Matplotlib
Release 0.98

Darren Dale, Michael Droettboom, Eric Firing, John Hunter

August 07, 2008

CONTENTS

The Matplotlib User’s Guide 1
Introduction 3
Installing 5
2.1 Dependencieso e e e e e e e e e e e e e e e 5
pyplot tutorial 7
3.1 Controlling line properties e e e 10
3.2 Working with multiple figures and axes, 12
3.3 Working with text oL e e 14
Interactive navigation 19
Customizing matplotlib 21
5.1 Thematplotlibrcfile e 21
5.2 DynamicrC Settings i .t e e e e e e e e e e e e e e e 21
Working with text 29
6.1 Textintroductiono e e e e e 29
6.2 Basictextcommandso e e e e 29
6.3 Textproperties and layout Lo 31
6.4 Writing mathematical Xpressions it ie e e eeeee 34
6.5 Textrendering With LaTeX 44
6.6 Annotatin@ teXt e e e e e e e e e e e 47
Artist tutorial 51
7.1 Customizing your ObJeCtS e 53
7.2 ObJect CONtAINeTS v v v v e et e e e e e e e e e e e e e e e e e e 55
7.3 Figure container i i e e e e e e e e e e e 55
T4 AXESCONMAINGT v v v v ittt e e e e e e e e e e e e 57
7.5 AXISCONLAINETS . . . v v v v v v v e et et e e e e e e e e e e e e e e 59
7.6 Tickcontainers L e e e e e e 62
Event handling and picking 65
8.1 Eventconnections i e e e 65

8.2
8.3

Eventattributes e e e e
Object picking e e e e e

I The Matplotlib FAQ

9 Installation

9.1
9.2
9.3
9.4
9.5
9.6

matplotlib compiled fine, but I can’t get anythingtoplot
How do I cleanly rebuild and reinstall everything?
Backendso e
OS-X qQUESLIONS . . .« v v o o e e e e e e e e e e e e e e e
Windows qUeSLIONS o o o e e e e e e e e e e

10 Troubleshooting

10.1
10.2
10.3
10.4
10.5

What is my matplotlib version?o L
Where is matplotlib installed?
Where is my .matplotlib directory? L
How do Ireport a problem? e
I am having trouble with a recent svn update, what should I do?

11 Howto

11.1
11.2
11.3
114
11.5
11.6
11.7
11.8

How do I configure the tick linewidths?,
How do I align my ylabels across multiple subplots?
How do I use matplotlib in a web application server?

12 Environment Variables

12.1
12.2

Setting environment variables in Linux and OS-X
Setting environment variables inwindowso oL oL,

III The Matplotlib Developers’s Guide

13 Coding guide

13.1
13.2
13.3
13.4

Version control
Styleguide L e
Documentation and docstrings oL e e e
Licenses o e e

14 Documenting matplotlib

14.1
14.2
14.3
14.4

Getting started L L e e e
Organization of matplotlib’s documentation
Formatting L L e
Figures e e e e

75

77
77
77
78
79
80
81

83
83
83
84
84
85

87
87
88
88
89
91
91
92
93

95
95
96

97

929
99
100
103
104

15

16

17

18

14.5 Referringtompldocumentso e
14.6 Internal sectionreferences L e e
14.7 Section NAmMES, €IC v v v o e e e e e e e e e e e e e e e e
14.8 Inheritance diagrams L L e e e e
149 Emacshelpers e e e e e e

Doing a matplolib release

I5.1 TeSting v o i i e e e e e e e e
15.2 Packaging e e e e
153 Uploading o . e e
154 Announcing e e e e e e e e

Working with transformations
16.1 matplotlib.transforms e
16.2 matplotlib.path. e e

Adding new scales and projections to matplotlib
17.1 Creatinganewscale i i it e e
17.2 Creating a new projection o v vt v vt e e e e e e e e

Docs outline
18.1 REVIEWEI NOES v v o e e e e e e e e e e e e e e e e e

IV The Matplotlib API

19

20

21

22

23

24

25

matplotlib configuration
19.1 matplotlib e e e e e e e

matplotlib afm
20.1 matplotlib.afm e

matplotlib artists

21.1 matplotlib.artist e e e
21.2 matplotlib.lines e
21.3 matplotlib.patches
21.4 matplotlib.text e e e

matplotlib figure
22.1 matplotlib.figure e e e

matplotlib axes
23.1 matplotlib.axes e e

matplotlib axis
24.1 matplotlib.axis. e e e e e

matplotlib cbook
25.1 matplotlib.cbook

115
115
115
115
116

117
117
133

137
137
138

139
143

145

147
147

151
151

153
153
160
165
178

187
187

201
201

291
291

299

26 matplotlib cm
26.1 matplotlib.cm

27 matplotlib collections
27.1 matplotlib.collections.

28 matplotlib colorbar
28.1 matplotlib.colorbar

29 matplotlib colors
29.1 matplotlib.colors

30 matplotlib pyplot
30.1 matplotlib.pyplot

31 matplotlib backends
31.1 matplotlib.backend_bases
31.2 matplotlib.backends.backend_gtkagg
31.3 matplotlib.backends.backend_qgt4agg
31.4 matplotlib.backends.backend_wxagg

V Glossary

309
309

311
311

321
321

323
323

329
329

433
433
445
445
445

447

Part I

The Matplotlib User’s Guide

CHAPTER
ONE

Introduction

matplotlib is a library for making 2D plots of arrays in Python. Although it has its origins in emulating
the MATLAB™ graphics commands, it does not require MATLAB, and can be used in a Pythonic, object
oriented way. Although matplotlib is written primarily in pure Python, it makes heavy use of NumPy and
other extension code to provide good performance even for large arrays.

matplotlib is designed with the philosophy that you should be able to create simple plots with just a few
commands, or just one! If you want to see a histogram of your data, you shouldn’t need to instantiate
objects, call methods, set properties, and so on; it should just work.

For years, I used to use MATLAB exclusively for data analysis and visualization. MATLAB excels at mak-
ing nice looking plots easy. When I began working with EEG data, I found that I needed to write applications
to interact with my data, and developed and EEG analysis application in MATLAB. As the application grew
in complexity, interacting with databases, http servers, manipulating complex data structures, I began to
strain against the limitations of MATLAB as a programming language, and decided to start over in Python.
Python more than makes up for all of MATLAB’s deficiencies as a programming language, but I was having
difficulty finding a 2D plotting package (for 3D VTK) more than exceeds all of my needs).

When I went searching for a Python plotting package, I had several requirements:

e Plots should look great - publication quality. One important requirement for me is that the text looks
good (antialiased, etc.)

Postscript output for inclusion with TeX documents

Embeddable in a graphical user interface for application development

Code should be easy enough that I can understand it and extend it

Making plots should be easy

Finding no package that suited me just right, I did what any self-respecting Python programmer would do:
rolled up my sleeves and dived in. Not having any real experience with computer graphics, I decided to
emulate MATLAB’s plotting capabilities because that is something MATLAB does very well. This had the
added advantage that many people have a lot of MATLAB experience, and thus they can quickly get up to
steam plotting in python. From a developer’s perspective, having a fixed user interface (the pylab interface)
has been very useful, because the guts of the code base can be redesigned without affecting user code.

The matplotlib code is conceptually divided into three parts: the pylab interface is the set of functions
provided by matplotlib.pylab which allow the user to create plots with code quite similar to MATLAB

http://www.python.org
http://www.mathworks.com
http://www.numpy.org
http://www.vtk.org/

Matplotlib, Release 0.98

figure generating code. The matplotlib frontend or matplotlib API is the set of classes that do the heavy
lifting, creating and managing figures, text, lines, plots and so on. This is an abstract interface that knows
nothing about output. The backends are device dependent drawing devices, aka renderers, that transform
the frontend representation to hardcopy or a display device. Example backends: PS creates PostScript®
hardcopy, SVG creates Scalable Vector Graphics hardcopy, Agg creates PNG output using the high quality
Anti-Grain Geometry library that ships with matplotlib, GTK embeds matplotlib in a Gtk+ application,
GTKAgg uses the Anti-Grain renderer to create a figure and embed it a Gtk+ application, and so on for
PDF, WxWidgets, Tkinter etc.

matplotlib is used by many people in many different contexts. Some people want to automatically generate
PostScript® files to send to a printer or publishers. Others deploy matplotlib on a web application server to
generate PNG output for inclusion in dynamically-generated web pages. Some use matplotlib interactively
from the Python shell in Tkinter on Windows™. My primary use is to embed matplotlib in a Gtk+ EEG
application that runs on Windows, Linux and Macintosh OS X.

http://http://www.adobe.com/products/postscript/
http://www.w3.org/Graphics/SVG/
http://www.antigrain.com
http://www.gtk.org/
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.wxpython.org/
http://docs.python.org/lib/module-Tkinter.html

CHAPTER
TWO

Installing

2.1 Dependencies

Requirements

These are external packages which you will need to install before installing matplotlib. Windows users
only need the first two (python and numpy) since the others are built into the matplotlib windows installers
available for download at the sourceforge site.

python 2.4 (or later but not python3) matplotlib requires python 2.4 or later (download)
numpy 1.1 (or later) array support for python (download)

libpng 1.1 (or later) library for loading and saving PNG files (download). libpng requires zlib. If you are
a windows user, you can ignore this since we build support into the matplotlib single click installer

Jreetype 1.4 (or later) library for reading true type font files. If you are a windows user, you can ignore this
since we build support into the matplotlib single click installer.

Optional

These are optional packages which you may want to install to use matplotlib with a user interface toolkit.
See What is a backend? for more details on the optional matplotlib backends and the capabilities they
provide

tk 8.3 or later The TCL/Tk widgets library used by the TkAgg backend
pyqt 3.1 or later The Qt3 widgets library python wrappers for the QtAgg backend
pyqt 4.0 or later The Qt4 widgets library python wrappersfor the Qt4Agg backend

pygtk 2.2 or later The python wrappers for the GTK widgets library for use with the GTK or GTKAgg
backend

wxpython 2.6 or later The python wrappers for the wx widgets library for use with the WXAgg backend
wxpython 2.8 or later The python wrappers for the wx widgets library for use with the WX backend

pyfltk 1.0 or later The python wrappers of the FLTK widgets library for use with FLTKAgg

http://www.python.org/download/
http://sourceforge.net/project/showfiles.php?group_id=1369\&package_id=175103
http://www.libpng.org/pub/png/libpng.html

Matplotlib, Release 0.98

Required libraries that ship with matplotlib

If you are downloading matplotlib or installing from source or subversion, you can ignore this section. This
is useful for matplotlib developers and packagers who may want to disable the matplotlib version and ship
a packaged version.

agg 2.4 The antigrain C++ rendering engine
pytz 2007g or later timezone handling for python datetime objects

dateutil 1.1 or later extensions to python datetime handling

Optional libraries that ship with matplotlib

As above, if you are downloading matplotlib or installing from source or subversion, you can ignore this
section. This is useful for matplotlib developers and packagers who may want to disable the matplotlib
version and ship a packaged version.

enthought traits 2.6 The traits component of the Enthought Tool Suite used in the experimental matplotlib
traits rc system. matplotlib has decided to stop installing this library so packagers should not distribute
the version included with matplotlib. packagers do not need to list this as a requirement because the
traits support is experimental and disabled by default.

CHAPTER
THREE

Pyplot tutorial

matplotlib.pyplot is a collection of command style functions that make matplotlib work like matlab.
Each pyplot function makes some change to a figure: eg, create a figure, create a plotting area in a figure,
plot some lines in a plotting area, decorate the plot with labels, etc.... matplotlib.pyplot is stateful, in
that it keeps track of the current figure and plotting area, and the plotting functions are directed to the current
axes

import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.ylabel(’some numbers’)
plt.show()

Matplotlib, Release 0.98

3.0 T T T

2.0

some numbers

1'8.0 0.5 1.0 1.5 2.0

You may be wondering why the x-axis ranges from 0-3 and the y-axis from 1-4. If you provide a single list
or array to the plot () command, matplotlib assumes it a sequence of y values, and automatically generates
the x values for you. Since python ranges start with 0, the default x vector has the same length as y but starts
with 0. Hence the x data are [0,1,2,3].

plot() is a versatile command, and will take an arbitrary number of arguments. For example, to plot x
versus y, you can issue the command:

plt.plot([1,2,3,4], [1,4,9,16]1)

For every X, y pair of arguments, there is a optional third argument which is the format string that indicates
the color and line type of the plot. The letters and symbols of the format string are from matlab, and you
concatenate a color string with a line style string. The default format string is ‘b-*, which is a solid blue line.
For example, to plot the above with red circles, you would issue

import matplotlib.pyplot as plt
plt.plot([1,2,3,4], [1,4,9,16], ’'ro’)
plt.axis([0, 6, 0, 20])

Matplotlib, Release 0.98

20 T T T T
("]

15F 1

10f 1
(]
5; .
("]
(]
OO 1 2 3 4 5 6

See the plot () documentation for a complete list of line styles and format strings. The axis() command
in the example above takes a list of [xmin, xmax, ymin, ymax] and specifies the viewport of the axes.

If matplotlib were limited to working with lists, it would be fairly useless for numeric processing. Generally,
you will use numpy arrays. In fact, all sequences are converted to numpy arrays internally. The example
below illustrates a plotting several lines with different format styles in one command using arrays.

import numpy as np
import matplotlib.pyplot as plt

evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)

red dashes, blue squares and green triangles
plt.plot(t, t, ’'r--', t, t**2, 'bs’, t, t**3, 'g*’)

http://numpy.scipy.org

Matplotlib, Release 0.98

120 T T T

100} i

80

60

40

T
>
!

