
CUDA Toolkit 4.2
CUFFT Library

PG-05327-040_v01 | March 2012

Programming Guide

Contents

1 Introduction 2

2 Using the CUFFT API 3
2.1 Data Layout . 4

2.1.1 FFTW Compatibility Mode . 6
2.1.2 Advanced Data Layout . 6

2.2 Accuracy and Performance . 8
2.3 Streamed CUFFT Transforms . 9
2.4 Thread Safety . 9

3 CUFFT Types and Definitions 10
3.1 cufftHandle . 10
3.2 cufftResult . 10
3.3 cufftReal . 11
3.4 cufftDoubleReal . 11
3.5 cufftComplex . 11
3.6 cufftDoubleComplex . 11
3.7 cufftCompatibility . 11
3.8 CUFFT Transform Types . 12
3.9 CUFFT Transform Directions . 12

4 CUFFT API Reference 13
4.1 Function cufftPlanMany() . 13
4.2 Function cufftPlan1d() . 15
4.3 Function cufftPlan2d() . 16
4.4 Function cufftPlan3d() . 17
4.5 Function cufftDestroy() . 18
4.6 Function cufftExecC2C()/cufftExecZ2Z() . 19
4.7 Function cufftExecR2C()/cufftExecD2Z() . 20
4.8 Function cufftExecC2R()/cufftExecZ2D . 21
4.9 Function cufftSetStream() . 22
4.10 Function cufftSetCompatibilityMode() . 23

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | ii

5 CUFFT Code Examples 24
5.1 1D Complex-to-Complex Transforms . 24
5.2 1D Real-to-Complex Transforms . 26
5.3 2D Complex-to-Real Transforms . 27
5.4 3D Complex-to-Complex Transforms . 28
5.5 2D Advanced Data Layout Use . 29

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | iii

Contents

Published by
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES,
DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND
SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS". NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH
RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS
FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such information or
for any infringement of patents or other rights of third parties that may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of
NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all information previously
supplied. NVIDIA Corporation products are not authorized for use as critical components
in life support devices or systems without express written approval of NVIDIA
Corporation.

Trademarks

NVIDIA, CUDA, and the NVIDIA logo are trademarks or registered trademarks of
NVIDIA Corporation in the United States and other countries. Other company and
product names may be trademarks of the respective companies with which they are
associated.

Copyright

© 2005-2012 by NVIDIA Corporation. All rights reserved.

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 1

Chapter 1
Introduction

This document describes CUFFT, the NVIDIA® CUDA™ Fast Fourier Transform (FFT)
library. The FFT is a divide-and-conquer algorithm for efficiently computing discrete
Fourier transforms of complex or real-valued data sets. It is one of the most important and
widely used numerical algorithms in computational physics and general signal processing.
The CUFFT library provides a simple interface for computing parallel FFTs on an
NVIDIA GPU, which allows users to leverage the floating-point power and parallelism of
the GPU without having to develop a custom, CUDA FFT implementation.

FFT libraries typically vary in terms of supported transform sizes and data types. For
example, some libraries only implement radix-2 FFTs, restricting the transform size to a
power of two. The CUFFT Library aims to support a wide range of FFT options efficiently
on NVIDIA GPUs. This version of the CUFFT library supports the following features:

I Complex and real-valued input and output

I 1D, 2D, and 3D transforms

I Batch execution for doing multiple transforms of any dimension in parallel

I Transform sizes up to 64 million elements in single precision and up to 128 million
elements in double precision in any dimension, limited by the available GPU memory

I In-place and out-of-place transforms

I Double-precision (64-bit floating point) on compatible hardware (sm1.3 and later)

I Support for streamed execution, enabling asynchronous computation and data
movement

I FFTW compatible data layouts

I Arbitrary intra- and inter-dimension element strides

I Thread-safe API that can be called from multiple independent host threads

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 2

Chapter 2
Using the CUFFT API

This section describes how to use the CUFFT library API. The CUFFT API is modeled
after FFTW (http://www.fftw.org), which is one of the most popular and efficient
CPU-based FFT libraries. FFTW provides a simple configuration mechanism called a plan
that completely specifies the optimal plan of execution, in terms of minimum floating-point
operations (FLOPs) for a particular FFT size and data type. Then, when the execution
function is called, the actual transform takes place following the plan of execution. The
advantage of this approach is that once the user creates a plan, the library stores whatever
state is needed to execute the plan multiple times without recalculation of the
configuration. The FFTW model works well for CUFFT because different kinds of FFTs
require different thread configurations and GPU resources, and plans are a simple way to
store and reuse configurations.

First basic step in using the CUFFT Library is to create a plan using one of the following:

I cufftPlanMany() - Creates a plan supporting batched input and strided data layouts.

I cufftPlan1D()/cufftPlan2D()/cufftPlan3D() - Creates a simple plan for a 1D/2D/3D
transform respectively.

Among the plan creation functions, cufftPlanMany() allows using more complicated data
layouts and batched executions. Execution of a transform of a particular size and type
may take several stages of processing. When a plan for the transform is generated, CUFFT
derives the internal steps that need to be taken. These steps may include multiple kernel
launches, memory copies, and so on. In addition, all the intermediate buffers (on
CPU/GPU memory) allocations take place during planning. These buffers are released
when the plan is destroyed. In the worst case, the CUFFT Library allocates space for
8*batch*n[0]*..*n[rank-1] cufftComplex or cufftDoubleComplex elements (where
batch denotes the number of transforms that will be executed in parallel and n[] is the
array of transform dimensions) for single and double-precision transforms respectively.
Depending on the configuration of the plan, less memory may be used. In some specific
cases, the temporary space allocations can be as low as 1*batch*n[0]*..*n[rank-1]
cufftComplex or cufftDoubleComplex elements. This temporary space will be allocated
separately for each individual plan when it is created (i.e., temporary space is not shared
between the plans).

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 3

Chapter 2. Using the CUFFT API

Typically, CUFFT Library allocates space for In some transforms, the temporary space
allocation can be as low as the input data size.

