

DA-06287-001_v1.0 | April 2012

Application Note

KEPLER COMPATIBILITY GUIDE
FOR CUDA APPLICATIONS

www.nvidia.com

Kepler Compatibility Guide

for CUDA Applications DA-06287-001_v1.0 | ii

DOCUMENT CHANGE HISTORY

DA-06287-001_v1.0

Version Date Authors Description of Change

1.0 April 6, 2012 CW Initial public release.

www.nvidia.com

Kepler Compatibility Guide

for CUDA Applications DA-06287-001_v1.0 | iii

TABLE OF CONTENTS

Chapter 1. Kepler Compatibility .. 1

1.1 About This Document ... 1

1.2 Application Compatibility on Kepler ... 1

1.3 Verifying Kepler Compatibility for Existing Applications ... 2

1.3.1 Applications Using CUDA Toolkit 4.1 or Earlier .. 2

1.3.2 Applications Using CUDA Toolkit 4.2 .. 2

1.4 Building Applications with Kepler Support ... 3

1.4.1 CUDA Runtime API Applications ... 3

1.4.2 CUDA Driver API Applications .. 6

APPENDIX A. Revision History ... 8

A.1 Version 1.0.. 8

www.nvidia.com

Kepler Compatibility Guide

for CUDA Applications DA-06287-001_v1.0| 1

Chapter 1. KEPLER COMPATIBILITY

1.1 ABOUT THIS DOCUMENT

This application note, Kepler Compatibility Guide for CUDA Applications, is intended to

help developers ensure that their NVIDIA® CUDATM applications will run effectively on

GPUs based on the NVIDIA® Kepler Architecture. This document provides guidance to

developers who are already familiar with programming in CUDA C/C++ and want to

make sure that their software applications are compatible with Kepler.

1.2 APPLICATION COMPATIBILITY ON KEPLER

The NVIDIA CUDA C compiler, nvcc, can be used to generate both architecture-specific

cubin files and forward-compatible PTX versions of each kernel. Each cubin file targets a

specific compute-capability version and is forward-compatible only with CUDA

architectures of the same major version number. For example, cubin files that target compute

capability 2.0 are supported on all compute-capability 2.x (Fermi) devices but are not

supported on compute-capability 3.0 (Kepler) devices. For this reason, to ensure forward

compatibility with CUDA architectures introduced after the application has been

released, it is recommended that all applications support launching PTX versions of

their kernels.1

Applications that already include PTX versions of their kernels should work as-is on

Kepler-based GPUs. Applications that only support specific GPU architectures via cubin

files, however, will need to be updated to provide Kepler-compatible PTX or cubins.

1 CUDA Runtime applications containing both cubin and PTX code for a given architecture will

automatically use the cubin by default, keeping the PTX path strictly for forward-compatibility purposes.

Kepler Compatibility

www.nvidia.com

Kepler Compatibility Guide

for CUDA Applications DA-06287-001_v1.0 | 2

1.3 VERIFYING KEPLER COMPATIBILITY FOR
EXISTING APPLICATIONS

The first step is to check that Kepler-compatible device code (at least PTX) is compiled in

to the application. The following sections show how to accomplish this for applications

built with different CUDA Toolkit versions.

1.3.1 Applications Using CUDA Toolkit 4.1 or Earlier

CUDA applications built using CUDA Toolkit versions 2.1 through 4.1 are compatible

with Kepler as long as they are built to include PTX versions of their kernels. To test that

PTX JIT is working for your application, you can do the following:

 Download and install the latest driver from http://www.nvidia.com/drivers.

 Set the environment variable CUDA_FORCE_PTX_JIT=1

 Create an empty temporary directory on your system.

 Set the environment variable CUDA_CACHE_PATH to be the path to this empty directory.

 Launch your application.

When starting a CUDA application for the first time with the above environment flag,

the CUDA driver will JIT-compile the PTX for each CUDA kernel that is used into native

cubin code. The generated cubin for the target GPU architecture is cached on disk by the

CUDA driver.