20 A m "

3.1 Controlling line properties

Lines have many attributes that you can set: linewidth, dash style, antialiased, etc; see
matplotlib.lines.Line2D. There are several ways to set line properties

e Use keyword args:

plt.plot(x, y, linewidth=2.0)

Use the setter methods of the Line2D instance. plot returns a list of lines; eg linel, line2 =
plot(x1l,yl,x2,x2). Below I have only one line so it is a list of 7 length 1. I use tuple unpacking in
the 1ine, = plot(x, y, ’'0’) to get the first element of the list:

line, = plt.plot(x, y, '0’)
line.set_antialiased(False) # turn off antialising

Use the setp() command. The example below uses matlab handle graphics style command to set
multiple properties on a list of lines. setp works transparently with a list of objects or a single object.
You can either use python keyword arguments or matlab-style string/value pairs:

10

Matplotlib, Release 0.98

lines = plt.plot(x1l, yl1,
use keyword args
plt.setp(lines, color="r’, linewidth=2.0)
or matlab style string value pairs

X2, y2)

plt.setp(lines, ’color’, ’r’, ’linewidth’, 2.0)

Here are the available Line2D properties.

linewidth or Iw

lod

marker

markeredgecolor or mec
markeredgewidth or mew
markerfacecolor or mfc
markersize or ms

Property Value Type

alpha float

animated [True | False]

antialiased or aa [True | False]

clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]

clip_path a Path instance and a Transform instance, a Patch
color or ¢ any matplotlib color

contains the hit testing function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]

dashes sequence of on/off ink in points

data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string

linestyle or 1s -] | “steps’ | ...]

float value in points

[True | False]
7527 | 537 4
any matplotlib color

float value in points

any matplotlib color

float

picker used in interactive line selection
pickradius the line pick selection radius
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]

transform a matplotlib.transforms.Transform instance
visible [True | False]

xdata np.array

ydata np.array

zorder any number

To get a list of settable line properties, call the setp () function with a line or lines as argument

In [69]: lines = plot([1,2,3])

In [70]: setp(lines)
alpha: float

animated: [True | False]

11

Matplotlib, Release 0.98

antialiased or aa: [True | False]
...snip

3.2 Working with multiple figures and axes

Matlab, and pyplot, have the concept of the current figure and the current axes. All plotting commands ap-
ply to the current axes. The function gca () returns the current axes (amatplotlib.axes.Axes instance),
and gcf () returns the current figure (matplotlib.figure.Figure instance). Normally, you don’t have to
worry about this, because it is all taken care of behind the scenes. Below is an script to create two subplots.

import numpy as np
import matplotlib.pyplot as plt

def f(t):

return np.exp(-t) * np.cos(2*np.pi*t)
tl = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)

plt.figure(l)
plt.subplot(211)
plt.plot(tl, £(tl1l), ’bo’, t2, £(t2), ’'k’)

plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), ’'r--")

12

Matplotlib, Release 0.98

1.0 T T T

0.8

0.6 1

0.4

0.2

0.0
-0.2
-0.4
—0.6 1
-0.8 : : : ‘

T
Il

T
L

T
L

T
L

T
L

1.0 7™~ 7T T~ 7T~

0.0 \ | \ I \

-0.5

T
—_
-~
—_
-~

-1.0 Ny ! \

The figure() command here is optional because figure(l) will be created by default, just as a
subplot(111) will be created by default if you don’t manually specify an axes. The subplot() com-
mand specifies numrows, numcols, fignum where fignum ranges from 1 to numrows*numcols. The
commas in the subplot command are optional if “numrows*numcols<10. So subplot(211) is
identical to subplot(2,1,1). You can create an arbitrary number of subplots and axes. If you want to
place an axes manually, ie, not on a rectangular grid, use the axes () command, which allows you to spec-
ify the location as axes([left, bottom, width, height]) where all values are in fractional (O to 1)
coordinates. See axes_demo.py for an example of placing axes manually and line_styles.py for an example
with lots-o-subplots.

You can create multiple figures by using multiple figure() calls with an increasing figure number. Of
course, each figure can contain as many axes and subplots as your heart desires:

import matplotlib.pyplot as plt

plt.figure(l) # the first figure

plt.subplot(211) # the first subplot in the first figure
plt.plot([1,2,3])

plt.subplot(212) # the second subplot in the first figure

plt.plot([4,5,6])

plt.figure(2) # a second figure
plt.plot([4,5,6]) # creates a subplot(111) by default

13

http://matplotlib.sf.net/examples/axes_demo.py
http://matplotlib.sf.net/examples/line_styles.py

Matplotlib, Release 0.98

plt.figure(l) # figure 1 current; subplot(212) still current
plt.subplot(211) # make subplot(211) in figurel current
plt.title('Easy as 1,2,3") # subplot 211 title

You can clear the current figure with c1£() and the current axes with cla(). If you find this statefulness,
annoying, don’t despair, this is just a thin stateful wrapper around an object oriented API, which you can
use instead (see Artist tutorial)

3.3 Working with text

The text () command can be used to add text in an arbitrary location, and the x1abel (), ylabel () and
title() are used to add text in the indicated locations (see Text introduction for a more detailed example)

import numpy as np
import matplotlib.pyplot as plt

mu, sigma = 100, 15
X = mu + sigma * np.random.randn(10000)

the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g’, alpha=0.75)

plt.xlabel(’Smarts’)

plt.ylabel (’Probability’)
plt.title('Histogram of IQ’)

plt.text(60, .025, r’$\mu=100,\ \sigma=15%’)
plt.axis([40, 160, 0, 0.03])

plt.grid(True)

14

Matplotlib, Release 0.98

0.030

0.025

0.020

0.015

Probability

0.010

0.005

0'00910 60 80 100 120 140 160

Smarts

All of the text () commands return an matplotlib.text.Text instance. Just as with with lines above,
you can customize the properties by passing keyword arguments into the text functions or using setp():

t = plt.xlabel('my data’, fontsize=14, color="red’)

These properties are covered in more detail in Text properties and layout.

3.3.1 Using mathematical expressions in text

matplotlib accepts TeX equation expressions in any text expression. For example to write the expression
o = 15 in the title, you can write a TeX expression surrounded by dollar signs:

plt.title(r’$\sigma_i=15%")

The r preceeding the title string is important — it signifies that the string is a raw string and not to treate
backslashes and python escapes. matplotlib has a built-in TeX expression parser and layout engine, and
ships its own math fonts — for details see Writing mathematical expressions. Thus you can use mathematical
text across platforms without requiring a TeX installation. For those who have LaTeX and dvipng installed,
you can also use LaTeX to format your text and incorporate the output directly into your display figures or
saved postscript — see Text rendering With LaTeX.

15

Matplotlib, Release 0.98

3.3.2 Annotating text

The uses of the basic text () command above place text at an arbitrary position on the Axes. A common use
case of text is to annotate some feature of the plot, and the annotate () method provides helper functionality
to make annotations easy. In an annotation, there are two points to consider: the location being annotated
represented by the argument xy and the location of the text xytext. Both of these arguments are (x,y)
tuples.

import numpy as np
import matplotlib.pyplot as plt

ax = plt.subplot(l111)

t = np.arange(0.0, 5.0, 0.01)

s = np.cos(2*np.pi*t)

line, = plt.plot(t, s, lw=2)

plt.annotate(’local max’, xy=(2, 1), xytext=(3, 1.5),
arrowprops=dict(facecolor="black’, shrink=0.05),

)

plt.ylim(-2,2)
plt.show()

2.0 T T T

1.5F local max i

T
L

-1.5

-2.0

16

Matplotlib, Release 0.98

In this basic example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates.
There are a variety of other coordinate systems one can choose — see Annotating text for details. More
examples can be found in the annotations demo

17

http://matplotlib.sf.net/examples/pylab_examples/annotation_demo.py

18

CHAPTER
FOUR

Interactive navigation

OO+ - Ba

All figure windows come with a navigation toolbar, which can be used to navigate through the data set. Here
is a description of each of the buttons at the bottom of the toolbar

,ﬁi\

o
o

The Forward and Back buttons These are akin to the web browser forward and back buttons. They are

XX

used to navigate back and forth between previously defined views. They have no meaning unless you
have already navigated somewhere else using the pan and zoom buttons. This is analogous to trying
to click Back on your web browser before visiting a new page —nothing happens. Home always takes
you to the first, default view of your data. For Home, Forward and Back, think web browser where
data views are web pages. Use the pan and zoom to rectangle to define new views.

The Pan/Zoom button This button has two modes: pan and zoom. Click the toolbar button to activate

panning and zooming, then put your mouse somewhere over an axes. Press the left mouse button
and hold it to pan the figure, dragging it to a new position. When you release it, the data under the
point where you pressed will be moved to the point where you released. If you press ‘x’ or ‘y’ while
panning the motion will be contrained to the x or y axis, respectively. Press the right mouse button
to zoom, dragging it to a new position. The x axis will be zoomed in proportionate to the rightward
movement and zoomed out proportionate to the leftward movement. Ditto for the yaxis and up/down
motions. The point under your mouse when you begin the zoom remains stationary, allowing you to
zoom to an arbitrary point in the figure. You can use the modifier keys ‘x’, ‘y’ or ‘CONTROL’ to
constrain the zoom to the x axes, the y axes, or aspect ratio preserve, respectively.

With polar plots, the pan and zoom functionality behaves differently. The radius axis labels can be
dragged using the left mouse button. The radius scale can be zoomed in and out using the right mouse
button.

19

Matplotlib, Release 0.98

The Zoom-to-rectangle button Click this toolbar button to activate this mode. Put your mouse some-
where over and axes and press the left mouse button. Drag the mouse while holding the button to
a new location and release. The axes view limits will be zoomed to the rectangle you have defined.
There is also an experimental ‘zoom out to rectangle’ in this mode with the right button, which will
place your entire axes in the region defined by the zoom out rectangle.

&t

The Subplot-configuration button Use this tool to configure the parameters of the subplot: the left,
right, top, bottom, space between the rows and space between the columns.

The Save button Click this button to launch a file save dialog. You can save files with the following
extensions: png, ps, eps, svg and pdf.

If you are using matplotlib.pyplot the toolbar will be created automatically for every figure. If you are
writing your own user interface code, you can add the toolbar as a widget. The exact syntax depends on
your U, but we have examples for every supported Ul in the matplotlib/examples/user_interfaces
directory. Here is some example code for GTK:

from matplotlib.figure import Figure
from matplotlib.backends.backend_gtkagg import FigureCanvasGTKAgg as FigureCanvas
from matplotlib.backends.backend_gtkagg import NavigationToolbar2GTKAgg as NavigationToolbar

win = gtk.Window()

win.connect("destroy", lambda x: gtk.main_quit())
win.set_default_size(400,300)
win.set_title("Embedding in GTK")

vbox = gtk.VBox()
win.add(vbox)

fig = Figure(figsize=(5,4), dpi=100)
ax = fig.add_subplot(111)
ax.plot([1,2,3])

canvas = FigureCanvas(fig) # a gtk.DrawingArea
vbox.pack_start(canvas)

toolbar = NavigationToolbar(canvas, win)
vbox.pack_start(toolbar, False, False)

win.show_all()
gtk.main()

20

CHAPTER
FIVE

Customizing matplotlib

5.1 The matplotlibrc file

matplotlib uses matplotlibrc configuration files to customize all kinds of properties, which we call rc
settings or rc parameters. You can control the defaults of almost every property in matplotlib: figure size
and dpi, line width, color and style, axes, axis and grid properties, text and font properties and so on.
matplotlib looks for matplotlibrc in three locations, in the following order:

1. matplotlibrc in the current working directory, usually used for specific customizations that you do
not want to apply elsewhere.

2. .matplotlib/matplotlibrc, for the user’s default customizations. See Where is my .matplotlib
directory?.

3. INSTALL/matplotlib/mpl-data/matplotlibrc, where INSTALL 18 some-
thing like /usr/lib/python2.5/site-packages on Linux, and maybe
C:\Python25\Lib\site-packages on Windows. Every time you install matplotlib, this file
will be overwritten, so if you want your customizations to be saved, please move this file to you
.matplotlib directory.

See below for a sample matplotlibre file.

5.2 Dynamic rc settings

You can also dynamically change the default rc settings in a python script or interactively from the python
shell. All of the rc settings are stored in a dictionary-like variable called matplotlib.rcParams, which is
global to the matplotlib package. rcParams can be modified directly, for example:

import matplotlib as mpl
mpl.rcParams[’lines.linewidth’] = 2
mpl.rcParams[’lines.color’] = ’r’

Matplotlib also provides a couple of convenience functions for modifying rc settings. The
matplotlib.rc() command can be used to modify multiple settings in a single group at once, using
keyword arguments:

21

Matplotlib, Release 0.98

import matplotlib as mpl
mpl.rc(’lines’, linewidth=2, color="r’)

There matplotlib.rcdefaults() command will restore the standard matplotlib default settings.

There is some degree of validation when setting the values of rcParams, see matplotlib.rcsetup for
details.

5.2.1 A sample matplotlibrc file

MATPLOTLIBRC FORMAT

This is a sample matplotlib configuration file - you can find a copy
of it on your system in
site-packages/matplotlib/mpl-data/matplotlibrc. If you edit it
there, please note that it will be overridden in your next install.
If you want to keep a permanent local bopy that will not be
over-written, place it in HOME/.matplotlib/matplotlibrc (unix/linux
like systems) and C:\Documents and Settings\yourname\.matplotlib
(win32 systems).

This file is best viewed in a editor which supports python mode
syntax highlighting # Blank lines, or lines starting with a comment
symbol, are ignored, as are trailing comments. Other lines must
have the format # key : val # optional comment # Colors: for the
color values below, you can either use - a matplotlib color string,
such as r, k, or b - an rgb tuple, such as (1.0, 0.5, 0.0) - a hex
string, such as ff00ff or #ffO0ff - a scalar grayscale intensity
such as 0.75 - a legal html color name, eg red, blue, darkslategray

FHOoFH OFH O OH OH W OH W H OH R WK K H WK

CONFIGURATION BEGINS HERE

the default backend; one of GTK GTKAgg GTKCairo CocoaAgg FltkAgg

QtAgg Qt4Agg TkAgg WX WXAgg Agg Cairo GDK PS PDF SVG Template You
can also deploy your own backend outside of matplotlib by referring
to the module name (which must be in the PYTHONPATH) as

’module://my_backend’

backend : GTKAgg

if you are runing pyplot inside a GUI and your backend choice

conflicts, we will automatically try and find a compatible one for
you if backend_fallback is True

#backend_fallback: True

numerix : numpy # numpy, Numeric or numarray
#maskedarray : False # True to use external maskedarray module
instead of numpy.ma; this is a temporary
setting for testing maskedarray.
#interactive : False # see http://matplotlib.sourceforge.net/interactive.html
#toolbar : toolbar2 # None | classic | toolbar2
#timezone : UTC # a pytz timezone string, eg US/Central or Europe/Paris

22

Matplotlib, Release 0.98

Where your matplotlib data lives if you installed to a non-default
location. This is where the matplotlib fonts, bitmaps, etc reside
#datapath : /home/jdhunter/mpldata

LINES
See http://matplotlib.sourceforge.net/matplotlib.lines.html for more
information on line properties.