Next step in using the library is to call an execution function which will perform the
transform with the specifications defined at planning. Transform execution functions for
single and double-precision are separately defined as follows:

I cufftExecC2C()/cufftExecZ2Z()() - Performs complex-to-complex transform.

I cufftExecR2C()/cufftExecD2Z() - Performs real-to-complex transform.

I cufftExecC2R()/cufftExecZ2D() - Performs complex-to-real transform.

One can create a CUFFT plan and perform multiple transforms on different data sets by
providing different input and output pointers. Once the plan is no longer needed
cufftDestroy() function should be called to release the resources allocated for the plan.

The layout specifications for input and output data is covered in Section 2.1. The rest of
this chapter is organized as follows: Section 2.2 provides basic information regarding
performance and accuracy of various transform configurations. Section 2.3 presents how
to use streamed CUFFT executions.

2.1 Data Layout

In the CUFFT Library, data layout depends strictly on the configuration and the
transform type. If the transform type is single precision real-to-complex, the input data
shall be cufftReal/float type data. For complex FFTs, the input and output arrays
must interleave the real and imaginary parts (the cufftComplex/cufftDoubleComplex
types in single- and double-precision modes respectively). The transform size in each
dimension is the number of cufftComplex/cufftDoubleComplex elements.

For 1D single-precision complex-to-complex transforms, the stride between signals in a
batch is assumed to be the number of cufftComplex elements in the logical transform size.
However, for real-data FFTs, the distance between signals in a batch depends on whether
the transform is in-place or out-of-place and layout specifications set in the
SetCompatibilityMode() API.. Number of elements for different transform configurations
for input and output data is summarized in Table 2.1 for default padding modes, where
the output matches with FFTW input/output formats; when speed is favored over FFTW
compatible output, "native" mode can be used where there is no additional padding bytes
in C2R/R2C modes as described in 2.2. Note that for double-precision real-to-complex
(R2C) the input element type is cufftDoubleReal and output element type is
cufftDoubleComplex.

For real-to-complex FFTs, the output array holds only the non-redundant complex
coefficients. So for an N-element transform, the output array holds N/2 + 1 cufftComplex
terms. For higher-dimensional real transforms of the form N0×N1× . . .×Nn, the last
dimension is cut in half such that the output data is N0×N1× . . .× (Nn/2 + 1) complex

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 4

Chapter 2. Using the CUFFT API

Table 2.1: Padded Data Layouts

Dims Type In-place Out-of-place
input output input output

1D
C2C x x x x
C2R (x/2 + 1) 2(x/2 + 1) (x/2 + 1) x
R2C 2(x/2 + 1) (x/2 + 1) x (x/2+1)

2D
C2C xy xy xy xy
C2R x(y/2 + 1) 2x(y/2 + 1) x(y/2 + 1) xy
R2C 2x(y/2+1) x(y/2 + 1) xy x(y/2+1)

3D
C2C xyz xyz xyz xyz
C2R xy(z/2 + 1) 2xy(z/2 + 1) xy(z/2 + 1) xyz
R2C 2xy(z/2+1) xy(z/2 + 1) xyz xy(z/2+1)

Table 2.2: Native Data Layouts

Dims Type In-place Out-of-place
input output input output

1D
C2C x x x x
C2R (x/2 + 1) x (x/2 + 1) x
R2C* x (x/2 + 1) x (x/2+1)

2D
C2C xy xy xy xy
C2R x(y/2 + 1) xy x(y/2 + 1) xy
R2C* xy x(y/2 + 1) xy x(y/2+1)

3D
C2C xyz xyz xyz xyz
C2R xy(z/2 + 1) xyz xy(z/2 + 1) xyz
R2C* xyz xy(z/2 + 1) xyz xy(z/2+1)

(*total transform size is limited to 227 elements in in-place R2C "native" transforms)

elements. Therefore, in order to perform an in-place FFT, the user has to pad the input
array in the last dimension to Nn/2 + 1 complex elements interleaved. Note that the
real-to-complex transform is implicitly forward. Passing the CUFFT_R2C constant to any
plan creation function configures a single-precision real-to-complex FFT. Passing the
CUFFT_D2Z constant configures a double-precision real-to-complex FFT.

The requirements for complex-to-real FFTs are similar to those for real-to-complex. In this
case, the input array holds only the non-redundant, N/2 + 1 complex coefficients from a
real-to-complex transform. The output is simply N elements of type cufftReal. For an
in-place transform where FFTW compatible output is desired, the input size must be
padded to 2 ∗ (N/2 + 1) real elements. For details on padding options, please refer to
Section 3.9. The complex-to-real transform is implicitly inverse. Passing the CUFFT_C2R
constant to any plan creation function configures a single-precision complex-to-real FFT.
Passing CUFFT_Z2D constant configures a double-precision complex-to-real FFT.

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 5

Chapter 2. Using the CUFFT API

For in-place complex-to-real FFTs where FFTW compatible output is selected (default
padding mode, see 3.9 for details), the input stride is assumed to be N/2 + 1
cufftComplex elements. For out-of-place transforms, input and output strides match the
logical transform size N and the non-redundant size N/2 + 1, respectively.

Starting with CUFFT version 4.1, transforms with advanced data layout are supported
through the cufftPlanMany() function. In this mode, the developer can define strides
between each element as well as between the batches (see 2.1.2).

2.1.1 FFTW Compatibility Mode

For some transform sizes, FFTW requires additional padding bytes between rows and
planes of real-to-complex (R2C) and complex-to-real (C2R) transforms of rank greater
than 1. (For details, please refer to the FFTW online documentation at
http://www.fftw.org.)

One can disable FFTW-compatible layout using cufftSetCompatibilityMode(). Setting
input parameter to CUFFT_COMPATIBILITY_NATIVE will disable padding and
ensure compact data layout for the input/output data for
Real-to-Complex/Complex-To-Real transforms. Disabling padding using CUFFT native
mode might provide significant speed-up especially in power-of-two sized transforms.

