in sections 5 and 7):

$ treereg -m main I2PIR.trg
$ ls -tr | tail -1
I2PIR.pm
$ head -1 I2PIR.pm
package main;

The option-m main tells treereg to place the transfor-
mations inside themain namespace.

3 Lexical Analysis

Lexical Analysis decomposes the input stream in a se-
quence of lexical units calledtokens. Associated with each
token is itsattributewhich carries the corresponding infor-
mation. In the code example below the attribute associated
with tokenNUMis its numerical value and the attribute as-
sociated with tokenVAR is the actual string. Each time
the parser requires a new token, the lexer returns the cou-
ple (token, attribute) that matched. Some tokens
- like PRINT - do not carry any special information. In
such cases, just to keep the protocol simple, the lexer returns
the couple(token, token) . Using Eyapp terminology
such tokens are calledsyntactic tokens. On the other side,
Semantic tokensare those tokens - likeVARor NUM- whose
attributes transport useful information. When the end of in-
put is reached the lexer returns the couple(’’, undef) .

sub Lex {
my($parser)=shift;

for ($parser->YYData->{INPUT}) {
m{\G[\t] * }gc;
m{\G\n}gc

and $lineno++;
m{\G([0-9]+(?:\.[0-9]+)?)}gc

and return(’NUM’,$1);
m{\Gprint}gc

and return(’PRINT’, ’PRINT’);
m{\G([A-Za-z][A-Za-z0-9_] *)}gc

and return(’VAR’,$1);
m{\G(.)}gc

and return($1,$1);
return(’’,undef); # End of input

}
}

Lexical analyzers can have a non negligible impact in
the overall performance. Ways to speed up this stage can be
found in the works of Simoes [7] and Tambouras [8].

4 Syntax Analysis

The code below shows the body of the grammar (file
Infix.eyp). Eyapp syntax very much resembles the syn-
tax of old cherishedyacc [9]. An Eyapp program has three
parts:head, bodyandtail. Each part is separated from the
former by the symbol%%. The head section contains dec-
larations, code support and directives. The grammar rules
describing the language - and the semantic actions that in-
dicate how evaluate the attributes associated with the sym-
bols - reside in the body section. The tail section includes
Perl code that gives support to the semantic actions. Com-
monly the lexical analyzer and error diagnostic subroutines
go there.

%right ’=’ # Head section
%left ’-’ ’+’
%left ’ * ’ ’/’
%left NEG
%tree

%%
line: # Body section

sts <%name EXPS + ’;’>
;
sts:

%name PRINT
PRINT leftvalue

| exp
;
exp:

%name NUM NUM
| %name VAR VAR
| %name ASSIGN leftvalue ’=’ exp
| %name PLUS exp ’+’ exp
| %name MINUS exp ’-’ exp
| %name TIMES exp ’ * ’ exp
| %name DIV exp ’/’ exp

| %name NEG
’-’ exp %prec NEG

| ’(’ exp ’)’
;
leftvalue : %name VAR VAR
;
%%
... # tail section

4.1 Ambiguities and Conflicts

The former grammar is ambiguous. For instance, an ex-
pression likeexp ’-’ exp followed by a minus’-’ can
be worked in more than one way. If we have an input like
NUM - NUM - NUMthe activity of a LALR(1) parser (the
family of parsers to which Eyapp belongs) consists of a se-
quence ofshift and reduce actions. A shift actionhas as
consequence the reading of the next token. Areduce action
is finding a production rule that matches and substituting the
right hand side(rhs) of the production by theleft hand side
(lhs). For inputNUM - NUM - NUMthe activity will be
as follows (the dot is used to indicate where the next input
token is):

.NUM - NUM - NUM # shift
NUM.- NUM - NUM # reduce exp: NUM
exp.- NUM - NUM # shift
exp -.NUM - NUM # shift
exp - NUM.- NUM # reduce exp: NUM
exp - exp.- NUM # shift/reduce conflict

up to this point two different decisions can be taken: the
next description can be

exp.- NUM # reduce by exp: exp ’-’ exp

or:

exp - exp -.NUM # shift ’-’

that is called ashift-reduce conflict: the parser must
decide whether to shiftNUMor to reduce by the rule
exp: exp - exp .