#lines.linewidth : 1.0 # line width in points

#lines.linestyle T - # solid line

#lines.color : blue

#lines.marker : None # the default marker

#lines.markeredgewidth : 0.5 # the line width around the marker symbol
#lines.markersize : 6 # markersize, in points
#lines.dash_joinstyle : miter # miter|round|bevel
#lines.dash_capstyle : butt # butt|round|projecting
#lines.solid_joinstyle : miter # miter|round|bevel
#lines.solid_capstyle : projecting # butt|round|projecting
#lines.antialiased : True # render lines in antialised (no jaggies)

PATCHES

Patches are graphical objects that fill 2D space, like polygons or
circles. See

http://matplotlib.sourceforge.net/matplotlib.patches.html for more
information on patch properties

#patch.linewidth : 1.0 # edge width in points

#patch.facecolor : blue

#patch.edgecolor : black

#patch.antialiased : True # render patches in antialised (no jaggies)
FONT

font properties used by text.Text. See
http://matplotlib.sourceforge.net/matplotlib.font_manager.html for more
information on font properties. The 6 font properties used for font
matching are given below with their default values.

The font.family property has five values: ’serif’ (e.g. Times),
’sans-serif’ (e.g. Helvetica), ’cursive’ (e.g. Zapf-Chancery),
"fantasy’ (e.g. Western), and ’monospace’ (e.g. Courier). Each of
these font families has a default list of font names in decreasing
order of priority associated with them.

The font.style property has three values: normal (or roman), italic
or oblique. The oblique style will be used for italic, if it is not
present.

The font.variant property has two values: normal or small-caps. For
TrueType fonts, which are scalable fonts, small-caps is equivalent
to using a font size of ’smaller’, or about 83% of the current font
size.

FH o OH OH OH OH W OH K K OH OH OHOH KK H W W W W R

The font.weight property has effectively 13 values: normal, bold,

Matplotlib, Release 0.98

bolder, lighter, 100, 200, 300, ..., 900. Normal is the same as

400, and bold is 700. bolder and lighter are relative values with
respect to the current weight.

#

The font.stretch property has 11 values: ultra-condensed,

extra-condensed, condensed, semi-condensed, normal, semi-expanded,

expanded, extra-expanded, ultra-expanded, wider, and narrower. This
property is not currently implemented.

#

The font.size property is the default font size for text, given in pts.
12pt is the standard value.

#

#font. family : sans-serif

#font.style : normal

#font.variant : normal

#font.weight : medium

#font.stretch : normal

note that font.size controls default text sizes. To configure
special text sizes tick labels, axes, labels, title, etc, see the rc

relative to font.size, using the following values: xx-small, x-small,

#
#
settings for axes and ticks. Special text sizes can be defined
#
#

small, medium, large, x-large,

xx-large, larger, or smaller

#font.size : 12.0

#font.serif : Bitstream Vera Serif, New Century Schoolbook, Century Schoolbook L, Utopia, ITC |
#font.sans-serif : Bitstream Vera Sans, Lucida Grande, Verdana, Geneva, Lucid, Arial, Helvetica, Av
#font.cursive : Apple Chancery, Textile, Zapf Chancery, Sand, cursive

#font. fantasy : Comic Sans MS, Chicago, Charcoal, Impact, Western, fantasy

#font.monospace : Bitstream Vera Sans Mono, Andale Mono, Nimbus Mono L, Courier New, Courier, Fixe
TEXT

text properties used by text.Text. See

http://matplotlib.sourceforge.
information on text properties

#text.color : black

net/matplotlib.text.html for more

LaTeX customizations. See http://www.scipy.org/Wiki/Cookbook/Matplotlib/UsingTex

#text.usetex : False #
#

H OH OH H W H

#

use latex for all text handling. The following fonts
are supported through the usual rc parameter settings:
new century schoolbook, bookman, times, palatino,

zapf chancery, charter, serif, sans-serif, helvetica,
avant garde, courier, monospace, computer modern roman,
computer modern sans serif, computer modern typewriter
If another font is desired which can loaded using the
LaTeX \usepackage command, please inquire at the
matplotlib mailing list

#text.latex.unicode : False # use "ucs" and "inputenc" LaTeX packages for handling
unicode strings.
#text.latex.preamble : # IMPROPER USE OF THIS FEATURE WILL LEAD TO LATEX FAILURES
AND IS THEREFORE UNSUPPORTED. PLEASE DO NOT ASK FOR HELP
IF THIS FEATURE DOES NOT DO WHAT YOU EXPECT IT TO.
preamble is a comma separated list of LaTeX statements
that are included in the LaTeX document preamble.

24

Matplotlib, Release 0.98

An example:

text.latex.preamble : \usepackage{bm},\usepackage{euler}
The following packages are always loaded with usetex, so
beware of package collisions: color, geometry, graphicx,
typelcm, textcomp. Adobe Postscript (PSSNFS) font packages
may also be loaded, depending on your font settings

H o H W W W

#text.dvipnghack : None some versions of dvipng don’t handle alpha
channel properly. Use True to correct

and flush ~/.matplotlib/tex.cache

before testing and False to force
correction off. None will try and

guess based on your dvipng version

FH o H K H H

Affects how text, such as titles and labels, are
interpreted by default.

’plain’: As plain, unformatted text

"tex’: As TeX-like text. Text between $’s will be
formatted as a TeX math expression.

This setting has no effect when text.usetex is True.
In that case, all text will be sent to TeX for
processing.

#text.markup : ’plain’

H oM W H W W W W

The following settings allow you to select the fonts in math mode.
They map from a TeX font name to a fontconfig font pattern.

These settings are only used if mathtext.fontset is ’custom’.

Note that this "custom" mode is unsupported and may go away in the
future.

#mathtext.cal : cursive

#mathtext.rm : serif
#mathtext.tt : monospace
#mathtext.it : serif:italic
#mathtext.bf : serif:bold
#mathtext.sf : sans

#mathtext. fontset : cm # Should be ’cm’ (Computer Modern), ’stix’,
’'stixsans’ or ’'custom’
#mathtext.fallback_to_cm : True # When True, use symbols from the Computer Modern
fonts when a symbol can not be found in one of
the custom math fonts.

AXES

default face and edge color, default tick sizes,

default fontsizes for ticklabels, and so on. See

http://matplotlib. sourceforge net/matplotlib.axes.html#Axes

#axes.hold : True # whether to clear the axes by default on
#axes.facecolor : white # axes background color

#axes.edgecolor : black # axes edge color

#axes.linewidth : 1.0 # edge linewidth

#axes.grid : False # display grid or not

#axes.titlesize : large # fontsize of the axes title

#axes.labelsize : medium # fontsize of the x any y labels
#axes.labelcolor : black

#axes.axisbelow : False # whether axis gridlines and ticks are below

25

Matplotlib, Release 0.98

#axes.formatter.limits :

-7, 7

#polaraxes.grid : True

TICKS

the axes elements (lines, text, etc)

use scientific notation if logl®

of the axis range is smaller than the
first or larger than the second

display grid on polar axes

see http://matplotlib.sourceforge.net/matplotlib.axis.html#Ticks

#xtick.major.size
#xtick.minor.size
#xtick.major.pad
#xtick.minor.pad
#xtick.color
#xtick.labelsize
#xtick.direction

#ytick.major.size
#ytick.minor.size
#ytick.major.pad
#ytick.minor.pad
#ytick.color
#ytick.labelsize
#ytick.direction

GRIDS

#grid.color : bl
#grid.linestyle :
#grid.linewidth : 0.
Legend

#legend.isaxes
#legend.numpoints
#legend. fontsize
#legend.pad
#legend.markerscale
the following dimensio
#legend.labelsep
#legend.handlelen
#legend.handletextsep :

4

~ B BN

: medium

DR N A

: medium
: in

ack

5

: True
12

: large
: 0.2

1.0
ns are

: 0.010
: 0.05

0.02

: 0.02
: False

major tick size in points

minor tick size in points

distance to major tick label in points
distance to the minor tick label in points
color of the tick labels

fontsize of the tick labels

direction: in or out

H OH K K H H

major tick size in points

minor tick size in points

distance to major tick label in points
distance to the minor tick label in points
color of the tick labels

fontsize of the tick labels

direction: in or out

H o H OH W H R

grid color
dotted
in points

the number of points in the legend line

the fractional whitespace inside the legend border
the relative size of legend markers vs. original
in axes coords

the vertical space between the legend entries

the length of the legend lines

the space between the legend line and legend text
the border between the axes and legend edge

See http://matplotlib.sourceforge.net/matplotlib.figure.html#Figure

#legend.axespad
#legend.shadow

FIGURE
#figure.figsize : 8, 6
#figure.dpi : 80

#figure.facecolor : 0.75
#figure.edgecolor : whit

#
#
#
e #

figure size in inches

figure dots per inch

figure facecolor; 0.75 is scalar gray
figure edgecolor

The figure subplot parameters. All dimensions are fraction of the

figure width or height

26

Matplotlib, Release 0.98

#figure.subplot.left

#figure.subplot.right :

#figure.subplot.botto
#figure.subplot.top :
#figure.subplot.wspac
#figure.subplot.hspac

IMAGES
#image.aspect : equal
#image.interpolation
#image.cmap : jet
#image.lut : 256
#image.origin : upper

CONTOUR PLOTS

: 0.125
0.9
m : 0.1
0.9
e : 0.2
e : 0.2

the left side of the subplots of the figure

the right side of the subplots of the figure

the bottom of the subplots of the figure

the top of the subplots of the figure

the amount of width reserved for blank space between subplots
the amount of height reserved for white space between subplots

H OH K H H H

equal | auto | a number

: bilinear # see help(imshow) for options

#contour.negative_linestyle :

SAVING FIGURES

gray | jet etc...
the size of the colormap lookup table
lower | upper

dashed # dashed | solid

the default savefig params can be different for the GUI backends.
Eg, you may want a higher resolution, or to make the figure

background white
#savefig.dpi
#savefig. facecolor :
#savefig.edgecolor :

#cairo.format

tk backend params
#tk.window_focus
#tk.pythoninspect

ps backend params
#ps.papersize
#ps.useafm
#ps.usedistiller

#ps.distiller.res
#ps.fonttype

pdf backend params
#pdf.compression

#pdf. fonttype
svg backend params

#svg.image_inline : T
#svg.image_noscale :

#svg.embed_char_paths :

Set the verbose flags.

100
white
white

: png

: False
: False

: letter
: False
: False

: 6000

#
#
#

figure dots per inch
figure facecolor when saving
figure edgecolor when saving

png, ps, pdf, svg

Maintain shell focus for TkAgg
tk sets PYTHONINSEPCT

auto, letter, legal, ledger, A0-A1Q, BO-B10O
use of afm fonts, results in small files
can be: None, ghostscript or xpdf
Experimental: may produce smaller files.
xpdf intended for production of publication quality files,
but requires ghostscript, xpdf and ps2eps
dpi
Output Type 3 (Type3) or Type 42 (TrueType)

: 6 # integer from 0O to 9

0 disables compression (good for debugging)

3

rue
False

True

Output Type 3 (Type3) or Type 42 (TrueType)

write raster image data directly into the svg file
suppress scaling of raster data embedded in SVG
embed character outlines in the SVG file

This controls how much information

27

Matplotlib, Release 0.98

matplotlib gives you at runtime and where it goes. The verbosity
levels are: silent, helpful, debug, debug-annoying. Any level is
inclusive of all the levels below it. If you setting is debug,
you’ll get all the debug and helpful messages. When submitting
problems to the mailing-list, please set verbose to helpful or debug
and paste the output into your report.

The fileo gives the destination for any calls to verbose.report.
These objects can a filename, or a filehandle like sys.stdout.

You can override the rc default verbosity from the command line by
giving the flags --verbose-LEVEL where LEVEL is one of the legal
levels, eg --verbose-helpful.

You can access the verbose instance in your code

from matplotlib import verbose.
#verbose.level : silent # one of silent, helpful, debug, debug-annoying
#verbose.fileo : sys.stdout # a log filename, sys.stdout or sys.stderr

FH o OH H OH H O W OH K OB W W H KR W

28

CHAPTER
SIX

Working with text

6.1 Text introduction

matplotlib has excellent text support, including mathematical expressions, truetype support for raster and
vector outputs, newline separated text with arbitrary rotations, and unicode support. Because we embed the
fonts directly in the output documents, eg for postscript or PDF, what you see on the screen is what you get
in the hardcopy. freetype2 support produces very nice, antialiased fonts, that look good even at small raster
sizes. matplotlib includes its own matplotlib. font_manager, thanks to Paul Barrett, which implements
a cross platform, W3C compliant font finding algorithm.

You have total control over every text property (font size, font weight, text location and color, etc) with
sensible defaults set in the rc file. And significantly for those interested in mathematical or scientific fig-
ures, matplotlib implements a large number of TeX math symbols and commands, to support mathematical
expressions anywhere in your figure.

6.2 Basic text commands

The following commands are used to create text in the pyplot interface

o text() - add text at an arbitrary location to the Axes; matplotlib.axes.Axes.text() in the APL
e xlabel () - add an axis label to the x-axis; matplotlib.axes.Axes.set_xlabel() in the APIL

e ylabel() - add an axis label to the y-axis; matplotlib.axes.Axes.set_ylabel() in the APL

e title() - add atitle to the Axes; matplotlib.axes.Axes.set_title() in the API.

e figtext() - add text at an arbitrary location to the Figure; matplotlib. figure.Figure.text()
in the APL

e suptitle() - add atitle to the Figure; matplotlib. figure.Figure.suptitle() in the APIL

e annotate() - add an annotation, with optional arrow, to the Axes ;
matplotlib.axes.Axes.annotate() in the APL

All of these functions create and return a matplotlib.text.Text () instance, which can bew configured
with a variety of font and other properties. The example below shows all of these commands in action.