The FFTW compatibility modes are as follows:

CUFFT_COMPATIBILITY_NATIVE
CUFFT_COMPATIBILITY_FFTW_PADDING
CUFFT_COMPATIBILITY_FFTW_ASYMMETRIC
CUFFT_COMPATIBILITY_FFTW_ALL

CUFFT_COMPATIBILITY_NATIVE mode disables FFTW compatibility, but achieves the
highest performance.

CUFFT_COMPATIBILITY_FFTW_PADDING supports FFTW data padding by inserting extra
padding between packed in-place transforms for batched transforms (default).

CUFFT_COMPATIBILITY_FFTW_ASYMMETRIC waives the C2R symmetry requirement. Once
set, it guarantees FFTW-compatible output for non-symmetric complex inputs for
transforms with power-of-2 size. This is only useful for artificial (that is, random) data sets
as actual data will always be symmetric if it has come from the real plane. Enabling this
mode can significantly impact performance.

CUFFT_COMPATIBILITY_FFTW_ALL enables full FFTW compatibility. Refer to the FFTW
documentation (http://www.fftw.org) for FFTW data layout specifications.

2.1.2 Advanced Data Layout

The advanced data layout feature allows transforming only a subset of an input array, or
outputting to only a portion of a larger data structure. If inembed or onembed are set to

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 6

Chapter 2. Using the CUFFT API

NULL, then the CUFFT Library assumes a basic data layout and ignores the other
advanced parameters. If the the advanced parameters are to be used, then all of the
advanced interface parameters should be specified correctly. Advanced parameters are
defined in units of the relevant data type (cufftReal, cufftDoubleReal, cufftComplex,
or cufftDoubleComplex).

The following equations illustrate how these parameters are used to calculate the index for
each element in the input or output array:

b = 0 .. batch− 1

x = 0 .. n[0]− 1

y = 0 .. n[1]− 1

z = 0 .. n[2]− 1

� 1D

input_index = b ∗ idist+ x ∗ istride
output_index = b ∗ odist+ x ∗ ostride

� 2D

input_index = b ∗ idist+ (x ∗ inembed[1]+ y) ∗ istride
output_index = b ∗ odist+ (x ∗ onembed[1]+ y) ∗ ostride

� 3D

input_index = b ∗ idist+ ((x ∗ inembed[1]+ y) ∗ inembed[2]+ z) ∗ istride
output_index = b ∗ odist+ ((x ∗ onembed[1]+ y) ∗ onembed[2]+ z) ∗ ostride

The istride and ostride parameters denote the distance between two successive input
and output elements in the least significant (that is, the innermost) dimension respectively.
In a 1D transform, if every input element is to be used in the transform, istride should
be set to 1; if every other input element is to be used in the transform, then istride
should be set to 2. Similarly, in a 1D transform, if it is desired to output final elements one
after another compactly, ostride should be set to 1; if spacing is desired between the least
significant dimension output data, ostride should be set to the distance between the
elements.

The inembed and onembed parameters define the number of elements in each dimension in
the input array and the output array respectively. The inembed[rank-1] contains the
number of elements in the least significant (innermost) dimension of the input data
excluding the istride elements; the number of total elements in the least significant
dimension of the input array is then istride*inembed[rank-1]. The inembed[0] or
onembed[0] corresponds to the most significant (that is, the outermost) dimension and is

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 7

Chapter 2. Using the CUFFT API

effectively ignored since the idist or odist parameter provides this information instead.
Note that the size of each dimension of the transform should be less than or equal to the
inembed and onembed values for the corresponding dimension, that is n[i] ≤ inembed[i],
n[i] ≤ onembed[i], where i is in 0 .. rank− 1.

The idist and odist parameters indicate the distance between the first element of two
consecutive batches in the input and output data. Once can derive the total input data
size as isize * batch in units of transform elements (e.g. cufftComplex in C2C
single-precision transform).

2.2 Accuracy and Performance

A general DFT can be implemented as a matrix vector multiplication that requires O(N2)
operations. However, the CUFFT Library employs the Cooley-Tukey algorithm
(http://en.wikipedia.org/wiki/Cooley–Tukey_FFT_algorithm) to reduce the number
of required operations to optimize the performance of particular transform sizes. This
algorithm expresses a DFT recursively in terms of smaller DFT building blocks. The
CUFFT Library implements the following DFT building blocks: radix-2, radix-3, radix-5,
and radix-7. Hence the performance of any transform size that can be factored as
2a ∗ 3b ∗ 5c ∗ 7d (where a, b, c, and d are non-negative integers) is optimized in the CUFFT
library. For transform sizes with large prime factors (>49), single dimensional transforms
might be handled by the Bluestein algorithm
(http://en.wikipedia.org/wiki/Bluestein’s_FFT_algorithm), which is built on top of
the Cooley-Tukey algorithm. The accuracy of the Bluestein implementation degrades with
larger sizes compared to the pure Cooley-Tukey code path, specifically in single-precision
mode, due to the accumulation of floating-point operation inaccuracies. On the other
hand, the pure Cooley-Tukey implementation has excellent accuracy, with the relative
error growing proportionally to log2(N), where N is the transform size in points.

For sizes handled by the Cooley-Tukey code path (that is, strict multiples of 2, 3, 5, and
7), the most efficient implementation is obtained by applying the following constraints
(listed in order from the most generic to the most specialized constraint, with each
subsequent constraint providing the potential of an additional performance improvement).

� Restrict the size along all dimensions to be a multiple of 2, 3, 5, or 7 only.
For example, a transform of size 3n will likely be faster than one of size 2i ∗ 3j even if
the latter is slightly smaller.

� Restrict the power-of-two factorization term of the x dimension to be at least a multiple
of either 16 for single-precision transforms or 8 for double-precision transforms.
This aids with memory coalescing on Tesla-class and Fermi-class GPUs.

� Restrict the power-of-two factorization term of the x dimension to be a multiple of either
256 for single-precision transforms or 64 for double-precision transforms.
This further aids with memory coalescing.