If you set the environment variables above and then launch your program and it works

properly, and if the directory you specified with the CUDA_CACHE_PATH

environment variable is now populated with cache files, then you have successfully

verified Kepler compatibility. Note that it is not necessary to inspect the contents of the

cache files themselves; just check that the previously empty cache directory is now non-

empty.

Be sure to unset these two environment variables when you are done testing if you do

not normally use them. The temporary cache directory you created is safe to delete.

1.3.2 Applications Using CUDA Toolkit 4.2

CUDA applications built using CUDA Toolkit 4.2 are compatible with Kepler as long as

they are built to include kernels in either Kepler-native cubin format (see Section 1.4) or

PTX format (see Section 1.3.1 above) or both.

http://www.nvidia.com/drivers

Kepler Compatibility

www.nvidia.com

Kepler Compatibility Guide

for CUDA Applications DA-06287-001_v1.0 | 3

1.4 BUILDING APPLICATIONS WITH KEPLER
SUPPORT

The methods used to build your application with support for Kepler depend on the

version of the CUDA Toolkit used and on the choice of the CUDA Runtime API or

CUDA Driver API.

Note: The CUDA Runtime API is characterized by the use of functions named with the

cuda*() prefix and by launching kernels using the triple-angle-bracket <<<>>> notation.

The CUDA driver API functions use the cu*() prefix, including for kernel launch.

1.4.1 CUDA Runtime API Applications

When a CUDA application launches a kernel, the CUDA Runtime determines the

compute capability of each GPU in the system and uses this information to

automatically find the best matching cubin or PTX version of the kernel that is available.

If a cubin file supporting the architecture of the target GPU is available, it is used;

otherwise, the CUDA Runtime will load the PTX and JIT-compile that PTX to the GPU’s

native cubin format before launching it. If neither is available, then the kernel launch will

fail.

The main advantages of providing native cubins are as follows:

 It saves the end user the time it takes to PTX JIT a kernel that has been compiled as

PTX. (However, since the CUDA driver will cache the cubin generated as a result of

the PTX JIT, this is mostly a one-time cost for a given user.)

 PTX JIT-compiled kernels often cannot take advantage of architectural features of

newer GPUs, meaning that native-compiled code may be faster or of greater accuracy.

1.4.1.1 Applications Using CUDA Toolkit 4.1 or Earlier

The compilers included in CUDA Toolkit 4.1 or earlier generate cubin files native to

earlier NVIDIA architectures such as Fermi, but they cannot generate cubin files native

to the Kepler architecture. To allow support for Kepler and future architectures when

using version 4.1 or earlier of the CUDA Toolkit, the compiler must generate a PTX

version of each kernel.

Below are compiler settings that could be used to build mykernel.cu to run on Fermi and

earlier devices natively and on Kepler devices via PTX JIT. In these examples, the lines

shown in blue provide compatibility with earlier architectures, and the lines shown in

red provide a PTX path for compatibility with Kepler and later architectures.

Kepler Compatibility

www.nvidia.com

Kepler Compatibility Guide

for CUDA Applications DA-06287-001_v1.0 | 4

Note that compute_XX refers to a PTX version and sm_XX refers to a cubin version. The

arch= clause of the -gencode= command-line option to nvcc specifies the front-end

compilation target and must always be a PTX version. The code= clause specifies the

back-end compilation target and can either be cubin or PTX or both. Only the back-end

target version(s) specified by the code= clause will be retained in the resulting binary;

at least one must be PTX to provide Kepler compatibility.