29

http://freetype.sourceforge.net/index2.html

Matplotlib, Release 0.98

-*- coding: utf-8 -*-
import matplotlib.pyplot as plt

fig = plt.figure()
fig.suptitle(’bold figure suptitle’, fontsize=14, fontweight='bold’)

ax = fig.add_subplot(111)
fig.subplots_adjust(top=0.85)

ax.set_title(’axes title’)

ax.set_xlabel(’xlabel’)
ax.set_ylabel(’ylabel’)

ax.text(3, 8, ’'boxed italics text in data coords’, style=’italic’,
bbox={’facecolor’:’red’, ’alpha’:0.5, ’pad’:10})

ax.text(2, 6, r’an equation: $E=mc*2$’, fontsize=15)
ax.text(3, 2, unicode(’unicode: Institut f\374r Festk\366rperphysik’, ’latin-1"))
ax.text(0.95, 0.01, ’colored text in axes coords’,

verticalalignment="bottom’, horizontalalignment="right’,

transform=ax.transAxes,
color="green’, fontsize=15)

ax.plot([2], [1], "0’)
ax.annotate(’annotate’, xy=(2, 1), xytext=(3, 4),
arrowprops=dict(facecolor="black’, shrink=0.05))

ax.axis([0, 10, O, 10])

plt.show()

30

Matplotlib, Release 0.98

bold figure suptitle

10 axes title
sl | boxed italics text in data coords i
6 an equation: E=mc’ |
©
Q
O
>
4t annotate |
ok unicode: Institut fur Festkdrperphysik |
[]
0 \ J colored text in axes coords
0 2 4 6 8 10
xlabel

6.3 Text properties and layout

The matplotlib.text.Text instances have a variety of properties which can be configured via keyword
arguments to the text commands (eg title(), xlabel () and text()).

31

Matplotlib, Release 0.98

horizontalalignment or ha
label

linespacing
multialignment

name or fontname
picker

position

rotation

size or fontsize

style or fontstyle

text

transform

variant
verticalalignment or va
visible

weight or fontweight

X

y
zorder

Property Value Type

alpha float

backgroundcolor any matplotlib color

bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance

clip_on [True | False]

clip_path a Path instance and a Transform instance, a Patch

color any matplotlib color

family [“serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
fontproperties a matplotlib.font_manager.FontProperties instance

[‘center’ | ‘right’ | ‘left’]

any string

float

[left’ | ‘right’ | ‘center’]

string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
[None|float|boolean|callable]

(xy)

[angle in degrees ‘vertical’ | ‘horizontal’

[size in points | relative size eg ‘smaller’, ‘x-large’]
[‘normal’ | ‘italic’ | ‘oblique’]

string or anything printable with ‘%s’ conversion
a matplotlib.transform transformation instance

[‘normal’ | ‘small-caps’]

[‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]

[True | False]

[‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]

float
float
any number

You can layout text with the alignment arguments horizontalalignment, verticalalignment, and
multialignment. horizontalalignment controls whether the x positional argument for the text in-
dicates the left, center or right side of the text bounding box. verticalalignment controls whether
the y positional argument for the text indicates the bottom, center or top side of the text bounding box.
multialignment, for newline separated strings only, controls whether the different lines are left, center or
right justified. Here is an example which uses the text () command to show the various alignment possibil-
ities. The use of transform=ax.transAxes throughout the code indicates that the coordinates are given
relative to the axes bounding box, with 0,0 being the lower left of the axes and 1,1 the upper right.

import matplotlib.pyplot as plt
import matplotlib.patches as patches

build a rectangle in axes coords
left, width = .25, .5

bottom, height = .25, .5

right = left + width

top = bottom + height

fig = plt.figure()

32

Matplotlib, Release 0.98

ax = fig.add_axes([0,0,1,1])

axes coordinates are 0,0 is bottom left and 1,1 is upper right
p = patches.Rectangle(

(left, bottom), width, height,

fill=False, transform=ax.transAxes, clip_on=False

)
ax.add_patch(p)

ax.text(left, bottom, ’left top’,
horizontalalignment="1left’,
verticalalignment="top’,
transform=ax.transAxes)

ax.text(left, bottom, ’left bottom’,
horizontalalignment="1left’,
verticalalignment="bhottom’,
transform=ax.transAxes)

ax.text(right, top, ’right bottom’,
horizontalalignment="right’,
verticalalignment="bottom’,
transform=ax.transAxes)

ax.text(right, top, ’right top’,
horizontalalignment="right’,
verticalalignment="top’,
transform=ax.transAxes)

ax.text(right, bottom, ’center top’,
horizontalalignment="center’,
verticalalignment="top’,
transform=ax. transAxes)

ax.text(left, 0.5*(bottom+top), ’'right center’,
horizontalalignment="right’,
verticalalignment="center’,
rotation="vertical’,
transform=ax.transAxes)

ax.text(left, 0.5*(bottom+top), ’left center’,
horizontalalignment="1left’,
verticalalignment=’center’,
rotation="vertical’,
transform=ax.transAxes)

ax.text(0.5*(left+right), 0.5*(bottom+top), 'middle’,
horizontalalignment="center’,
verticalalignment=’center’,
fontsize=20, color="red’,
transform=ax.transAxes)

33

Matplotlib, Release 0.98

ax.text(right, 0.5*(bottom+top), ’centered’,
horizontalalignment=’center’,
verticalalignment=’center’,
rotation="vertical’,
transform=ax.transAxes)

ax.text(left, top, ’rotated\nwith newlines’,
horizontalalignment=’"center’,
verticalalignment=’center’,
rotation=45,
transform=ax.transAxes)

ax.set_axis_off()
plt.show()

S &
,@‘,@A\@ right bottom
Qe right top
&
I
3 middle £
= D
1 D
left bottom
left top center top

6.4 Writing mathematical expressions

You can use TeX markup in any matplotlib text string. Note that you do not need to have TeX installed, since
matplotlib ships its own TeX expression parser, layout engine and fonts. The layout engine is a fairly direct
adaptation of the layout algorithms in Donald Knuth’s TeX, so the quality is quite good (matplotlib also
provides a usetex option for those who do want to call out to TeX to generate their text (see Text rendering

34

Matplotlib, Release 0.98

With LaTeX).

Any text element can use math text. You need to use raw strings (preceed the quotes with an ’r’), and
surround the string text with dollar signs, as in TeX. Regular text and mathtext can be interleaved within the
same string. Mathtext can use the Computer Modern fonts (from (La)TeX), STIX fonts (with are designed
to blend well with Times) or a Unicode font that you provide. The mathtext font can be selected with the
customization variable mathtext.fontset (see Customizing matplotlib)

Here is a simple example:

plain text
plt.title(’alpha > beta’)

produces “alpha > beta”.

Whereas this:

math text
plt.title(r’$\alpha > \beta$’)

produces “a > .

6.4.1 Subscripts and superscripts

To make subscripts and superscripts, use the ’_’ and ’*’ symbols:
r’$\alpha_i > \beta_i$’

; >,8i (61)

Some symbols automatically put their sub/superscripts under and over the operator. For example, to write
the sum of x; from O to co, you could do:

r’$\sum_{i=0}A\infty x_i$’

X; (6.2)

o0
i=0

6.4.2 Fractions
Fractions can be created with the \frac{}{} command:
r’$\frac{3}{4}$’

produces

(6.3)

AW

Fractions can be arbitrarily nested:

35

http://www.aip.org/stixfonts/

Matplotlib, Release 0.98

r’$\frac{5 - \frac{1}{x}}{43}%’

produces
35—
4
Note that special care needs to be taken to place parentheses and brackets around fractions. Doing things
the obvious way produces brackets that are too small:

==

(6.4)

r’$(\frac{5 - \frac{1}{x}}{41$’

5
(—) (6.5)

The solution is to precede the bracket with \left and \right to inform the parser that those brackets
encompass the entire object:

r’$\left (\frac{5 - \frac{1}{x}}{4}\right)$’

5_1
2 o

6.4.3 Radicals
Radicals can be produced with the \sqrt[]{} command. For example:

r’$\sqrt{2}$’

V2 6.7)

Any base can (optionally) be provided inside square brackets. Note that the base must be a simple expres-
sion, and can not contain layout commands such as fractions or sub/superscripts:

r’$\sqrt[3]{x}$’

Vx (6.8)

6.4.4 Fonts

The default font is italics for mathematical symbols. To change fonts, eg, to write “sin” in a Roman font,
enclose the text in a font command:

r’$s(t) = \mathcal{A}\mathrm{sin}(2 \omega t)$’

s(t) = Asin(2wt) (6.9)

More conveniently, many commonly used function names that are typeset in a Roman font have shortcuts.
So the expression above could be written as follows:

36

Matplotlib, Release 0.98

r’$s(t) = \mathcal{A}\sin(2 \omega t)$’

Here “s” and “t” are variable in italics font (default), *

calligraphy font.

s(t) = AsinQw?)

The choices available with all fonts are:

Command Result
\mathrm{Roman} Roman
\mathit{Italic} Italic
\mathtt{Typewriter} Typewriter
\mathcal {CALLIGRAPHY} | CALLIGRAPHY

When using the STIX fonts, you also have the choice of:

Command Result
\mathbb{blackboard} <O T=ON
\mathrm{\mathbb{blackboard}} | <OT=oO\
\mathfrak{Fraktur} Sraftur
\mathsf{sansserif} sansserif
\mathrm{\mathsf{sansserif}} sansserif

(6.10)

‘sin” is in Roman font, and the amplitude “A” is in

There are also three global “font sets” to choose from, which are selected using the mathtext.fontset

parameter in matplotlibrc.

cm: Computer Modern (TeX)

’R H .sin(27 fx;)

.'+1

stix: STIX (designed to blend well with Times)

R 1 aisin(2afxi)

stixsans: STIX sans-serif

R] aisin(2nfx;)

1I=aj

Custom fonts

mathtext also provides a way to use custom fonts for math. This method is fairly tricky to use, and should
be considered an experimental feature for patient users only. By setting the rcParam mathtext. fontset

37

Matplotlib, Release 0.98

to custom, you can then set the following parameters, which control which font file to use for a particular
set of math characters.

Parameter Corresponds to
mathtext.it \mathit{} or default italic
mathtext.rm \mathrm{} Roman (upright)
mathtext.tt \mathtt{} Typewriter (monospace)
mathtext.bf | \mathbf{} bold italic
mathtext.cal | \mathcal{} calligraphic
mathtext.sf \mathsf{} sans-serif

Each parameter should be set to a fontconfig font descriptor (as defined in the yet-to-be-written font chapter).

The fonts used should have a Unicode mapping in order to find any non-Latin characters, such as Greek.
If you want to use a math symbol that is not contained in your custom fonts, you can set the rcParam
mathtext.fallback_to_cm to True which will cause the mathtext system to use characters from the
default Computer Modern fonts whenever a particular character can not be found in the custom font.

Note that the math glyphs specified in Unicode have evolved over time, and many fonts may not have glyphs
in the correct place for mathtext.

6.4.5 Accents

An accent command may precede any symbol to add an accent above it. There are long and short forms for
some of them.

Command Result
\acute aor\’a | 4
\bar a a
\breve a a
\ddot aor\"a a
\dot aor\.a a

\grave aor\‘a | a
\hat aor*a a
\tilde aor\~a | a
\vec a a

In addition, there are two special accents that automatically adjust to the width of the symbols below:

Command Result
\widehat{xyz} Xz
\widetilde{xyz} | xyz

Care should be taken when putting accents on lower-case i’s and j’s. Note that in the following \imath is
used to avoid the extra dot over the i:

r"$\hat i\ \ \hat \imath$"

~>
~>

(6.11)

38

Matplotlib, Release 0.98

6.4.6 Symbols

You can also use a large number of the TeX symbols, as in \infty, \leftarrow, \sum, \int.

Lower-case Greek

a \alpha B \beta x \chi 0 \delta F \digamma
e \epsilon | n\eta v \gamma t\iota x \kappa
A\lambda | p \mu v \nu w \omega ¢ \phi
7 \pi ¥ \psi p \rho o \sigma 7 \tau
6 \theta v\upsilon | ¢ \varepsilon | » \varkappa | ¢ \varphi
w \varpi o \varrho ¢ \varsigma ¥ \vartheta | £\xi
{\zeta
Upper-case Greek
A\Delta | I'\Gamma | A \Lambda | Q2 \Omega ® \Phi | IT \Pi
¥ \Psi 2 \Sigma | @ \Theta | T \Upsilon | & \Xi U \mho
V \nabla
Hebrew
| N\aleph | J\beth | T\daleth | J\gimel |
Delimiters
// [[U \Downarrow | {} \Uparrow | ||\Vert \ \backslash
| \downarrow | (\langle | [\1ceil [\1floor L \1lcorner | J\lrcorner
Yy \rangle 1\rceil] \rfloor "\ulcorner | T \uparrow T\urcorner
| \vert {\{ I\ F\}]1] | |
Big symbols
M \bigcap U \bigcup | (-) \bigodot | &P \bigoplus | (X) \bigotimes
1 \biguplus | \/ \bigvee | A \bigwedge |][] \coprod f \int
_cﬁ\oint IT \prod > \sum