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 8

Chapter 2. Using the CUFFT API

� Restrict the x dimension of single-precision transforms to be strictly a power of two
either between 2 and 8192 for Fermi-class GPUs or between 2 and 2048 for earlier
architectures.
These transforms are implemented as specialized hand-coded kernels that keep all
intermediate results in shared memory.

� Use Native compatibility mode for in-place complex-to-real or real-to-complex transforms.
This scheme reduces the write/read of padding bytes hence helping with coalescing
of the data.

Starting with version 3.1 of the CUFFT Library, the conjugate symmetry property of
real-to-complex output data arrays and complex-to-real input data arrays is exploited
when the power-of-two factorization term of the x dimension is at least a multiple of 4.
Large 1D sizes (powers-of-two larger than 65, 536), 2D, and 3D transforms benefit the
most from the performance optimizations in the implementation of real-to-complex or
complex-to-real transforms.

2.3 Streamed CUFFT Transforms

Every CUFFT plan may be associated with a CUDA stream. Once so associated, all
launches of the internal stages of that plan take place through the specified stream.
Streaming of CUFFT execution allows for potential overlap between transforms and
memory copies. (See the NVIDIA CUDA Programming Guide for more information on
streams.) If no stream is associated with a plan, launches take place in stream 0, the
default CUDA stream and no overlap will be possible. Note that many plan executions
require multiple kernel launches.

2.4 Thread Safety

Starting with CUFFT version 4.1, CUFFT Library is thread safe and its functions can be
called from multiple host threads, even with the same plan (cufftHandle).

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 9

Chapter 3
CUFFT Types and Definitions

This section describes the CUFFT API data-types and transform directions.

3.1 cufftHandle

typedef unsigned int cufftHandle;

A handle type used to store and access CUFFT plans. The user receives a handle after
creating a CUFFT plan and uses this handle to execute the plan.

3.2 cufftResult

An enumeration of values used exclusively as API function return values. The possible
return values are defined as follows:

typedef enum cufftResult_t {
CUFFT_SUCCESS, // The CUFFT operation was successful
CUFFT_INVALID_PLAN, // CUFFT was passed an invalid plan handle
CUFFT_ALLOC_FAILED, // CUFFT failed to allocate GPU or CPU memory
CUFFT_INVALID_TYPE, // Unused
CUFFT_INVALID_VALUE, // User specified an invalid pointer or parameter
CUFFT_INTERNAL_ERROR, // Used for all driver and internal CUFFT library errors
CUFFT_EXEC_FAILED, // CUFFT failed to execute an FFT on the GPU
CUFFT_SETUP_FAILED, // The CUFFT library failed to initialize
CUFFT_INVALID_SIZE, // User specified an invalid transform size

} cufftResult;

All CUFFT Library return values (except CUFFT_SUCCESS) indicate that the current
API call failed and the user should reconfigure to correct the problem.

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 10

Chapter 3. CUFFT Types and Definitions

3.3 cufftReal

typedef float cufftReal;

A single-precision, floating-point real data type.

3.4 cufftDoubleReal

typedef double cufftDoubleReal;

A double-precision, floating-point real data type.

3.5 cufftComplex

typedef cuComplex cufftComplex;

A single-precision, floating-point complex data type that consists of interleaved real and
imaginary components.

3.6 cufftDoubleComplex

typedef cuDoubleComplex cufftDoubleComplex;

A double-precision, floating-point complex data type that consists of interleaved real and
imaginary components.

3.7 cufftCompatibility

CUFFT Library defines FFTW compatible data layouts using the following enumeration of
values. See ?? for more details.

typedef enum cufftCompatibility_t {
CUFFT_COMPATIBILITY_NATIVE = 0x00,
CUFFT_COMPATIBILITY_FFTW_PADDING = 0x01, // The default value
CUFFT_COMPATIBILITY_FFTW_ASYMMETRIC = 0x02, // asymmetric input (C2R or Z2D only)
CUFFT_COMPATIBILITY_FFTW_ALL = 0x03, // asymmetric and padding mode

} cufftCompatibility;

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 11

Chapter 3. CUFFT Types and Definitions

3.8 CUFFT Transform Types

The CUFFT library supports complex- and real-data transforms. The cufftType data
type is an enumeration of the types of transform data supported by CUFFT.

typedef enum cufftType_t {
CUFFT_R2C = 0x2a, // Real to complex (interleaved)
CUFFT_C2R = 0x2c, // Complex (interleaved) to real
CUFFT_C2C = 0x29, // Complex to complex (interleaved)
CUFFT_D2Z = 0x6a, // Double to double-complex
CUFFT_Z2D = 0x6c, // Double-complex to double
CUFFT_Z2Z = 0x69 // Double-complex to double-complex

} cufftType;

3.9 CUFFT Transform Directions

The CUFFT library defines forward and inverse Fast Fourier Transforms according to the
sign of the complex exponential term.

#define CUFFT_FORWARD -1
#define CUFFT_INVERSE 1

CUFFT performs un-normalized FFTs; that is, performing a forward FFT on an input
data set followed by an inverse FFT on the resulting set yields data that is equal to the
input scaled by the number of elements. Scaling either transform by the reciprocal of the
size of the data set is left for the user to perform as seen fit.

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 12

Chapter 4
CUFFT API Reference

The CUFFT library initializes internal data upon the first invocation of an API function.
Therefore, all API functions could return the CUFFT_SETUP_FAILED error code if the
library fails to initialize. CUFFT shuts down automatically when all user-created FFT
plans are destroyed.

4.1 Function cufftPlanMany()

cufftResult
cufftPlanMany(cufftHandle *plan, int rank, int *n, int *inembed,

int istride, int idist, int *onembed, int ostride,
int odist, cufftType type, int batch);

Creates a FFT plan configuration of dimension rank, with sizes specified in the array n.
The batch input parameter tells CUFFT how many transforms to be performed. With
this function, batched plans of 1, 2, or 3 dimensions may be created.

cufftPlanMany() API supports more complicated input and output data layouts via the
advanced data layout parameters inembed, istride, idist, onembed, ostride, and odist.