That is also the reason for the precedence declarations
in the head section. Another kind of conflicts arereduce-
reduce conflicts. They arise when more that rhs can be ap-
plied for a reduction action.

By associating priorities with tokens the programmer can
tell Eyapp what syntax tree to build in case ofconflict.

The declarations%nonassoc , %left and%right de-
clare and associate apriority with the tokens that follow
them. Tokens declared in the same line have the same prece-
dence. Tokens declared in lines below have more prece-
dence than those declared above. Thus, in the example we
are saying that’+’ and’-’ have the same precedence but
higher than’=’ . The final effect of’-’ having greater
precedence than’=’ is that an expression likea=4-5 is
interpreted asa=(4-5) and not as(a=4)-5 . The use of
%left applied to’-’ indicates that - in case of ambiguity
and a match between precedences - the parser must build the
tree corresponding to a left parenthesization. Thus,4-5-9
is interpreted as(4-5)-9 .

The%prec directive can be used when a rhs is involved
in a conflict and has no tokens inside or it has but the prece-
dence of the last token leads to an incorrect interpretation.
A rhs can be followed by an optional%prec token di-
rective giving the production the precedence of thetoken

exp: ’-’ exp %prec NEG { -$_[1] }

This solves the conflict in- NUM - NUM between
(- NUM) - NUM and- (NUM - NUM) . SinceNEGhas
more priority than’-’ the first interpretation will win.

4.2 Building the AST

Parse::Eyapp facilitates the construction of abstract
syntax trees (AST) through the%tree directive. Nodes in
the AST are blessed in the productionname. A rhs can
be namedusing the%name IDENTIFIER directive. For
eachrhs namea class/package with nameIDENTIFIER is
created.

Symbolic tokens (likeNUM PRINTor VAR) are con-
sidered by defaultsemantic tokens. String literals (like
’+’ , ’/’ , etc.) are - unless explictly declared using
thesemantic token directive - consideredsyntactic to-
kens. When building the AST syntactic tokens do not yield
new nodes. Semantic tokens however have their own. Thus
when feed with inputb=2* a the generated parser produces
the following AST2:

EXPS(
ASSIGN(

VAR(TERMINAL[b]),
TIMES(

NUM(TERMINAL[2]),
VAR(TERMINAL[a]))

)
)

Nodes of the AST are hashes that can bedecoratedwith
new keys/attributes. The only reserved field ischildren
which is a reference to the array of children. Nodes named
TERMINALare built from the tokens provided by the lex-
ical analyzer. The couple($token, $attribute)
returned by the lexical analyzer is stored under the keys
token and attr . TERMINAL nodes also have the at-
tributechildren which is set to an anonymous empty list.
Observe the absence ofTERMINALnodes corresponding to
tokens’=’ and ’ * ’ . If we change the status of’ * ’ and
’=’ to semantic using the%semantic token direc-
tive:

1 %semantic token ’ * ’ ’=’
2 %right ’=’
3 etc.

we get a - concrete - syntax tree:

EXPS(
ASSIGN(

VAR(TERMINAL[b]),

2The information between brackets shows the attribute forTERMINAL
nodes

TERMINAL[=],
TIMES(

NUM(TERMINAL[2]),
TERMINAL[*],
VAR(TERMINAL[a])

) # TIMES
) # ASSIGN

)

Let us now consider the input2* (a+1) . The parser yields
the tree:

EXPS(
TIMES(

NUM(
TERMINAL[2]),
exp_14(

PLUS(
VAR(TERMINAL[a]),
NUM(TERMINAL[1]))

) # PLUS
) # TIMES

)

Two features are noticeable: the parenthesis ruleexp:
’(’ exp ’)’ had no name and got automatically one:
exp_14 . Thename of a rhsby default results from con-
catenating the left hand side of the rule with the ordinal
number of the rule3. The second is that nodeexp_14 is
useless and can be suppressed.