Standard function names

Pr \Pr

arg \arg

coth \coth

dim \dim

inf \inf

liminf \1iminf
max \max

sinh \sinh

arccos \arccos
cos \cos
csc \csc
exp \exp
ker \ker
lim sup \1limsup
min \min
sup \sup

arcsin \arcsin
cosh \cosh
deg \deg

gcd \gcd
Ig\1lg

In\1n

sec \sec

tan \tan

arctan \arctan
cot \cot

det \det

hom \hom

lim \1im

log \log

sin \sin

tanh \tanh

Binary operation and relation symbols

39

Matplotlib, Release 0.98

= \Bumpeq

= \Doteq

5> \Supset

~ \approx

=< \asymp

= \backsimeq

0 \between
A\bigtriangleup
1 \bot

m \Cap

> \Join

I \Vdash

~ \approxeq

3 \backepsilon

A \barwedge

O \bigcirc

< \blacktriangleleft
> \bowtie

U \Cup

€ \Subset

IF \Vvdash

* \ast

~ \backsim

"~ \because

v \bigtriangledown

» \blacktriangleright
© \boxdot

€\in

<\leq

< \lessapprox
= \lesseqqgtr
< \11

s \1lneqq

| \mid

¥ \nVDash

\ncong

\neq

\ngtr

£ \nless

A \nparallel
¢ \nsubset

2 \nsupset

7 \intercal
<\leqq
<\lessdot

s \lessgtr
<« \111

< \1lnsim

E \models

¥ \nVdash

\he

\nequiv

> \ni

£ \nmid

4 \nprec

¢ \nsubseteq
2 \nsupseteq

B \boxminus B \boxplus X \boxtimes

e \bullet = \bumpeq N \cap

-\cdot o\circ = \circeq

:— \coloneq = \cong U \cup

Z \curlyegprec s \curlyegsucc Y \curlyvee

A \curlywedge T \dag 4 \dashv

1 \ddag o \diamond +\div

% \divideontimes | = \doteq = \doteqdot

+ \dotplus A \doublebarwedge = \eqcirc
—:\eqcolon ~ \eqgsim > \egslantgtr
Z \egslantless =\equiv = \fallingdotseq
~ \frown > \geq 2 \geqq

> \gegslant > \gg >>\ggg

% \gnapprox = \gneqq z \gnsim

2 \gtrapprox > \gtrdot Z \gtreqless

2 \gtreqgless | = \gtrless > \gtrsim

XN \leftthreetimes
<\legslant

= \lesseqgtr

< \lesssim

< \1lnapprox

< \ltimes

F \mp

\napprox

\neq

\ngeq

£ \nleq

¢ \notin

+ \nsim

\nsucc
#A\ntriangleleft

40

Matplotlib, Release 0.98

4 \ntrianglelefteq
¥ \nvDash

o \ominus

® \otimes

h \pitchfork

< \precapprox
S \precnapprox
o \propto

< \rtimes

/ \slash

LI \sgcup

C \sgsubseteq
J\sqgsupseteq
C \subseteq

¢ \subsetneqq
> \succcurlyeq
> \succnsim

2 \supseteq

2 \supsetneqq
T \top

¥ \ntriangleright
¥ \nvdash

@ \oplus

|| \parallel

+ \pm

< \preccurlyeq

< \precnsim
A\rightthreetimes
~\sim

— \smile

C \sqgsubset
J\sgsupset

* \star

C \subseteqq

> \succ

> \succeq

> \succsim

2 \supseteqq

.. \therefore
<\triangleleft

¥ \ntrianglerighteq
© \odot

@ \oslash

1 \perp

< \prec

< \preceq

< \precsim
=\risingdotseq

~ \simeq

M \sqcap

C \sqgsubset
J\sqgsupset

C \subset

C \subsetneq

%z \succapprox

% \succnapprox

D \supset

2 \supsetneq

X \times
<d\trianglelefteq

£ \triangleq

W \uplus

< \vartriangleleft
V \vee

L\Wr

> \triangleright

£ \vDash

> \vartriangleright
Y \veebar

> \trianglerighteq
o« \varpropto

+ \vdash

A \wedge

Arrow symbols

UJ \Downarrow

o \Leftrightarrow
<= \Longleftarrow
= \Longrightarrow
/" \Nearrow

= \Rightarrow

P \Rsh

v \Swarrow

< \Leftarrow
& \Lleftarrow

9\Lsh
R \Nwarrow

\y \Searrow
1t \Uparrow

< \Longleftrightarrow

= \Rrightarrow

{§ \Updownarrow

O \circlearrowright
~ \curvearrowright
-->» \dashrightarrow
1l \downdownarrows

| \downharpoonright
< \hookrightarrow
«— \leftarrow

— \leftharpoondown
& \leftleftarrows
S \leftrightarrows
«v» \leftrightsquigarrow

O \circlearrowleft
\curvearrowleft
¢<-- \dashleftarrow

| \downarrow

| \downharpoonleft
«— \hookleftarrow
~> \leadsto

«—~ \leftarrowtail
~—\leftharpoonup
o~ \leftrightarrow
= \leftrightharpoons
«\leftsquigarrow

41

Matplotlib, Release 0.98

«—— \longleftarrow
+— \longmapsto

«¢ \looparrowleft

— \mapsto

¢ \nLeftarrow

= \nRightarrow

«+ \nleftarrow

-» \nrightarrow

— \rightarrow

— \rightharpoondown
2 \rightleftarrows
= \rightleftharpoons
33 \rightrightarrows
~» \rightsquigarrow
v~ \swarrow

« \twoheadleftarrow

«—— \longleftrightarrow
—> \longrightarrow
> \looparrowright

—o \multimap

¢ \nLeftrightarrow
/" \nearrow

«» \nleftrightarrow
N\ \nwarrow

> \rightarrowtail

— \rightharpoonup

2 \rightleftarrows
= \rightleftharpoons
33 \rightrightarrows
N\, \searrow

— \to

—» \twoheadrightarrow

T \uparrow
T \updownarrow
I \upharpoonright

T \updownarrow
1 \upharpoonleft
T \upuparrows

[L]

Miscellaneous symbols

If a particular symbol does not have a name (as is true of many of the more obscure symbols in the STIX

@ \varnothing
» \wp

A\vartriangle
¥ \yen

$\$ A\AA 4\Finv

o \Game I \Im q\P

R \Re §\S /\angle

\ \backprime % \bigstar m \blacksquare
A \blacktriangle | v\blacktriangledown | --- \cdots

v \checkmark ® \circledR ® \circledsS

& \clubsuit C \complement © \copyright
"-.\ddots ¢ \diamondsuit ¢\ell

0 \emptyset 0 \eth d\exists
b\flat V \forall 7 \hbar

© \heartsuit f \hslash [/ \iiint

[\iint [\iint 1 \imath

oo \infty J \jmath ...\1ldots

4 \measuredangle b \natural - \neg
A\nexists 9‘;@6 \oiiint 0 \partial

s \prime # \sharp & \spadesuit
<\sphericalangle | \ss v \triangledown

:\vdots

fonts), Unicode characters can also be used:

42

Matplotlib, Release 0.98

ur’ $\u23ce$’

6.4.7 Example

Here is an example illustrating many of these features in context.

import numpy as np

import matplotlib.pyplot as plt
t = np.arange(0.0, 2.0, 0.01)

s = np.sin(2*np.pi*t)

plt.plot(t,s)

plt.title(r’$\alpha_i > \beta_i$’, fontsize=20)

plt.text(l, -0.6, r’$\sum_{i=0}*\infty x_i$’, fontsize=20)

plt.text(0.6, 0.6, r’$\mathcal{A}\mathrm{sin}(2 \omega t)$’,
fontsize=20)

plt.xlabel(’time (s)’)

plt.ylabel(’volts (mV)’)

1.0

Asin(2wt)
0.5

0.0

volts (mV)

-0.5

-1.8% 0.5 1.0 1.5 2.0
time (s)

43

Matplotlib, Release 0.98

6.5 Text rendering With LaTeX

Matplotlib has the option to use LaTeX to manage all text layout. This option is available with the following
backends:

o Agg
e PS

e PDF

The LaTeX option is activated by setting text.usetex : True in your rc settings. Text handling with
matplotlib’s LaTeX support is slower than matplotlib’s very capable mathtext, but is more flexible, since
different LaTeX packages (font packages, math packages, etc.) can be used. The results can be striking,
especially when you take care to use the same fonts in your figures as in the main document.

Matplotlib’s LaTeX support requires a working LaTeX installation, dvipng (which may be included with
your LaTeX installation), and Ghostscript (GPL Ghostscript 8.60 or later is recommended). The executables
for these external dependencies must all be located on your PATH.

There are a couple of options to mention, which can be changed using rc seftings. Here is an example
matplotlibrc file:

font. family : serif

font.serif : Times, Palatino, New Century Schoolbook, Bookman, Computer Modern Roman
font.sans-serif : Helvetica, Avant Garde, Computer Modern Sans serif

font.cursive : Zapf Chancery

font.monospace : Courier, Computer Modern Typewriter

text.usetex : true

The first valid font in each family is the one that will be loaded. If the fonts are not specified, the Computer
Modern fonts are used by default. All of the other fonts are Adobe fonts. Times and Palatino each have their
own accompanying math fonts, while the other Adobe serif fonts make use of the Computer Modern math
fonts. See the PSNFSS documentation for more details.

To use LaTeX and select Helvetica as the default font, without editing matplotlibrc use:

from matplotlib import rc

rc(’ font’,**{ family’:’sans-serif’,’sans-serif’:[’Helvetica’]})
for Palatino and other serif fonts use:
#rc(’font’,**{’family’:’serif’, ’serif’:[’Palatino’]))
rc(’text’, usetex=True)

Here is the standard example, fex_demo.py:

from matplotlib import rc

from numpy import arange, cos, pi

from matplotlib.pyplot import figure, axes, plot, xlabel, ylabel, title, \
grid, savefig, show

44

http://www.tug.org
http://sourceforge.net/projects/dvipng
http://www.cs.wisc.edu/~{}ghost/
http://www.ctan.org/tex-archive/macros/latex/required/psnfss/psnfss2e.pdf

Matplotlib, Release 0.98

rc(’text’, usetex=True)
rc(’font’, family="serif’)
figure(l, figsize=(6,4))

ax = axes([0.1, 0.1, 0.8, 0.7])
t = arange(0.0, 1.0+0.01, 0.01)

plot(t, s)

xlabel (r’\textbf{time (s)}’)

ylabel (r’\textit{voltage (mV)}’,fontsize=16)

title(r'"\TeX\ is Number $\displaystyle\sum_{n=1}A\infty\frac{-er{i\pi}}{24n}$!",
fontsize=16, color="r’)

grid(True)

TEX is Number Z _;L !

n=1

3.0 T 1 !

voltage (mV)

—_
ot
I

i i i i
'00.0 0.2 0.4 0.6 0.8 1.0
time (s)

1

Note that display math mode ($$ e=mcA2 $$) is not supported, but adding the command \displaystyle,
as in tex_demo.py, will produce the same results.

6.5.1 usetex with unicode

It is also possible to use unicode strings with the LaTeX text manager, here is an example taken from
tex_unicode_demo.py:

-*- coding: latin-1 -*-

from matplotlib import rcParams
rcParams[’text.usetex’]=True
rcParams[’text.latex.unicode’]=True
from numpy import arange, cos, pi

45

Matplotlib, Release 0.98

from matplotlib.pyplot import figure, axes, plot, xlabel, ylabel, title, \
grid, savefig, show

figure(l, figsize=(6,4))

ax = axes([0.1, 0.1, 0.8, 0.7])
t = arange(0.0, 1.0+0.01, 0.01)
s = cos(2¥2*pi*t)+2

plot(t, s)

xlabel (r’\textbf{time (s)}’)

ylabel (unicode(’\\textit{Velocity (\xBO®/sec)}’,’latin-1’),fontsize=16)

title(r"\TeX\ is Number $\displaystyle\sum_{n=1}A\infty\frac{-er{i\pi}}{2+n}$!",
fontsize=16, color="r’)

grid(True)

T

1
€
|
omn

TeX is Number)
n=1

3.0 T T !

Velocity (7sec)

—_
ot

time (s)

6.5.2 Postscript options

In order to produce encapsulated postscript files that can be embedded in a new LaTeX document, the default
behavior of matplotlib is to distill the output, which removes some postscript operators used by LaTeX that
are illegal in an eps file. This step produces results which may be unacceptable to some users, because
the text is coarsely rasterized and converted to bitmaps, which are not scalable like standard postscript, and
the text is not searchable. One workaround is to to set ps.distiller.res to a higher value (perhaps
6000) in your rc settings, which will produce larger files but may look better and scale reasonably. A better
workaround, which requires Poppler or Xpdf, can be activated by changing the ps.usedistiller rc setting
to xpd£. This alternative produces postscript without rasterizing text, so it scales properly, can be edited in
Adobe Illustrator, and searched text in pdf documents.

46

http://poppler.freedesktop.org/
http://www.foolabs.com/xpdf

Matplotlib, Release 0.98

6.5.3 Possible hangups

e On Windows, the PATH environment variable may need to be modified to include the directories
containing the latex, dvipng and ghostscript executables. See Environment Variables and Setting
environment variables in windows for details.

e Using MiKTeX with Computer Modern fonts, if you get odd *Agg and PNG results, go to MiK-
TeX/Options and update your format files

o The fonts look terrible on screen. You are probably running Mac OS, and there is some funny business
with older versions of dvipng on the mac. Set text.dvipnghack : True in your matplotlibrc file.

e On Ubuntu and Gentoo, the base texlive install does not ship with the typelcm package. You may
need to install some of the extra packages to get all the goodies that come bundled with other latex
distributions.

e Some progress has been made so matplotlib uses the dvi files directly for text layout. This allows
latex to be used for text layout with the pdf and svg backends, as well as the *Agg and PS backends.
In the future, a latex installation may be the only external dependency.

6.5.4 Troubleshooting

e Try deleting your .matplotlib/tex.cache directory. If you don’t know where to find
.matplotlib, see Where is my .matplotlib directory?.

o Make sure LaTeX, dvipng and ghostscript are each working and on your PATH.

e Make sure what you are trying to do is possible in a LaTeX document, that your LaTeX syntax is valid
and that you are using raw strings if necessary to avoid unintended escape sequences.

e Most problems reported on the mailing list have been cleared up by upgrading Ghostscript. If possible,
please try upgrading to the latest release before reporting problems to the list.

e The text.latex.preamble rc setting is not officially supported. This option provides lots of flexi-
bility, and lots of ways to cause problems. Please disable this option before reporting problems to the
mailing list.

o If you still need help, please see How do I report a problem?

6.6 Annotating text

The uses of the basic text () command above place text at an arbitrary position on the Axes. A common use
case of text is to annotate some feature of the plot, and the annotate () method provides helper functionality
to make annotations easy. In an annotation, there are two points to consider: the location being annotated
represented by the argument xy and the location of the text xytext. Both of these arguments are (x,y)
tuples.