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 13

Chapter 4. CUFFT API Reference

Input
plan Pointer to a cufftHandle object
rank Dimensionality of the transform (1, 2, or 3)
n Array of size rank, describing the size of each dimen-

sion
inembed Pointer of size rank that indicates the storage dimen-

sions of the input data in memory
istride Defines the distance between two successive input ele-

ments in the least significant (i.e., innermost) dimen-
sion

idist Indicates the distance between the first element of two
consecutive batches in the input data

onembed Pointer of size rank that indicates the storage dimen-
sions of the output data in memory

ostride Defines the distance between two successive output
elements in the output array in the least significant
(i.e., innermost) dimension

odist Indicates the distance between the first element of two
consecutive batches in the output data

type The transform data type (e.g., CUFFT_R2C for real to
complex)

batch Batch size for this transform

Output
plan Contains a CUFFT plan handle

Return Values
CUFFT_SUCCESS CUFFT successfully created the FFT plan.
CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.
CUFFT_INVALID_TYPE The type parameter is not supported.
CUFFT_INVALID_VALUE One or more invalid parameters were passed to the

API.
CUFFT_INTERNAL_ERROR An internal driver error was detected.
CUFFT_SETUP_FAILED The CUFFT library failed to initialize.
CUFFT_INVALID_SIZE The nx parameter is not a supported size.

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 14

Chapter 4. CUFFT API Reference

4.2 Function cufftPlan1d()

cufftResult
cufftPlan1d(cufftHandle *plan, int nx, cufftType type, int batch)

Creates a 1D FFT plan configuration for a specified signal size and data type. The batch
input parameter tells CUFFT how many 1D transforms to configure.

Input
plan Pointer to a cufftHandle object
nx The transform size (e.g., 256 for a 256-point FFT)
type The transform data type (e.g., CUFFT_C2C for complex

to complex)
batch Number of transforms of size nx

Output
plan Contains a CUFFT 1D plan handle value

Return Values
CUFFT_SUCCESS CUFFT successfully created the FFT plan.
CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.
CUFFT_INVALID_TYPE The type parameter is not supported.
CUFFT_INVALID_VALUE One or more invalid parameters were passed to the

API.
CUFFT_INTERNAL_ERROR An internal driver error was detected.
CUFFT_SETUP_FAILED The CUFFT library failed to initialize.
CUFFT_INVALID_SIZE The nx parameter is not a supported size.

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 15

Chapter 4. CUFFT API Reference

4.3 Function cufftPlan2d()

cufftResult
cufftPlan2d(cufftHandle *plan, int nx, int ny, cufftType type)

Creates a 2D FFT plan configuration according to specified signal sizes and data type.

Input
plan Pointer to a cufftHandle object
nx The transform size in the x dimension (number of

rows)
ny The transform size in the y dimension (number of

columns)
type The transform data type (e.g., CUFFT_C2R for complex

to real)

Output
plan Contains a CUFFT 2D plan handle value

Return Values
CUFFT_SUCCESS CUFFT successfully created the FFT plan.
CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.
CUFFT_INVALID_TYPE The type parameter is not supported.
CUFFT_INVALID_VALUE One or more invalid parameters were passed to the

API.
CUFFT_INTERNAL_ERROR An internal driver error was detected.
CUFFT_SETUP_FAILED The CUFFT library failed to initialize.
CUFFT_INVALID_SIZE The nx parameter is not a supported size.

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 16

Chapter 4. CUFFT API Reference

4.4 Function cufftPlan3d()

cufftResult
cufftPlan3d(cufftHandle *plan, int nx, int ny, int nz, cufftType type)

Creates a 3D FFT plan configuration according to specified signal sizes and data type.
This function is the same as cufftPlan2d() except that it takes a third size parameter nz.

Input
plan Pointer to a cufftHandle object
nx The transform size in the x dimension
ny The transform size in the y dimension
nz The transform size in the z dimension
type The transform data type (e.g., CUFFT_R2C for real to

complex)

Output
plan Contains a CUFFT 3D plan handle value

Return Values
CUFFT_SUCCESS CUFFT successfully created the FFT plan.
CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.
CUFFT_INVALID_TYPE The type parameter is not supported.
CUFFT_INVALID_VALUE One or more invalid parameters were passed to the

API.
CUFFT_INTERNAL_ERROR An internal driver error was detected.
CUFFT_SETUP_FAILED The CUFFT library failed to initialize.
CUFFT_INVALID_SIZE The nx parameter is not a supported size.

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 17

Chapter 4. CUFFT API Reference

4.5 Function cufftDestroy()

cufftResult
cufftDestroy((cufftHandle plan)

Frees all GPU resources associated with a CUFFT plan and destroys the internal plan
data structure. This function should be called once a plan is no longer needed to avoid
wasting GPU memory.

Input
plan The cufftHandle object of the plan to be destroyed.

Return Values
CUFFT_SUCCESS CUFFT successfully destroyed the FFT plan.
CUFFT_INVALID_PLAN The plan parameter is not a valid handle.
CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 18

Chapter 4. CUFFT API Reference

4.6 Function cufftExecC2C()/cufftExecZ2Z()

cufftResult
cufftExecC2C(cufftHandle *plan, cufftComplex *idata,

cufftComplex *odata, int direction);
cufftResult

cufftExecZ2Z(cufftHandle *plan, cufftDoubleComplex *idata,
cufftDoubleComplex *odata, int direction);

cufftExecC2C(/cufftExecZ2Z) executes a single-precision(/double-precision)
complex-to-complex transform plan in the transform direction as specified by direction
parameter. CUFFT uses the GPU memory pointed to by the idata parameter as input
data. This function stores the Fourier coefficients in the odata array. If idata and odata
are the same, this method does an in-place transform.