The %tree directive can be accompanied of the
%bypass clause. A%tree bypass produces an au-
tomatic bypassof any node with only one child attree-
construction-time. A bypass operationconsists inreturning
the only child of the node being visited to the father of the
node and re-typing (re-blessing) the node in the name of the
production4.

Changing the line%tree by %tree bypass in file
Infix.eyp we get a more suitable AST for input
2* (a+1) :

EXPS(TIMES(NUM[2],PLUS(VAR[a],NUM[1])))

The node exp_14 has disapeared in this version
since thebypass operationapplies to the rhs of the rule
exp: ’(’ exp ’)’ : Tokens’(’ and ’)’ are syntac-
tic tokens and therefore attree construction timeonly one
child is left. Observe also the absence ofTERMINALnodes.
Bypass clearly applies to rulesexp: NUM andexp: VAR
since they have only one element on their rhs. Therefore
theTERMINALnode is re-blessed asNUMandVARrespec-
tively.

A consequence of the global scope application of
%tree bypass is that undesired bypasses may occur.
Consider the tree rendered for input-a * 2:

EXPS(TIMES(NEG,NUM))

3As it appears in the.output file. The .output file can be gener-
ated using the-v option ofeyapp

4If the production has an explicit name. Otherwise there is no re-
blessing

What happened? The bypass is applied to the rhs
’-’ exp . Though the rhs has two symbols, token’-’
is a syntactic token and attree-construction-timeonly exp
is left. The bypassoperation applies when building this
node. This undesiredbypasscan be avoided applying the
no bypass directive to the production:

exp : %no bypass NEG
’-’ exp %prec NEG

Now the AST for-a * 2 is correct:

EXPS(TIMES(NEG(VAR),NUM))

Eyapp provides operators+, * and? for the creation of
lists and optionals as in:

line: sts <EXPS + ’;’>

which states that aline is made of a non empty list of
EXPSseparated by semicolons. By default the class name
for such list is_PLUS_LIST . The%namedirective can be
used to modify the default name:

line: sts <%name EXPS + ’;’>

Explicit actions can be specified by the programmer.
They are managed as anonymous subroutines that receive as
arguments the attributes of the symbols in the rule and are
executed each time areductionby that rule occurs. When
running under the%tree directive this provides a mech-
anism to influence the shape of the AST. Observe how-
ever that the grammar in the example is cleanof actions:
Parse::Eyapp allowed us to produce a suitable AST without
writing any explicit actions.

5 Tree Transformations

Once we have the AST we can transform it using the
Treeregexplanguage. The code below (in fileI2PIR.trg)
shows a set of algebraic tree transformations whose goal is
to produce machine independent optimizations.

{ # Example of support code
use List::Util qw(reduce);
my %Op = (PLUS=>’+’, MINUS => ’-’,

TIMES=>’ * ’, DIV => ’/’);
}
algebra = fold wxz zxw neg;

fold: /TIMES|PLUS|DIV|MINUS/:b(NUM, NUM)
=> {

my $op = $Op{ref($b)};
$NUM[0]->{attr} = eval
"$NUM[0]->{attr} $op $NUM[1]->{attr}";
$_[0] = $NUM[0];

}
zxw: TIMES(NUM, .) and {$NUM->{attr}==0}
=> { $_[0] = $NUM }
wxz: TIMES(., NUM) and {$NUM->{attr}==0}
=> { $_[0] = $NUM }
neg: NEG(NUM)
=> { $NUM->{attr} = -$NUM->{attr};

$_[0] = $NUM }

A Treeregexp programs is made oftreeregexprules that de-
scribe what subtrees match and how transform them:

wxz: TIMES(., NUM) and {$NUM->{attr}==0}
=> { $_[0] = $NUM }

A rule has aname(wxz in the example), aterm describ-
ing the shape of the subtree to match"TIMES(., NUM)"
and two optional fields: asemantic conditionexpliciting
the attribute constraints (the code after the reserved word
and) and sometransformation codethat tells how to mod-
ify the subtree (the code after the big arrow=>). Each rule
is translated into a subroutine5 with name the treerexexp
rule name. Therefore, after compilation a subroutinewxz
will be available. The dot in theterm TIMES(., NUM)
matches any tree. The semantic condition states that the
attr entry of nodeNUMmust be zero. Thetransformation
code- that will be applied only if the matching succeeded -
substitutes the whole subtree by its right child.