Windows:
nvcc.exe -ccbin "C:\vs2008\VC\bin"

-Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT"

–gencode=arch=compute_10,code=sm_10

–gencode=arch=compute_20,code=sm_20

–gencode=arch=compute_20,code=compute_20

--compile -o "Release\mykernel.cu.obj" "mykernel.cu"

Mac/Linux:
/usr/local/cuda/bin/nvcc

–gencode=arch=compute_10,code=sm_10

–gencode=arch=compute_20,code=sm_20

–gencode=arch=compute_20,code=compute_20

-O2 -o mykernel.o -c mykernel.cu

Alternatively, you may be familiar with the simplified nvcc command-line option -

arch=sm_XX , which is a shorthand equivalent to the following more explicit –gencode=

command-line options used above. -arch=sm_XX expands to the following:

–gencode=arch=compute_XX,code=sm_XX

–gencode=arch=compute_XX,code=compute_XX

However, while the -arch=sm_XX command-line option does result in inclusion of a PTX

back-end target by default, it can only specify a single target cubin architecture at a time,

and it is not possible to use multiple -arch= options on the same nvcc command line,

which is why the examples above use -gencode= explicitly.

1.4.1.2 Applications Using CUDA Toolkit 4.2

Beginning with version 4.2 of the CUDA Toolkit, nvcc can generate cubin files native to

the Kepler architecture (compute capability 3.0). When using CUDA Toolkit 4.2, to

ensure that nvcc will generate cubin files for all released GPU architectures as well as a

PTX version for forward compatibility with future GPU architectures, specify the

appropriate -gencode= parameters on the nvcc command line as shown in the examples

below.

Kepler Compatibility

www.nvidia.com

Kepler Compatibility Guide

for CUDA Applications DA-06287-001_v1.0 | 5

In these examples, the lines shown in blue provide compatibility with earlier

architectures, the lines shown in green provide native cubins for Kepler, and the lines in

red provide a PTX path for compatibility with future architectures.

Windows:
nvcc.exe -ccbin "C:\vs2008\VC\bin"

-Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT"

-gencode=arch=compute_10,code=sm_10

-gencode=arch=compute_20,code=sm_20

-gencode=arch=compute_30,code=sm_30

-gencode=arch=compute_30,code=compute_30

--compile -o "Release\mykernel.cu.obj" "mykernel.cu"

Mac/Linux:
/usr/local/cuda/bin/nvcc

-gencode=arch=compute_10,code=sm_10

-gencode=arch=compute_20,code=sm_20

-gencode=arch=compute_30,code=sm_30

-gencode=arch=compute_30,code=compute_30

-O2 -o mykernel.o -c mykernel.cu

Note that compute_XX refers to a PTX version and sm_XX refers to a cubin version. The

arch= clause of the -gencode= command-line option to nvcc specifies the front-end

compilation target and must always be a PTX version. The code= clause specifies the

back-end compilation target and can either be cubin or PTX or both. Only the back-end

target version(s) specified by the code= clause will be retained in the resulting binary;

at least one should be PTX to provide compatibility with future architectures.

Kepler Compatibility

www.nvidia.com

Kepler Compatibility Guide

for CUDA Applications DA-06287-001_v1.0 | 6

1.4.2 CUDA Driver API Applications

Applications that use the CUDA Driver API load their own kernels explicitly. Therefore,

the kernel-loading portions of such applications must include a path capable of loading

PTX when native cubins for the target GPU(s) are not available.

 Compile CUDA kernel files to PTX, even if also compiling native cubin files for

existing architectures. If multiple compilation target types/versions are to be used,

nvcc must be called separately for each generated output file of either type, and the

type and version must be specified explicitly at compile time. (An advanced

technique is to use a “fat binary” (fatbin) file, which contains both cubin and PTX

formats. This technique is outside the scope of this document.)

A common pattern in many applications is to include cubins for all supported existing

architectures plus PTX of the highest-available version for forward compatibility to

future architectures.

The example below demonstrates compilation of compute_20 PTX, which will work on

devices of compute capability 2.x and 3.0, but not on devices of compute capability

1.x. Presumably an application using this example as-is would also include cubins for

compute capability 1.x and/or 2.x as well.