Input
plan The cufftHandle object for the plan to update
idata Pointer to the complex input data (in GPU memory)

to transform
odata Pointer to the complex output data (in GPU memory)
direction The transform direction: CUFFT_FORWARD or CUFFT_

INVERSE

Output
odata Contains the complex Fourier coefficients

Return Values
CUFFT_SUCCESS CUFFT successfully created the FFT plan.
CUFFT_INVALID_PLAN The plan parameter is not a valid handle.
CUFFT_INVALID_VALUE At least one of the parameters idata, odata, and

direction is not valid.
CUFFT_INTERNAL_ERROR An internal driver error was detected.
CUFFT_EXEC_FAILED CUFFT failed to execute the transform on the GPU.
CUFFT_SETUP_FAILED The CUFFT library failed to initialize.
CUFFT_UNALIGNED_DATA Unused.

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 19

Chapter 4. CUFFT API Reference

4.7 Function cufftExecR2C()/cufftExecD2Z()

cufftResult
cufftExecR2C(cufftHandle *plan, cufftReal *idata, cufftComplex *odata);

cufftResult
cufftExecD2Z(cufftHandle *plan, cufftDoubleReal *idata, cufftDoubleComplex *odata);

cufftExecR2C(/cufftExecD2Z) executes a single-precision(/double-precision)
real-to-complex (implicitly forward) CUFFT transform plan. CUFFT uses as input data
the GPU memory pointed to by the idata parameter. This function stores the
nonredundant Fourier coefficients in the odata array. idata and odata pointers are both
required to be aligned to cufftComplex data type in single-precision transforms and
cufftDoubleComplex data type in double-precision transforms. If idata and odata are
the same, this method does an in-place transform. Note the data layout differences
between in-place and out-of-place transforms as described in Section 3.8.

Input
plan The cufftHandle object for the plan to update
idata Pointer to the real input data (in GPU memory) to

transform
odata Pointer to the complex output data (in GPU memory)

Output
odata Contains the complex Fourier coefficients

Return Values
CUFFT_SUCCESS CUFFT successfully created the FFT plan.
CUFFT_INVALID_PLAN The plan parameter is not a valid handle.
CUFFT_INVALID_VALUE At least one of the parameters idata and odata is not

valid.
CUFFT_INTERNAL_ERROR An internal driver error was detected.
CUFFT_EXEC_FAILED CUFFT failed to execute the transform on the GPU.
CUFFT_SETUP_FAILED The CUFFT library failed to initialize.
CUFFT_UNALIGNED_DATA Unused.

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 20

Chapter 4. CUFFT API Reference

4.8 Function cufftExecC2R()/cufftExecZ2D

cufftResult
cufftExecC2R(cufftHandle plan, cufftComplex *idata, cufftReal *odata);

cufftResult
cufftExecZ2D(cufftHandle plan, cufftComplex *idata, cufftReal *odata);

cufftExecC2R(/cufftExecZ2D) executes a single-precision(/double-precision)
complex-to-real (implicitly inverse) CUFFT transform plan. CUFFT uses as input data
the GPU memory pointed to by the idata parameter. The input array holds only the
nonredundant complex Fourier coefficients. This function stores the real output values in
the odata array. idata and odata pointers are both required to be aligned to
cufftComplex data type in single-precision transforms and cufftDoubleComplex type in
double-precision transforms. If idata and odata are the same, this method does an
in-place transform.

Input
plan The cufftHandle object for the plan to update
idata Pointer to the complex input data (in GPU memory)

to transform
odata Pointer to the real output data (in GPU memory)

Output
odata Contains the complex Fourier coefficients

Return Values
CUFFT_SUCCESS CUFFT successfully created the FFT plan.
CUFFT_INVALID_PLAN The plan parameter is not a valid handle.
CUFFT_INVALID_VALUE At least one of the parameters idata and odata is not

valid.
CUFFT_INTERNAL_ERROR An internal driver error was detected.
CUFFT_EXEC_FAILED CUFFT failed to execute the transform on the GPU.
CUFFT_SETUP_FAILED The CUFFT library failed to initialize.
CUFFT_UNALIGNED_DATA Unused.

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 21

Chapter 4. CUFFT API Reference

4.9 Function cufftSetStream()

cufftResult
cufftSetStream(cufftHandle plan, cudaStream_t stream);

Associates a CUDA stream with a CUFFT plan. All kernel launches made during plan
execution are now done through the associated stream, enabling overlap with activity in
other streams (for example, data copying). The association remains until the plan is
destroyed or the stream is changed with another call to cufftSetStream().

Input
plan The cufftHandle object to associate with the stream
stream A valid CUDA stream created with

cudaStreamCreate(); 0 for the default stream

Output
odata Contains the real-valued output data

Return Values
CUFFT_SUCCESS The stream was associated with the plan.
CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 22

Chapter 4. CUFFT API Reference

4.10 Function cufftSetCompatibilityMode()

cufftResult
cufftSetCompatibilityMode(cufftHandle plan, cufftCompatibility mode);

Configures the layout of CUFFT output in FFTW-compatible modes. When desired,
FFTW compatibility can be configured for padding only, for asymmetric complex inputs
only, or for full compatibility. If the SetCompatibilityMode() API fails, later
cufftExecute*() calls are not guaranteed to work.

Input
plan The cufftHandle object to associate with the stream
mode The cufftCompatibility option to be used:

CUFFT_COMPATIBILITY_NATIVE
CUFFT_COMPATIBILITY_FFTW_PADDING (default)
CUFFT_COMPATIBILITY_FFTW_ASYMMETRIC
CUFFT_COMPATIBILITY_FFTW_ALL

Return Values
CUFFT_SUCCESS CUFFT successfully executed the FFT plan.
CUFFT_INVALID_PLAN The plan parameter is not a valid handle.
CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 23

Chapter 5
CUFFT Code Examples

This chapter provides six simple examples of complex and real 1D, 2D, and 3D transforms
that use CUFFT to perform forward and inverse FFTs.