47

http://www.cs.wisc.edu/~{}ghost/

Matplotlib, Release 0.98

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111)

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = ax.plot(t, s, lw=2)

ax.annotate(’local max’, xy=(2, 1), xytext=(3, 1.5),
arrowprops=dict(facecolor="black’, shrink=0.05),

)
ax.set_ylim(-2,2)
plt.show()
2.0 T T T
1.5+ local max i

~1.5 .

In this example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates. There
are a variety of other coordinate systems one can choose — you can specify the coordinate system of xy and
xytext with one of the following strings for xycoords and textcoords (default is ‘data’)

48

Matplotlib, Release 0.98

argument coordinate system

‘figure points’ points from the lower left corner of the figure
‘figure pixels’ pixels from the lower left corner of the figure
‘figure fraction’ | 0,0 is lower left of figure and 1,1 is upper, right
‘axes points’ points from lower left corner of axes

‘axes pixels’ pixels from lower left corner of axes

‘axes fraction’ 0,1 is lower left of axes and 1,1 is upper right
‘data’ use the axes data coordinate system

For example to place the text coordinates in fractional axes coordinates, one could do:

ax.annotate(’local max’, xy=(3, 1), =xycoords=’'data’,
xytext=(0.8, 0.95), textcoords=’axes fraction’,
arrowprops=dict(facecolor="black’, shrink=0.05),
horizontalalignment="right’, verticalalignment="top’,

)

For physical coordinate systems (points or pixels) the origin is the (bottom, left) of the figure or axes. If
the value is negative, however, the origin is from the (right, top) of the figure or axes, analogous to negative
indexing of sequences.

Optionally, you can specify arrow properties which draws an arrow from the text to the annotated point by
giving a dictionary of arrow properties in the optional keyword argument arrowprops.

arrowprops key | description

width the width of the arrow in points

frac the fraction of the arrow length occupied by the head

headwidth the width of the base of the arrow head in points

shrink move the tip and base some percent away from the annotated point and text
**kwargs any key formatplotlib.patches.Polygon, eg facecolor

In the example below, the xy point is in native coordinates (xycoords defaults to ‘data’). For a polar
axes, this is in (theta, radius) space. The text in this example is placed in the fractional figure coordinate
system. matplotlib.text.Text keyword args like horizontalalignment, verticalalignment and
fontsize are passed from the ‘~matplotlib.Axes.annotate‘ to the “Text instance

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()

ax = fig.add_subplot(111l, polar=True)

r = np.arange(0,1,0.001)

theta = 2*2*np.pi*r

line, = ax.plot(theta, r, color="#ee8d18’, 1lw=3)

ind = 800

thisr, thistheta = r[ind], theta[ind]

ax.plot([thistheta], [thisr], 'o’)

ax.annotate(’a polar annotation’,
xy=(thistheta, thisr), # theta, radius
xytext=(0.05, 0.05), # fraction, fraction
textcoords="figure fraction’,

49

Matplotlib, Release 0.98

arrowprops=dict(facecolor="black’, shrink=0.05),
horizontalalignment="1left’,
verticalalignment="bhottom’,
)

plt.show()

90°

a polar annotation 270°

See the annotations demo for more examples.

50

http://matplotlib.sf.net/examples/pylab_examples/annotation_demo.py

CHAPTER
SEVEN

Artist tutorial

There are three layers to the matplotlib API. The matplotlib.backend_bases.FigureCanvas is the area
onto which the figure is drawn, the matplotlib.backend_bases.Renderer is the object which knows
how to draw on the FigureCanvas, and the matplotlib.artist.Artist is the object that knows how to
use a renderer to paint onto the canvas. The FigureCanvas and Renderer handle all the details of talking
to user interface toolkits like wxPython or drawing languages like PostScript®), and the Artist handles all
the high level constructs like representing and laying out the figure, text, and lines. The typical user will
spend 95% of his time working with the Artists.

There are two types of Artists: primitives and containers. The primitives represent the standard graph-
ical objects we want to paint onto our canvas: Line2D, Rectangle, Text, AxesImage, etc., and the
containers are places to put them (Axis, Axes and Figure). The standard use is to create a Figure
instance, use the Figure to create one or more Axes or Subplot instances, and use the Axes instance
helper methods to create the primitives. In the example below, we create a Figure instance using
matplotlib.pyplot.figure(), which is a convenience method for instantiating Figure instances and
connecting them with your user interface or drawing toolkit FigureCanvas. As we will discuss below,
this is not necessary, and you can work directly with PostScript, PDF Gtk+, or wxPython FigureCanvas
instances. For example, instantiate your Figures directly and connect them yourselves, but since we are
focusing here on the Artist API we’ll let pyplot handle some of those details for us:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(2,1,1) # two rows, one column, first plot

The Axes is probably the most important class in the matplotlib API, and the one you will be working with
most of the time. This is because the Axes is the plotting area into which most of the objects go, and the
Axes has many special helper methods (plot (), text(), hist (), imshow()) to create the most common
graphics primitives (Line2D, Text, Rectangle, Image, respectively). These helper methods will take your
data (eg. numpy arrays and strings) create primitive Artist instances as needed (eg. Line2D), add them
to the relevant containers, and draw them when requested. Most of you are probably familiar with the
Subplot, which is just a special case of an Axes that lives on a regular rows by columns grid of Subplot
instances. If you want to create an Axes at an arbitrary location, simply use the add_axes () method which
takes a list of [1eft, bottom, width, height] values in 0-1 relative figure coordinates:

fig2 = plt.figureQ)
ax2 = fig2.add_axes([0.15, 0.1, 0.7, 0.3])

51

http://www.wxpython.org

Matplotlib, Release 0.98

Continuing with our example:

import numpy as np

t = np.arange(0.0, 1.0, 0.01)

s = np.sin(2*np.pi*t)

line, = ax.plot(t, s, color="blue’, lw=2)

In this example, ax is the Axes instance created by the fig.add_subplot call above (remember Subplot
is just a subclass of Axes) and when you call ax.plot, it createsa Line2D instance and adds it the
Axes.lines list. In the interactive ipython session below, you can see that Axes.lines list is length
one and contains the same line that was returned by the line, = ax.plot(x, y, 'o’) call:

In [101]: ax.lines[0]
Out[101]: <matplotlib.lines.Line2D instance at 0x19a95710>

In [102]: line
Out[102]: <matplotlib.lines.Line2D instance at 0x19a95710>

If you make subsequent calls to ax.plot (and the hold state is “on” which is the default) then additional
lines will be added to the list. You can remove lines later simply by calling the list methods; either of these
will work:

del ax.lines[0]
ax.lines.remove(line) # one or the other, not both!

The Axes also has helper methods to configure and decorate the x-axis and y-axis tick, ticklabels and axis
labels:

xtext = ax.set_xlabel('my xdata’) # returns a Text instance
ytext = ax.set_ylabel('my xdata’)

When you call ax.set_xlabel, it passes the information on the Text instance of the XAxis. Each Axes
instance contains an XAxis and a YAxis instance, which handle the layout and drawing of the ticks, tick
labels and axis labels.

Try creating the figure below.

52

http://ipython.scipy.org/

Matplotlib, Release 0.98

a sine wave

1.0

0.0

volts

-0.5

T

0.8 1.0

60 \ T T T T T

50 1
40 1
30 1
20 1

T

T

7.1 Customizing your objects

Every element in the figure is represented by a matplotlib Artist, and each has an extensive list of properties
to configure its appearance. The figure itself contains a Rectangle exactly the size of the figure, which you
can use to set the background color and transparency of the figures. Likewise, each Axes bounding box
(the standard white box with black edges in the typical matplotlib plot, has a Rectangle instance that
determines the color, transparency, and other properties of the Axes. These instances are stored as member
variables Figure.patch and Axes.patch (“Patch” is a name inherited from MATLAB™, and is a 2D
“patch” of color on the figure, eg. rectangles, circles and polygons). Every matplotlib Artist has the
following properties

53

Matplotlib, Release 0.98

Property | Description

alpha The transparency - a scalar from 0-1
animated | A boolean that is used to facilitate animated drawing
axes The axes that the Artist lives in, possibly None

clip_box The bounding box that clips the Artist
clip_on Whether clipping is enabled
clip_path | The path the artist is clipped to

contains A picking function to test whether the artist contains the pick point
figure The figure instance the aritst lives in, possibly None

label A text label (eg for auto-labeling)

picker A python object that controls object picking

transform | The transformation

visible A boolean whether the artist should be drawn

zorder A number which determines the drawing order

Each of the properties is accessed with an old-fashioned setter or getter (yes we know this irritates Python-
istas and we plan to support direct access via properties or traits but it hasn’t been done yet). For example,
to multiply the current alpha by a half:

a = o.get_alpha(Q)
o.set_alpha(0.5%a)

If you want to set a number of properties at once, you can also use the set method with keyword arguments.
For example:

o.set(alpha=0.5, zorder=2)

If you are working interactively at the python shell, a handy way to inspect the Artist properties is to use
the matplotlib.artist.getp() function (simply getp() in pylab), which lists the properties and their
values. This works for classes derived from Artist as well, eg. Figure and Rectangle. Here are the
Figure rectangle properties mentioned above:

In [149]: matplotlib.artist.getp(fig.patch)
alpha = 1.0
animated = False
antialiased or aa = True
axes = None
clip_box = None
clip_on = False
clip_path = None
contains = None
edgecolor or ec = w
facecolor or fc = 0.75
figure = Figure(8.125x6.125)

fill = 1
hatch = None
height =1
label =

linewidth or 1w = 1.0
picker = None

54

Matplotlib, Release 0.98

transform = <Affine object at 0x134cca84>
verts = ((0, 0, (0, 1, (1, 1, (1,)
visible = True

width = 1

window_extent = <Bbox object at 0x134acbcc>
x=0

y=20

zorder = 1

The docstrings for all of the classes also contain the Artist properties, so you can consult the interactive
“help”, the online html docs at http://matplotlib.sourceforge.net/classdocs.html or PDF documentation at
http://matplotlib.sourceforge.net/api.pdf for a listing of properties for a give object.

7.2 Object containers

Now that we know how to inspect set the properties of a given object we want to configure, we need to
now how to get at that object. As mentioned in the introduction, there are two kinds of objects: primitives
and containers. The primitives are usually the things you want to configure (the font of a Text instance,
the width of a Line2D) although the containers also have some properties as well — for example the Axes
Artist is a container that contains many of the primitives in your plot, but it also has properties like the
xscale to control whether the xaxis is ‘linear’ or ‘log’. In this section we’ll review where the various
container objects store the Artists that you want to get at.

7.3 Figure container

The top level container Artist is the matplotlib.figure.Figure, and it contains everything in the
figure. The background of the figure is a Rectangle which is stored in Figure.patch. As you add subplots
(add_subplot()) and axes (add_axes()) to the figure these will be appended to the Figure.axes. These
are also returned by the methods that create them:

In [156]: fig = plt.figure(Q)

In [157]: axl = fig.add_subplot(211)

In [158]: ax2 fig.add_axes([0.1, 0.1, 0.7, 0.3])

In [159]: axl
Out[159]: <matplotlib.axes.Subplot instance at 0xd54b26c>

In [160]: print fig.axes
[<matplotlib.axes.Subplot instance at 0xd54b26c>, <matplotlib.axes.Axes instance at 0xd3f0b2c>]

Because the figure maintains the concept of the “current axes” (see Figure.gca and Figure.sca) to
support the pylab/pyplot state machine, you should not insert or remove axes directly from the axes list, but
rather use the add_subplot () and add_axes() methods to insert, and the delaxes () method to delete.
You are free however, to iterate over the list of axes or index into it to get access to Axes instances you want
to customize. Here is an example which turns all the axes grids on:

55

http://matplotlib.sourceforge.net/classdocs.html
http://matplotlib.sourceforge.net/api.pdf

Matplotlib, Release 0.98

for ax in fig.axes:
ax.grid(True)

The figure also has its own text, lines, patches and images, which you can use to add primitives directly. The
default coordinate system for the Figure will simply be in pixels (which is not usually what you want) but
you can control this by setting the transform property of the Artist you are adding to the figure.