Windows:
nvcc.exe -ccbin "C:\vs2008\VC\bin"

-Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT"

-ptx -arch=compute_20

-o "mykernel.compute_20.ptx" "mykernel.cu"

Mac/Linux:
/usr/local/cuda/bin/nvcc

-ptx -arch=compute_20

-O2 -o mykernel.compute_20.ptx "mykernel.cu"

 At runtime, your application will need to explicitly check the compute capability of

the current GPU with the CUDA Driver API function in order to select the best-

available cubin or PTX to load. The deviceQueryDrv code sample from the NVIDIA

GPU Computing SDK includes a detailed example of the use of this function.

cuDeviceComputeCapability(&major, &minor, dev)

 Refer to the “PTX Just-in-Time Compilation” (ptxjit) code sample GPU Computing

SDK, available at the URL below, which demonstrates how to use the CUDA Driver

API to launch PTX kernels.

http://developer.nvidia.com/cuda-cc-sdk-code-samples

http://developer.nvidia.com/cuda-cc-sdk-code-samples

Kepler Compatibility

www.nvidia.com

Kepler Compatibility Guide

for CUDA Applications DA-06287-001_v1.0 | 7

A more complex example can be found in the matrixMulDrv code sample from the

GPU Computing SDK, which follows a pattern similar to the following:

CUmodule cuModule;

CUfunction cuFunction = 0;

string ptx_source;

// Helper function load PTX source to a string

findModulePath ("matrixMul_kernel.ptx",

 module_path, argv, ptx_source));

// We specify PTX JIT compilation with parameters

const unsigned int jitNumOptions = 3;

CUjit_option *jitOptions = new CUjit_option[jitNumOptions];

void **jitOptVals = new void*[jitNumOptions];

// set up size of compilation log buffer

jitOptions[0] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;

int jitLogBufferSize = 1024;

jitOptVals[0] = (void *)(size_t)jitLogBufferSize;

// set up pointer to the compilation log buffer

jitOptions[1] = CU_JIT_INFO_LOG_BUFFER;

char *jitLogBuffer = new char[jitLogBufferSize];

jitOptVals[1] = jitLogBuffer;

// set up maximum # of registers to be used

jitOptions[2] = CU_JIT_MAX_REGISTERS;

int jitRegCount = 32;

jitOptVals[2] = (void *)(size_t)jitRegCount;

// Loading a module will force a PTX to be JIT

status = cuModuleLoadDataEx(&cuModule, ptx_source.c_str(),

 jitNumOptions, jitOptions,

 (void **)jitOptVals);

printf("> PTX JIT log:\n%s\n", jitLogBuffer);

www.nvidia.com

Kepler Compatibility Guide

for CUDA Applications DA-06287-001_v1.0| 8

APPENDIX A. Revision History

A.1 VERSION 1.0

 Initial public release.

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO

WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR

A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no

responsibility for the consequences of use of such information or for any infringement of patents or other

rights of third parties that may result from its use. No license is granted by implication of otherwise under

any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA

Corporation products are not authorized as critical components in life support devices or systems without

express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and
other countries. Other company and product names may be trademarks of the respective companies with

which they are associated.

Copyright

© 2012 NVIDIA Corporation. All rights reserved.

	Chapter 1. Kepler Compatibility
	1.1 About This Document
	1.2 Application Compatibility on Kepler
	1.3 Verifying Kepler Compatibility for Existing Applications
	1.3.1 Applications Using CUDA Toolkit 4.1 or Earlier
	1.3.2 Applications Using CUDA Toolkit 4.2

	1.4 Building Applications with Kepler Support
	1.4.1 CUDA Runtime API Applications
	1.4.1.1 Applications Using CUDA Toolkit 4.1 or Earlier
	Windows:
	Mac/Linux:

	1.4.1.2 Applications Using CUDA Toolkit 4.2
	Windows:
	Mac/Linux:

	1.4.2 CUDA Driver API Applications
	Windows:
	Mac/Linux:
	Appendix A. Revision History

	A.1 Version 1.0