5.1 1D Complex-to-Complex Transforms

#de f i n e NX 256
#de f i n e BATCH 10

cufftHandle plan ;
cufftComplex ∗data ;
cudaMalloc ((void ∗∗)&data , s i z e o f (cufftComplex) ∗NX∗BATCH) ;
i f (cudaGetLastError () != cudaSuccess) {

fprintf (stderr , "Cuda e r r o r : Fa i l ed to a l l o c a t e \n") ;
r e turn ;

}

/∗ Create a 1D FFT plan . ∗/
i f (cufftPlan1d(&plan , NX , CUFFT_C2C , BATCH) != CUFFT_SUCCESS) {

fprintf (stderr , "CUFFT e r r o r : Plan c r e a t i on f a i l e d ") ;
r e turn ;

}

/∗ Use the CUFFT plan to trans form the s i g n a l in p lace . ∗/
i f (cufftExecC2C (plan , data , data , CUFFT_FORWARD) != CUFFT_SUCCESS) {

fprintf (stderr , "CUFFT e r r o r : ExecC2C Forward f a i l e d ") ;
r e turn ;

}

/∗ Inve r s e trans form the s i g n a l in p lace . ∗/
i f (cufftExecC2C (plan , data , data , CUFFT_INVERSE) != CUFFT_SUCCESS) {

fprintf (stderr , "CUFFT e r r o r : ExecC2C Inve r s e f a i l e d ") ;
r e turn ;

}

/∗ Note :
(1) Divide by number o f e lements in data s e t to get back o r i g i n a l data
(2) I d e n t i c a l p o i n t e r s to input and output ar rays imp l i e s in−p lace
t rans fo rmat ion
∗/

i f (cudaThreadSynchronize () != cudaSuccess) {

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 24

Chapter 5. CUFFT Code Examples

fprintf (stderr , "Cuda e r r o r : Fa i l ed to synchron ize \n") ;
r e turn ;

}

/∗ Destroy the CUFFT plan . ∗/
cufftDestroy (plan) ;
cudaFree (data) ;

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 25

Chapter 5. CUFFT Code Examples

5.2 1D Real-to-Complex Transforms

#de f i n e NX 256
#de f i n e BATCH 10

cufftHandle plan ;
cufftComplex ∗data ;
cudaMalloc ((void ∗∗)&data , s i z e o f (cufftComplex) ∗(NX/2+1)∗BATCH) ;
i f (cudaGetLastError () != cudaSuccess) {

fprintf (stderr , "Cuda e r r o r : Fa i l ed to a l l o c a t e \n") ;
r e turn ;

}

/∗ Create a 1D FFT plan . ∗/
i f (cufftPlan1d(&plan , NX , CUFFT_R2C , BATCH) != CUFFT_SUCCESS) {

fprintf (stderr , "CUFFT e r r o r : Plan c r e a t i on f a i l e d ") ;
r e turn ;

}

/∗ Use the CUFFT plan to trans form the s i g n a l in p lace . ∗/
i f (cufftExecR2C (plan , (cufftReal ∗) data , data) != CUFFT_SUCCESS) {

fprintf (stderr , "CUFFT e r r o r : ExecC2C Forward f a i l e d ") ;
r e turn ;

}

/∗ Note :
(1) Divide by number o f e lements in data s e t to get back o r i g i n a l data
(2) I d e n t i c a l p o i n t e r s to input and output ar rays imp l i e s in−p lace
t rans fo rmat ion
∗/

i f (cudaThreadSynchronize () != cudaSuccess) {
fprintf (stderr , "Cuda e r r o r : Fa i l ed to synchron ize \n") ;
r e turn ;

}

/∗ Destroy the CUFFT plan . ∗/
cufftDestroy (plan) ;
cudaFree (data) ;

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 26

Chapter 5. CUFFT Code Examples

5.3 2D Complex-to-Real Transforms

#de f i n e NX 256
#de f i n e NY 128
#de f i n e NRANK 2

cufftHandle plan ;
cufftComplex ∗data ;
i n t n [NRANK] = {NX , NY } ;

cudaMalloc ((void ∗∗)&data , s i z e o f (cufftComplex) ∗NX ∗(NY/2+1)) ;
i f (cudaGetLastError () != cudaSuccess) {

fprintf (stderr , "Cuda e r r o r : Fa i l ed to a l l o c a t e \n") ;
r e turn ;

}

/∗ Create a 2D FFT plan . ∗/
i f (cufftPlanMany(&plan , NRANK , n ,

NULL , 1 , 0 ,
NULL , 1 , 0 ,
CUFFT_C2R , BATCH) != CUFFT_SUCCESS) {

fprintf (stderr , "CUFFT Error : Unable to c r e a t e plan \n") ;
r e turn ;

}

i f (cufftSetCompatibilityMode (plan , CUFFT_COMPATIBILITY_NATIVE) != CUFFT_SUCCESS) {
fprintf (stderr , "CUFFT Error : Unable to s e t c ompa t i b i l i t y mode to nat ive \n") ;
r e turn ;

}

/∗ Use the CUFFT plan to trans form the s i g n a l out o f p lace . ∗/
i f (cufftExecC2R (plan , data , data) != CUFFT_SUCCESS) {

fprintf (stderr , "CUFFT Error : Unable to execute plan \n") ;
r e turn ;

}

i f (cudaThreadSynchronize () != cudaSuccess) {
fprintf (stderr , "Cuda e r r o r : Fa i l ed to synchron ize \n") ;
r e turn ;

}

/∗ Destroy the CUFFT plan . ∗/
cufftDestroy (plan) ;
cudaFree (data) ;

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 27

Chapter 5. CUFFT Code Examples

5.4 3D Complex-to-Complex Transforms

#de f i n e NX 64
#de f i n e NY 128
#de f i n e NX 128
#de f i n e BATCH 10
#de f i n e NRANK 3

cufftHandle plan ;
cufftComplex ∗data ;
i n t n [NRANK] = {NX , NY , NZ } ;

cudaMalloc ((void ∗∗)&data , s i z e o f (cufftComplex) ∗NX∗NY∗NZ∗BATCH) ;
i f (cudaGetLastError () != cudaSuccess) {

fprintf (stderr , "Cuda e r r o r : Fa i l ed to a l l o c a t e \n") ;
r e turn ;