More useful is “figure coordinates” where (0, 0) is the bottom-left of the figure and (1, 1) is the top-right of
the figure which you can obtain by setting the Artist transform to fig.transFigure:

In [191]: fig = plt.figure()

In

In

In

In

[192]:

[193]:

[194]:

[195]:

11 = matplotlib.lines.Line2D([0, 1], [0, 1],
transform=fig.transFigure, figure=fig)

12 = matplotlib.lines.Line2D([0, 1], [1, 0],
transform=fig.transFigure, figure=fig)

fig.lines.extend([11, 12])

fig.canvas.draw()

56

Matplotlib, Release 0.98

Here is a summary of the Artists the figure contains

Figure attribute | Description

axes A list of Axes instances (includes Subplot)

patch The Rectangle background

images A list of FigureImages patches - useful for raw pixel display
legends A list of Figure Legend instances (different from Axes.legends)
lines A list of Figure Line2D instances (rarely used, see Axes.lines)
patches A list of Figure patches (rarely used, see Axes.patches)

texts A list Figure Text instances

7.4 Axes container

The matplotlib.axes.Axes is the center of the matplotlib universe — it contains the vast majority of all
the Artists used in a figure with many helper methods to create and add these Artists to itself, as well
as helper methods to access and customize the Artists it contains. Like the Figure, it contains a Patch
patch which is a Rectangle for Cartesian coordinates and a Circle for polar coordinates; this patch
determines the shape, background and border of the plotting region:

ax = fig.add_subplot(111)

rect = ax.patch # a Rectangle instance
rect.set_facecolor(’green’)

When you call a plotting method, eg. the canonical plot () and pass in arrays or lists of values, the method
will create amatplotlib.lines.Line2D() instance, update the line with all the Line2D properties passed
as keyword arguments, add the line to the Axes.lines container, and returns it to you:

In [213]: x, y = np.random.rand(2, 100)

In [214]: line, = ax.plot(x, y, '-’, color="blue’, linewidth=2)

plot returns a list of lines because you can pass in multiple x, y pairs to plot, and we are unpacking the first
element of the length one list into the line variable. The line has been added to the Axes.lines list:

In [229]: print ax.lines
[<matplotlib.lines.Line2D instance at 0xd378b0c>]

Similarly, methods that create patches, like bar () creates a list of rectangles, will add the patches to the
Axes.patches list:

In [233]: n, bins, rectangles = ax.hist(np.random.randn(1000), 50, facecolor='yellow’)

In [234]: rectangles
Out[234]: <a list of 50 Patch objects>

In [235]: print len(ax.patches)

57

Matplotlib, Release 0.98

You should not add objects directly to the Axes.lines or Axes.patches lists unless you know exactly
what you are doing, because the Axes needs to do a few things when it creates and adds an object. It sets the
figure and axes property of the Artist, as well as the default Axes transformation (unless a transformation is
set). It also inspects the data contained in the Artist to update the data structures controlling auto-scaling,
so that the view limits can be adjusted to contain the plotted data. You can, nonetheless, create objects
yourself and add them directly to the Axes using helper methods like add_line() and add_patch().
Here is an annotated interactive session illustrating what is going on:

In [261]: fig = plt.figure(Q)
In [262]: ax = fig.add_subplot(111)

create a rectangle instance
In [263]: rect = matplotlib.patches.Rectangle((1,1), width=5, height=12)

by default the axes instance is None
In [264]: print rect.get_axes()
None

and the transformation instance is set to the "identity transform"
In [265]: print rect.get_transform()
<Affine object at 0x13695544>

now we add the Rectangle to the Axes
In [266]: ax.add_patch(rect)

and notice that the ax.add_patch method has set the axes
instance

In [267]: print rect.get_axes()

Subplot(49,81.25)

and the transformation has been set too
In [268]: print rect.get_transform()
<Affine object at 0x15009ca4>

the default axes transformation is ax.transData
In [269]: print ax.transData
<Affine object at 0x15009ca4>

notice that the xlimits of the Axes have not been changed
In [270]: print ax.get_xlim()
(0.0, 1.0)

but the data limits have been updated to encompass the rectangle
In [271]: print ax.datalLim.get_bounds()
(1.0, 1.0, 5.0, 12.0)

we can manually invoke the auto-scaling machinery
In [272]: ax.autoscale_view()

and now the xlim are updated to encompass the rectangle
In [273]: print ax.get_x1lim()
(1.0, 6.0)

58

Matplotlib, Release 0.98

we have to manually force a figure draw
In [274]: ax.figure.canvas.draw()

There are many, many Axes helper methods for creating primitive Artists and adding them to their respec-
tive containers. The table below summarizes a small sampling of them, the kinds of Artist they create,

and where they store them

Helper method Artist Container
ax.annotate - text annotations | Annotate ax.texts
ax.bar - bar charts Rectangle ax.patches
ax.errorbar - error bar plots Line2D and Rectangle | ax.lines and ax.patches
ax.fill - shared area Polygon ax.patches
ax.hist - histograms Rectangle ax.patches
ax.imshow - image data AxesImage ax.images
ax.legend - axes legends Legend ax.legends
ax.plot - xy plots Line2D ax.lines
ax.scatter - scatter charts PolygonCollection ax.collections
ax.text - text Text ax.texts

In addition to all of these Artists, the Axes contains two important Artist containers: the XAxis and
YAxis, which handle the drawing of the ticks and labels. These are stored as instance variables xaxis and
yaxis. The XAxis and YAxis containers will be detailed below, but note that the Axes contains many
helper methods which forward calls on to the Axis instances so you often do not need to work with them
directly unless you want to. For example, you can set the font size of the XAxis ticklabels using the Axes

helper method:

for label in ax.get_xticklabels():
label.set_color(’orange’)

Below is a summary of the Artists that the Axes contains

Axes attribute | Description

artists A list of Artist instances

patch Rectangle instance for Axes background
collections A list of Collection instances
images A list of AxesImage

legends A list of Legend instances
lines A list of Line2D instances
patches A list of Patch instances

texts A list of Text instances

xaxis matplotlib.axis. X Axis instance
yaxis matplotlib.axis. YAxis instance

7.5 AXxis containers

The matplotlib.axis.Axis instances handle the drawing of the tick lines, the grid lines, the tick labels
and the axis label. You can configure the left and right ticks separately for the y-axis, and the upper and

59

Matplotlib, Release 0.98

lower ticks separately for the x-axis. The Axis also stores the data and view intervals used in auto-scaling,
panning and zooming, as well as the Locator and Formatter instances which control where the ticks are
placed and how they are represented as strings.

Each Axis object contains a label attribute (this is what the pylab calls to x1abel () and ylabel() set)
as well as a list of major and minor ticks. The ticks are XTick and YTick instances, which contain the
actual line and text primitives that render the ticks and ticklabels. Because the ticks are dynamically created
as needed (eg. when panning and zooming), you should access the lists of major and minor ticks through
their accessor methods get_major_ticks() and get_minor_ticks(). Although the ticks contain all the
primitives and will be covered below, the Axis methods contain accessor methods to return the tick lines,
tick labels, tick locations etc.:

In [285]: axis = ax.xaxis

In [286]: axis.get_ticklocs()
Out[286]: array([©®., 1., 2., 3., 4., 5., 6., 7., 8., 9.1)

In [287]: axis.get_ticklabels()
Out[287]: <a list of 10 Text major ticklabel objects>

note there are twice as many ticklines as labels because by

default there are tick lines at the top and bottom but only tick
labels below the xaxis; this can be customized

In [288]: axis.get_ticklines()

Out[288]: <a list of 20 Line2D ticklines objects>

by default you get the major ticks back
In [291]: axis.get_ticklines()
Out[291]: <a list of 20 Line2D ticklines objects>

but you can also ask for the minor ticks
In [292]: axis.get_ticklines(minor=True)
Out[292]: <a list of 0O Line2D ticklines objects>

Here is a summary of some of the useful accessor methods of the Axis (these have corresponding setters
where useful, such as set_major_formatter)

60

Matplotlib, Release 0.98

Accessor method Description

get_scale The scale of the axis, eg ‘log’ or ‘linear’
get_view_interval The interval instance of the axis view limits
get_data_interval The interval instance of the axis data limits
get_gridlines A list of grid lines for the Axis

get_label The axis label - a Text instance

get_ticklabels A list of Text instances - keyword minor=True|False
get_ticklines A list of Line2D instances - keyword minor=True|False
get_ticklocs A list of Tick locations - keyword minor=True|False
get_major_locator The matplotlib.ticker.Locator instance for major ticks
get_major_formatter | The matplotlib.ticker.Formatter instance for major ticks
get_minor_locator The matplotlib.ticker.Locator instance for minor ticks
get_minor_formatter | The matplotlib.ticker.Formatter instance for minor ticks
get_major_ticks A list of Tick instances for major ticks

get_minor_ticks A list of Tick instances for minor ticks

grid Turn the grid on or off for the major or minor ticks

Here is an example, not recommended for its beauty, which customizes the axes and tick properties

import numpy as np
import matplotlib.pyplot as plt

plt.figure creates a matplotlib.figure.Figure instance
fig = plt.figure()

rect = fig.patch # a rectangle instance
rect.set_facecolor(’lightgoldenrodyellow’)

axl = fig.add_axes([0.1, 0.3, 0.4, 0.4])
rect = axl.patch
rect.set_facecolor(’lightslategray’)

for label in axl.xaxis.get_ticklabels():
label is a Text instance
label.set_color(’'red’)
label.set_rotation(45)
label.set_fontsize(16)

for line in axl.yaxis.get_ticklines():
line is a Line2D instance
line.set_color(’green’)
line.set_markersize(25)
line.set_markeredgewidth(3)

61

Matplotlib, Release 0.98

7.6 Tick containers

The matplotlib.axis.Tick is the final container object in our descent from the Figure to the Axes to
the Axis to the Tick. The Tick contains the tick and grid line instances, as well as the label instances for
the upper and lower ticks. Each of these is accessible directly as an attribute of the Tick. In addition, there
are boolean variables that determine whether the upper labels and ticks are on for the x-axis and whether the
right labels and ticks are on for the y-axis.

Tick attribute | Description

tick1line Line2D instance

tick2line Line2D instance

gridline Line2D instance

labell Text instance

label2 Text instance

gridOn boolean which determines whether to draw the tickline
tick10n boolean which determines whether to draw the 1st tickline
tick20On boolean which determines whether to draw the 2nd tickline
label10On boolean which determines whether to draw tick label
label2On boolean which determines whether to draw tick label

Here is an example which sets the formatter for the upper ticks with dollar signs and colors them green on

62

Matplotlib, Release 0.98

the right side of the yaxis

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(100*np.random.rand(20))

formatter = ticker.FormatStrFormatter(’s$)
ax.yaxis.set_major_formatter(formatter)

for tick in ax.yaxis.get_major_ticks(Q):
tick.labellOn = False
tick.label20n = True
tick.label2.set_color(’green’)

$90.00

1$80.00

1$70.00

1$60.00

1$50.00

1$40.00

1$30.00

1$20.00

1$10.00

15

0.00
20

63

64

CHAPTER
EIGHT

Event handling and picking

matplotlib works with 5 user interface toolkits (wxpython, tkinter, qt, gtk and fltk) and in order to support
features like interactive panning and zooming of figures, it is helpful to the developers to have an API for
interacting with the figure via key presses and mouse movements that is “GUI neutral” so we don’t have to
repeat a lot of code across the different user interfaces. Although the event handling API is GUI neutral,
it is based on the GTK model, which was the first user interface matplotlib supported. The events that
are triggered are also a bit richer vis-a-vis matplotlib than standard GUI events, including information like
whichmatplotlib.axes.Axes the event occurred in. The events also understand the matplotlib coordinate
system, and report event locations in both pixel and data coordinates.

8.1 Event connections

To receive events, you need to write a callback function and then connect your function to the event manager,
which is part of the FigureCanvasBase. Here is a simple example that prints the location of the mouse
click and which button was pressed:

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(np.random.rand(10))
def onclick(event):
print ’button=%d, x=%d, y=%d, xdata=%f, ydata=%f’%(

event.button, event.x, event.y, event.xdata, event.ydata)

cid = fig.canvas.mpl_connect(’button_press_event’, onclick)

The FigureCanvas method mpl_connect () returns a connection id which is simply an integer. When you
want to disconnect the callback, just call:

fig.canvas.mpl_disconnect(cid)

Here are the events that you can connect to, the class instances that are sent back to you when the event
occurs, and the event descriptions

65

Matplotlib, Release 0.98

Event name Class and description

‘button_press_event’ MouseEvent - mouse button is pressed
‘button_release_event’ | MouseEvent - mouse button is released
‘draw_event’ DrawEvent - canvas draw

‘key_press_event’ KeyEvent - key is pressed

‘key_release_event’ KeyEvent - key is released
‘motion_notify_event’ | MouseEvent - mouse motion

‘pick_event’ PickEvent - an object in the canvas is selected
‘resize_event’ ResizeEvent - figure canvas is resized
‘scroll_event’ MouseEvent - mouse scroll wheel is rolled

8.2 Event attributes

All matplotlib events inherit from the base class matplotlib.backend_bases.Event, which store the
attributes:

name the event name
canvas the FigureCanvas instance generating the event

guiEvent the GUI event that triggered the matplotlib event

The most common events that are the bread and butter of event handling are key press/release events and
mouse press/release and movement events. The KeyEvent and MouseEvent classes that handle these events
are both derived from the LocationEvent, which has the following attributes

X X position - pixels from left of canvas

y y position - pixels from bottom of canvas
inaxes the Axes instance if mouse is over axes
xdata x coord of mouse in data coords

ydata y coord of mouse in data coords

Let’s look a simple example of a canvas, where a simple line segment is created every time a mouse is
pressed:

class LineBuilder:
def __init__(self, line):
self.line = line
self.xs = list(line.get_xdata())
self.ys = list(line.get_ydata())
self.cid = line.figure.canvas.mpl_connect(’button_press_event’, self)

def __call__(self, event):
print ’click’, event
if event.inaxes!=self.line.axes: return
self.xs.append(event.xdata)
self.ys.append(event.ydata)
self.line.set_data(self.xs, self.ys)

66

Matplotlib, Release 0.98

self.line.figure.canvas.draw()

fig = plt.figure()

ax = fig.add_subplot(111)
ax.set_title(’click to build line segments’)
line, = ax.plot([0], [0]) # empty line
linebuilder = LineBuilder(line)

The MouseEvent that we just used is a LocationEvent, so we have access to the data and pixel coordinates
in event.x and event.xdata. In addition to the LocationEvent attributes, it has

button button pressed None, 1, 2, 3, ‘up’, ‘down’ (up and down are used for scroll events)

key the key pressed: None, chr(range(255), ‘shift’, ‘win’, or ‘control’

8.2.1 Draggable rectangle exercise

Write draggable rectangle class that is initialized with a Rectangle instance but will move its x,y location
when dragged. Hint: you will need to store the orginal xy location of the rectangle which is stored as rect.xy
and connect to the press, motion and release mouse events. When the mouse is pressed, check to see if
the click occurs over your rectangle (see matplotlib.patches.Rectangle.contains()) and if it does,
store the rectangle xy and the location of the mouse click in data coords. In the motion event callback,
compute the deltax and deltay of the mouse movement, and add those deltas to the origin of the rectangle
you stored. The redraw the figure. On the button release event, just reset all the button press data you stored
as None.