References to the nodes associated with someCLASS
appearing in theterm section can be accessed inside the
semantic parts through the lexical variable$CLASS. If
there is more than one node the associated variable is
@CLASS. Variable$_[0] refers to the root of the subtree
that matched.

Nodes inside atermcan be described using linear regular
expressions like in thefold transformation:

/TIMES|PLUS|DIV|MINUS/:b(NUM, NUM)

In such cases an optional identifier to later refer the node
that matched can be specified (b in the example).

Tree transformations can be grouped in families:

algebra = fold wxz zxw neg;

Such families - and the objects they collect - are available
inside the client program (read anew the code of the driver
in section 2). Thus, if$t holds the AST resulting from the
parsing phase, we can call its methods (for substitute) with
args the@algebra family:

$t->s(our @algebra);

The s method ofParse::Eyapp::Node 6 proceeds
to apply all the transformation in the family@algebra
to tree $t until none of them matches. Thus, for input
a = 2* (a+b) * (2-4/2) the parser produces the tree:

EXPS(
ASSIGN(

VAR[a],
TIMES(

TIMES(NUM[2],PLUS(VAR[a],VAR[b])),
MINUS(NUM[2],DIV(NUM[4],NUM[2])

)
)

)

which is transformed by the call$t->s(@algebra) in:

EXPS(ASSIGN(VAR[a],NUM[0]))

5The sub must be accessed through a proxyParse::Eyapp::YATW
object. YATW stands forYet Another Tree Walker

6All the classes in the AST inherit fromParse::Eyapp::Node

6 Resource Allocation

The back-end of the translator starts with resource as-
signment. The only resource to consider here is memory.
We have to assign a memory location and/or machine regis-
ter to each of the variables and inner nodes in the AST. The
final target machine, Parrot, is a register based interpreter
with 32 floating point registers. On top of the Parrot ma-
chine is a layer named Parrot Intermediate Representation
(PIR). The PIR language and its compiler (imcc) make re-
markably easier the task of mapping variables to registers:
PIR provides an infinite number of virtual numeric registers
named$N1, $N2, etc. and solves the problem of mapping
variables into registers via Graph Coloring [10].

{{ my $num = 1; # closure
sub new_N_register {

return ’$N’.$num++;
}

}}

reg_assign: $x => {
if (ref($x) =˜ /VAR|NUM/) {

$x->{reg} = $x->{attr};
return 1;

}
if (ref($x) =˜ /ASSIGN/) {

$x->{reg} = $x->child(0)->{attr};
return 1;

}
$_[0]->{reg} = new_N_register();

}

As it shows the code above (in fileI2PIR.trg), the re-
source allocation stage is limited to assign virtual registers
to the inner nodes.

A treeregexp term like$x matches any node and creates
a lexical variable$x containing a reference to the node that
matched.

In between Treeregexp rules the programmer can insert
Perl code between curly brackets. The code will be inserted
verbatim7 at that relative point by thetreereg compiler.