}

/∗ Create a 3D FFT plan . ∗/
i f (cufftPlanMany(&plan , NRANK , n ,

NULL , 1 , NX∗NY∗NZ , // ∗inembed , i s t r i d e , i d i s t
NULL , 1 , NX∗NY∗NZ , // ∗onembed , o s t r i d e , od i s t
CUFFT_C2C , BATCH) != CUFFT_SUCCESS) {

fprintf (stderr , "CUFFT e r r o r : Plan c r e a t i on f a i l e d ") ;
r e turn ;

}

/∗ Use the CUFFT plan to trans form the s i g n a l in p lace . ∗/
i f (cufftExecC2C (plan , data , data , CUFFT_FORWARD) != CUFFT_SUCCESS) {

fprintf (stderr , "CUFFT e r r o r : ExecC2C Forward f a i l e d ") ;
r e turn ;

}

/∗ Inve r s e trans form the s i g n a l in p lace . ∗/
i f (cufftExecC2C (plan , data , data , CUFFT_INVERSE) != CUFFT_SUCCESS) {

fprintf (stderr , "CUFFT e r r o r : ExecC2C Inve r s e f a i l e d ") ;
r e turn ;

}

/∗ Note :
(1) Divide by number o f e lements in data s e t to get back o r i g i n a l data
(2) I d e n t i c a l p o i n t e r s to input and output ar rays imp l i e s in−p lace
t rans fo rmat ion
∗/

i f (cudaThreadSynchronize () != cudaSuccess) {
fprintf (stderr , "Cuda e r r o r : Fa i l ed to synchron ize \n") ;
r e turn ;

}

/∗ Destroy the CUFFT plan . ∗/
cufftDestroy (plan) ;
cudaFree (data) ;

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 28

Chapter 5. CUFFT Code Examples

5.5 2D Advanced Data Layout Use

#de f i n e NX 128
#de f i n e NY 256
#de f i n e BATCH 10
#de f i n e NRANK 2

/∗ Advanced i n t e r f a c e parameters , a r b i t r a r y s t r i d e s ∗/
#de f i n e ISTRIDE 2
#de f i n e OSTRIDE 1
#de f i n e IX (NX+2)
#de f i n e IY (NY+1)
#de f i n e OX (NX+3)
#de f i n e OY (NY+4)
#de f i n e IDIST (IX∗IY∗ISTRIDE+3)
#de f i n e ODIST (OX∗OY∗OSTRIDE+5)

cufftHandle plan ;
cufftComplex ∗idata , ∗odata ;
i n t isize = IDIST ∗ BATCH ;
i n t osize = ODIST ∗ BATCH ;
i n t n [NRANK] = {NX , NY } ;
i n t inembed [NRANK] = {IX , IY } ;
i n t onembed [NRANK] = {OX , OY } ;

cudaMalloc ((void ∗∗)&idata , s i z e o f (cufftComplex) ∗isize) ;
cudaMalloc ((void ∗∗)&odata , s i z e o f (cufftComplex) ∗osize) ;
i f (cudaGetLastError () != cudaSuccess) {

fprintf (stderr , "Cuda e r r o r : Fa i l ed to a l l o c a t e \n") ;
r e turn ;

}

/∗ Create a batched 2D plan ∗/
i f (cufftPlanMany(&plan , NRANK , n ,

inembed , ISTRIDE , IDIST ,
onembed , OSTRIDE , ODIST ,
CUFFT_C2C , BATCH) != CUFFT_SUCCESS) {

fprintf (stderr , "CUFFT Error : Unable to c r e a t e plan \n") ;
r e turn ;

}

/∗ Execute the trans form out−of−p lace ∗/
i f (cufftExecC2C (plan , idata , odata , CUFFT_FORWARD) != CUFFT_SUCCESS) {

fprintf (stderr , "CUFFT Error : Fa i l ed to execute plan \n") ;
r e turn ;

}

i f (cudaThreadSynchronize () != cudaSuccess) {
fprintf (stderr , "Cuda e r r o r : Fa i l ed to synchron ize \n") ;
r e turn ;

}

/∗ Destroy the CUFFT plan ∗/
cufftDestroy (plan) ;
cudaFree (idata) ;
cudaFree (odata) ;

CUDA Toolkit 4.2 CUFFT Library PG-05327-040_v01 | 29

www.nvidia.com

Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

Trademarks
NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S.
and other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright
© 2012 NVIDIA Corporation. All rights reserved.

	Contents
	1 Introduction
	2 Using the CUFFT API
	2.1 Data Layout
	2.1.1 FFTW Compatibility Mode
	2.1.2 Advanced Data Layout

	2.2 Accuracy and Performance
	2.3 Streamed CUFFT Transforms
	2.4 Thread Safety

	3 CUFFT Types and Definitions
	3.1 cufftHandle
	3.2 cufftResult
	3.3 cufftReal
	3.4 cufftDoubleReal
	3.5 cufftComplex
	3.6 cufftDoubleComplex
	3.7 cufftCompatibility
	3.8 CUFFT Transform Types
	3.9 CUFFT Transform Directions

	4 CUFFT API Reference
	4.1 Function cufftPlanMany()
	4.2 Function cufftPlan1d()
	4.3 Function cufftPlan2d()
	4.4 Function cufftPlan3d()
	4.5 Function cufftDestroy()
	4.6 Function cufftExecC2C()/cufftExecZ2Z()
	4.7 Function cufftExecR2C()/cufftExecD2Z()
	4.8 Function cufftExecC2R()/cufftExecZ2D
	4.9 Function cufftSetStream()
	4.10 Function cufftSetCompatibilityMode()

	5 CUFFT Code Examples
	5.1 1D Complex-to-Complex Transforms
	5.2 1D Real-to-Complex Transforms
	5.3 2D Complex-to-Real Transforms
	5.4 3D Complex-to-Complex Transforms
	5.5 2D Advanced Data Layout Use