The Parse::Eyapp::YATW object $reg_assign
generated by the compiler is available inside the main driver
(revise section 2):

our $reg_assign;
$reg_assign->s($t);

Now we have an ASTdecoratedwith a new attributereg .
The following session with the debugger illustrates the way
to expose the AST and its attributes:

$ perl -wd infix2pir.pl simple5.inf
main::(59): my $filename = shift;
DB<1> c 72
-a * 2
EXPS(TIMES(NEG(VAR),NUM)) # The AST

7Without the outer curly brackets. If it weren’t for the second pair of
curly brackets the lexical variable$num would be visible up to the end of
the file

We have stopped the execution just before the call to
$reg_assign->s($t) . The AST for input-a * 2 was
displayed.

main::(72): $reg_assign->s($t);
DB<2> n
main::(75): $t->bud(our @translation);

After the register assignment phase the nodes have been
decorated with the attribute$reg . To display a tree we use
the str method ofParse::Eyapp::Node . The str
method traverses the syntax tree dumping the type of the
node being visited in a string. If the node being visited has
a methodinfo it will be executed and its result inserted be-
tween$DELIMITERs into the string. The package variable
$INDENT8 controls the way the tree is displayed. Thus, the
next three commands display the AST and the values of the
reg attributes:

DB<2> * TIMES::info = * NEG::info = \

* VAR::info= * NUM::info=sub {$_[0]{reg}}
DB<3> $Parse::Eyapp::Node::INDENT=2
DB<4> x $t->str # Decorated tree
0 ’
EXPS(

TIMES[$N2](
NEG[$N1](

VAR[a]
),
NUM[2]

) # TIMES
) # EXPS’

Observe that no registers were allocated for variables and
numbers.

7 Code Generation

The translation is approached as a particular case oftree
decoration. Each node is decorated with a new attribute -
trans - that will held the translation for such node. To
compute it, we must define transformations for each of the
types in the AST:

translation = t_num t_var t_op t_neg
t_assign t_list t_print;

Some of these transformations are straightforward:

t_num: NUM
=> { $NUM->{tr} = $NUM->{attr} }

t_op: /TIMES|PLUS|DIV|MINUS/:b($x, $y)
=> {

my $op = $Op{ref($b)};
$b->{tr} = "$b->{reg} = $x->{reg}"

." $op $y->{reg}";
}

To keep track of the involved variables a hash is used as a
rudimentary symbol table:

8Other Parse::Eyapp::Node variables governing the be-
havior of str are: PREFIXES, $STRSEP, $FOOTNOTEHEADER,
$FOOTNOTESEP, $FOOTNOTELEFT, $FOOTNOTERIGHT and
$LINESEP

{ our %s; }
t_assign: ASSIGN($v, $e) => {

$s{$v->{attr}} = "num";
$ASSIGN->{tr} = "$v->{reg} = $e->{reg}"

}

The translation of the root node (EXPS) consists of concate-
nating the translations of its children:

{
sub cat_trans {

my $t = shift;

my $tr = "";
for ($t->children) {

(ref($_) =˜ m{NUM|VAR|TERMINAL})
or $tr .= cat_trans($_)."\n"

}
$tr .= $t->{tr} ;

}
}

t_list: EXPS(@S)
=> {

$EXPS->{tr} = "";
my @tr = map { cat_trans($_) } @S;
$EXPS->{tr} =

reduce { "$a\n$b" } @tr if @tr;
}

The treeregexp@Smatches the children of theEXPSnode.
The associated lexical variable@Scontains the references
to the nodes that matched.

The methodbud 9 of Parse::Eyapp::Node nodes
makes a bootom up traversing of the AST applying to
the node being visited the only one transformation that
matches10. After the call

$t->bud(our @translation);

the attribute$t->{trans} contains a translation to PIR
for the whole tree.

8 Peephole Transformations

The namepeephole optimizercomes from the image of
sliding a small window over the target code attempting to
replace patterns of instructions by better ones. If we have
a look at the code generated in the previous phase for the
inputa = 5-b * 2 we see that produces:

$N1 = b * 2
$N2 = 5 - $N1
a = $N2

PIR allows memory instructions involving three arguments
like a = b + c . This fact and the observation that$N2
is used only once lead us to conclude that the former trans-
lation can be changed to:

9Bottom-Up Decorator
10Whenbud is applied the family of transformations mustconstitute a

partition of the AST classes, i.e. for each node one and only one transfor-
mation matches

$N1 = b * 2
a = 5 - $N1

Perl regular expressions constitute a formidable tool to im-
plementpeephole optimization. The regexp below finds pat-
terns

$N# = something
IDENT = $N#

and substitutes them byIDENT = something :

sub peephole_optimization {
$_[0] =˜

s{(\$N\d+)\s * =\s * (. * \n)\s *
([a-zA-Z_]\w *)\s * =\s * \1}

{$3 = $2}gx;
}

9 Output Generation

Emitting the code is the simplest of all the phases. Since
Parrot requires all the variables to be declared, a comma
separated string$dec is built concatenating the keys of the
symbol table hash%s. The code is then indented and the
different components are articulated through a HERE docu-
ment:

sub output_code {
my ($trans, $dec) = @_;

Indent
$$trans =˜ s/ˆ/\t/gm;

Output the code
print << "TRANSLATION";
.sub ’main’ :main
\t.local num $$dec
$$trans
.end
TRANSLATION

The call tooutput_code finishes the job:

output_code(\$t->{trans}, \$dec);

10 Conclusions and Future Work

There is a shortage of compiler toolkits in CPAN/Perl 5.
It will be beneficial to have a CPAN wider covering of trans-
lator components: attribute grammars, tree transformations
tools and code generator generators (see iburg [11]).

This work presentedParse::Eyapp , a work in
progress in that direction.Yacc andParse::Yapp pro-
grammers will feel at home inParse::Eyapp . Addition-
ally to the beneficial mature approach to parsing provided
by Yacc -like parser generators,Parse::Eyapp delivers
a set of extensions that give support to the later phases of
text processing.

11 About the Author

Casiano Rodriguez-Leon is a Professor of Computer Sci-
ence at Universidad de La Laguna. His research focuses on
Parallel Computing.

12 Acknowledgements

This work has been supported by theEC (FEDER) and
by the Spanish Ministry of Education and Science in-
side the ‘Plan Nacional deI+D+i’ with contract number
TIN2005-08818-C04-04. Thanks To Francois Desarme-
nien. Parse::Eyapp shares a large percentage of code
with Parse::Yapp .

References

[1] Damian Conway. Parse::RecDescent, Generate
Recursive-Descent Parsers. CPAN, 2003.

[2] Francois Desarmenien.Parse::Yapp, Perl extension
for generating and using LALR parsers. CPAN, 2001.

[3] Luke Palmer.Language::AttributeGrammar, Attribute
grammars for doing computations over trees. CPAN,
2006.

[4] Patrick Michaud. Parrot Grammar Engine (PGE).
CPAN, 2007.

[5] Allison Randal.TGE, A tree grammar engine. CPAN,
2007.

[6] Allison Randal, Dan Sugalski, and Leopold Toetsch.
Perl 6 and Parrot Essentials, Second Edition. O’Reilly
Media, Inc., 2004.

[7] Alberto Manuel Simoes. Cooking Perl with flex.The
Perl Review, 0(3), May 2002.

[8] Ioannis Tambouras.Parse::Flex, The Fastest Lexer in
the West. CPAN, 2006.

[9] Stephen C. Johnson and Ravi Sethi. Yacc: a Parser
Generator.UNIX Vol. II: research system (10th ed.),
pages 347–374, 1990.

[10] Preston Briggs. Register Allocation via Graph Color-
ing. Technical Report TR92-183, 24, 1998.

[11] C. W. Fraser, D. R. Hanson, and T. A. Proebsting. En-
gineering a Simple, Efficient Code Generator Gener-
ator. ACM Letters on Programming Languages and
Systems, 1(3):213–226, 1992.

	Introduction
	The Phases of a Translator
	Lexical Analysis
	Syntax Analysis
	Ambiguities and Conflicts
	Building the AST

	Tree Transformations
	Resource Allocation
	Code Generation
	Peephole Transformations
	Output Generation
	Conclusions and Future Work
	About the Author
	Acknowledgements