Here is the solution:

import numpy as np
import matplotlib.pyplot as plt

class DraggableRectangle:
def __init__(self, rect):

self.rect = rect

self.press = None

def connect(self):

"connect to all the events we need’

self.cidpress = self.rect.figure.canvas.mpl_connect(
"button_press_event’, self.on_press)

self.cidrelease = self.rect.figure.canvas.mpl_connect(
"button_release_event’, self.on_release)

self.cidmotion = self.rect.figure.canvas.mpl_connect(
‘motion_notify_event’, self.on_motion)

def on_press(self, event):
“on button press we will see if the mouse is over us and store some data’
if event.inaxes != self.rect.axes: return

contains, attrd = self.rect.contains(event)
if not contains: return

67

Matplotlib, Release 0.98

print ’event contains’, self.rect.xy
x0, y0 = self.rect.xy
self.press = x0, y0, event.xdata, event.ydata

def on_motion(self, event):
“on motion we will move the rect if the mouse is over us’
if self.press is None: return
if event.inaxes != self.rect.axes: return
x0, y0®, xpress, ypress = self.press
dx = event.xdata - xpress
dy = event.ydata - ypress
#print ’'x0=%f, xpress=%f, event.xdata=%f, dx=%f, x0+dx=%f’%(x0, xpress, event.xdata, dx, x0+dx)
self.rect.set_x(x0+dx)
self.rect.set_y(y0+dy)

self.rect.figure.canvas.draw()

def on_release(self, event):
‘on release we reset the press data’
self.press = None
self.rect.figure.canvas.draw()

def disconnect(self):
"disconnect all the stored connection ids’
self.rect.figure.canvas.mpl_disconnect(self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self.rect.figure.canvas.mpl_disconnect(self.cidmotion)

fig = plt.figure()
ax = fig.add_subplot(111)
rects = ax.bar(range(10), 20*np.random.rand(10))
drs = []
for rect in rects:
dr = DraggableRectangle(rect)
dr.connect()
drs.append(dr)

plt.show()

Extra credit: use the animation blit techniques discussed in the animations recipe to make the animated
drawing faster and smoother.

Extra credit solution:

draggable rectangle with the animation blit techniques; see
http://www.scipy.org/Cookbook/Matplotlib/Animations

import numpy as np

import matplotlib.pyplot as plt

class DraggableRectangle:
lock = None # only one can be animated at a time
def __init__(self, rect):

68

http://www.scipy.org/Cookbook/Matplotlib/Animations

Matplotlib, Release 0.98

self.rect = rect
self.press = None
self.background = None

def connect(self):

"connect to all the events we need’

self.cidpress = self.rect.figure.canvas.mpl_connect(
"button_press_event’, self.on_press)

self.cidrelease = self.rect.figure.canvas.mpl_connect(
"button_release_event’, self.on_release)

self.cidmotion = self.rect.figure.canvas.mpl_connect(
‘motion_notify_event’, self.on_motion)

def on_press(self, event):
“on button press we will see if the mouse is over us and store some data’
if event.inaxes != self.rect.axes: return
if DraggableRectangle.lock is not None: return
contains, attrd = self.rect.contains(event)
if not contains: return
print ’event contains’, self.rect.xy
x0, y0 = self.rect.xy
self.press = x0, y0, event.xdata, event.ydata
DraggableRectangle.lock = self

draw everything but the selected rectangle and store the pixel buffer
canvas = self.rect.figure.canvas

axes = self.rect.axes

self.rect.set_animated(True)

canvas.draw()

self.background = canvas.copy_from_bbox(self.rect.axes.bbox)

now redraw just the rectangle
axes.draw_artist(self.rect)

and blit just the redrawn area
canvas.blit(axes.bbox)

def on_motion(self, event):
“on motion we will move the rect if the mouse is over us’
if DraggableRectangle.lock is not self:
return
if event.inaxes != self.rect.axes: return
x0, y0®, xpress, ypress = self.press
dx = event.xdata - xpress
dy = event.ydata - ypress
self.rect.set_x(x0+dx)
self.rect.set_y(y0+dy)

canvas = self.rect.figure.canvas

axes = self.rect.axes

restore the background region
canvas.restore_region(self.background)

69

Matplotlib, Release 0.98

redraw just the current rectangle
axes.draw_artist(self.rect)

blit just the redrawn area
canvas.blit(axes.bbox)

def on_release(self, event):
‘on release we reset the press data’
if DraggableRectangle.lock is not self:
return

self.press = None
DraggableRectangle.lock = None

turn off the rect animation property and reset the background
self.rect.set_animated(False)
self.background = None

redraw the full figure
self.rect.figure.canvas.draw()

def disconnect(self):
"disconnect all the stored connection ids’
self.rect.figure.canvas.mpl_disconnect(self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self.rect.figure.canvas.mpl_disconnect(self.cidmotion)

fig = plt.figure()
ax = fig.add_subplot(111)
rects = ax.bar(range(10), 20*np.random.rand(10))
drs = []
for rect in rects:
dr = DraggableRectangle(rect)
dr.connect()
drs.append(dr)

plt.show()

8.3 Object picking

You can enable picking by setting the picker property of an Artist (eg a matplotlib Line2D, Text, Patch,
Polygon, AxesImage, etc...)

There are a variety of meanings of the picker property:

None picking is disabled for this artist (default)

boolean if True then picking will be enabled and the artist will fire a pick event if the mouse
event is over the artist

float if picker is a number it is interpreted as an epsilon tolerance in points and the the artist
will fire off an event if its data is within epsilon of the mouse event. For some artists like

70

Matplotlib, Release 0.98

lines and patch collections, the artist may provide additional data to the pick event that is
generated, eg the indices of the data within epsilon of the pick event.

function if picker is callable, it is a user supplied function which determines whether the
artist is hit by the mouse event. The signature is hit, props = picker(artist,
mouseevent) to determine the hit test. If the mouse event is over the artist, return
hit=True and props is a dictionary of properties you want added to the PickEvent at-
tributes

After you have enabled an artist for picking by setting the picker property, you need to connect to the figure
canvas pick_event to get pick callbacks on mouse press events. Eg:

def pick_handler(event):
mouseevent = event.mouseevent
artist = event.artist
now do something with this..

The PickEvent which is passed to your callback is always fired with two attributes:

mouseevent the mouse event that generate the pick event. The mouse event in turn has at-
tributes like x and y (the coords in display space, eg pixels from left, bottom) and xdata,
ydata (the coords in data space). Additionally, you can get information about which but-
tons were pressed, which keys were pressed, which Axes the mouse is over, etc. See
matplotlib.backend_bases.MouseEvent for details.

artist the Artist that generated the pick event.

Additionally, certain artists like Line2D and PatchCollection may attach additional meta data like the
indices into the data that meet the picker criteria (eg all the points in the line that are within the specified
epsilon tolerance)

8.3.1 Simple picking example

In the example below, we set the line picker property to a scalar, so it represents a tolerance in points (72
points per inch). The onpick callback function will be called when the pick event it within the tolerance
distance from the line, and has the indices of the data vertices that are within the pick distance tolerance.
Our onpick callback function simply prints the data that are under the pick location. Different matplotlib
Artists can attach different data to the PickEvent. For example, Line2D attaches the ind property, which are
the indices into the line data under the pick point. See pick() for details on the PickEvent properties of
the line. Here is the code:

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111)

ax.set_title(’click on points’)

line, = ax.plot(np.random.rand(100), ’o’, picker=5) # 5 points tolerance

71

Matplotlib, Release 0.98

def onpick(event):
thisline = event.artist
xdata = thisline.get_xdata()
ydata = thisline.get_ydata()
ind = event.ind
print ’onpick points:’, zip(xdatal[ind], ydata[ind])

fig.canvas.mpl_connect(’pick_event’, onpick)

plt.show()

8.3.2 Picking exercise

Create a data set of 100 arrays of 1000 Gaussian random numbers and compute the sample mean and
standard deviation of each of them (hint: numpy arrays have a mean and std method) and make a xy marker
plot of the 100 means vs the 100 standard deviations. Connect the line created by the plot command to the
pick event, and plot the original time series of the data that generated the clicked on points. If more than one
point is within the tolerance of the clicked on point, you can use multiple subplots to plot the multiple time
series.

Exercise solution:

e

compute the mean and stddev of 100 data sets and plot mean vs stddev.
When you click on one of the mu, sigma points, plot the raw data from
the dataset that generated the mean and stddev

import numpy as np

import matplotlib.pyplot as plt

X = np.random.rand(100, 1000)
xs = np.mean(X, axis=1)
ys np.std(X, axis=1)

fig = plt.figure()

ax = fig.add_subplot(111)

ax.set_title(’click on point to plot time series’)

line, = ax.plot(xs, ys, ’0’, picker=5) # 5 points tolerance

def onpick(event):
if event.artist!=line: return True
N = len(event.ind)

if not N: return True

figi = plt.figure()
for subplotnum, dataind in enumerate(event.ind):
ax = figi.add_subplot(N,1,subplotnum+1)

72

Matplotlib, Release 0.98

ax.plot(X[dataind])
ax.text(0.05, 0.9, 'mu= \nsigma= "%(xs[dataind], ys[dataind]),
transform=ax.transAxes, va='top’)
ax.set_ylim(-0.5, 1.5)
figi.show()
return True

fig.canvas.mpl_connect(’pick_event’, onpick)

plt.show()

73

74

Part 11

The Matplotlib FAQ

75

CHAPTER
NINE

Installation

Contents

e Installation

How do I report a compilation problem?

matplotlib compiled fine, but I can’t get anything to plot

How do I cleanly rebuild and reinstall everything?
% Easy Install
+ Windows installer
% Source install

Backends

* What is a backend?
x How do I compile matplotlib with PyGTK-2.4?

0OS-X questions

x How can I easy_install my egg?

Windows questions

x Where can I get binary installers for windows?

9.1 How do | report a compilation problem?

See How do I report a problem?.

9.2 matplotlib compiled fine, but | can’t get anything to plot

The first thing to try is a clean install and see if that helps. If not, the best way to test your install is
by running a script, rather than working interactively from a python shell or an integrated development
environment such as IDLE which add additional complexities. Open up a UNIX shell or a DOS command
prompt and cd into a directory containing a minimal example in a file. Something like simple_plot.py,

77

Matplotlib, Release 0.98

or for example:
from pylab import *

plot([1,2,3])
show ()

and run it with:

python simple_plot.py --verbose-helpful

This will give you additional information about which backends matplotlib is loading, version information,
and more. At this point you might want to make sure you understand matplotlib’s configuration process,

governed by the matplotlibrc configuration file which contains instructions within and the concept of the
matplotlib backend.

If you are still having trouble, see How do I report a problem?.

9.3 How do | cleanly rebuild and reinstall everything?

The steps depend on your platform and installation method.

9.3.1 Easy Install

1. Delete the caches from your .matplotlib configuration directory.
2. Run:

easy_install -m PackageName

3. Delete any .egg files or directories from your installation directory.

9.3.2 Windows installer

1. Delete the caches from your .matplotlib configuration directory.

2. Use Start — Control Panel to start the Add and Remove Software utility.

9.3.3 Source install
Unfortunately:

python setup.py clean
does not properly clean the build directory, and does nothing to the install directory. To cleanly rebuild:

1. Delete the caches from your .matplotlib configuration directory.

78

Matplotlib, Release 0.98

2. Delete the build directory in the source tree

3. Delete any matplotlib directories or eggs from your installation directory <locating-matplotlib-
install>

9.4 Backends

9.4.1 What is a backend?

A lot of documentation on the website and in the mailing lists refers to the “backend” and many new
users are confused by this term. matplotlib targets many different use cases and output formats. Some
people use matplotlib interactively from the python shell and have plotting windows pop up when they type
commands. Some people embed matplotlib into graphical user interfaces like wxpython or pygtk to build
rich applications. Others use matplotlib in batch scripts to generate postscript images from some numerical
simulations, and still others in web application servers to dynamically serve up graphs.

To support all of these use cases, matplotlib can target different outputs, and each of these capabililities is
called a backend (the “frontend” is the user facing code, ie the plotting code, whereas the “backend” does
all the dirty work behind the scenes to make the figure. There are two types of backends: user interface
backends (for use in pygtk, wxpython, tkinter, qt or flitk) and hardcopy backends to make image files (PNG,
SVG, PDF, PS).

There are a two primary ways to configure your backend. One is to set the backend parameter in you
matplotlibrc file (see Customizing matplotlib):

backend : WXAgg # use wxpython with antigrain (agg) rendering

The other is to use the matplotlib use () directive:

import matplotlib
matplotlib.use(’PS’) # generate postscript output by default

If you use the use directive, this must be done before importing matplotlib.pyplot or
matplotlib.pylab.

If you are unsure what to do, and just want to get cranking, just set your backend to TkAgg. This will do
the right thing for 95% of the users. It gives you the option of running your scripts in batch or working
interactively from the python shell, with the least amount of hassles, and is smart enough to do the right
thing when you ask for postscript, or pdf, or other image formats.

If however, you want to write graphical user interfaces, or a web application server (How do I use matplotlib
in a web application server?), or need a better understanding of what is going on, read on. To make things
a little more customizable for graphical user interfaces, matplotlib separates the concept of the renderer (the
thing that actually does the drawing) from the canvas (the place where the drawing goes). The canonical
renderer for user interfaces is Agg which uses the antigrain C++ library to make a raster (pixel) image of
the figure. All of the user interfaces can be used with agg rendering, eg WXAgg, GTKAgg, QTAgg, TkAgg. In
addition, some of the user interfaces support other rendering engines. For example, with GTK, you can also
select GDK rendering (backend GTK) or Cairo rendering (backend GTKCairo).

79

http://antigrain.html

Matplotlib, Release 0.98

For the rendering engines, one can also distinguish between vector or raster renderers. Vector graphics
languages issue drawing commands like “draw a line from this point to this point” and hence are scale free,
and raster backends generate a pixel represenation of the line whose accuracy depends on a DPI setting.

Here is a summary of the matplotlib renderers (there is an eponymous backed for each):

Renderer | Filetypes Description

AGG png raster graphics — high quality images using the Anti-Grain Geometry engine
PS ps eps vector graphics — Postscript output

PDF pdf vector graphics — Portable Document Format

SVG SVg vector graphics — Scalable Vector Graphics

Cairo png ps pdf svg ... | vector graphics — Cairo graphics

GDK png jpg tiff ... raster graphics — the Gimp Drawing Kit

And here are the user interfaces and renderer combinations supported:

Backend | Description

GTKAgg | Aggrendering to a GTK canvas (requires PyGTK)

GTK GDK rendering to a GTK canvas (not recommended) (requires PyGTK)
GTKCairo | Cairo rendering to a GTK Canvas (requires PyGTK)

WXAgg Agg rendering to to a wxWidgets canvas (requires wxPython)

WX Native wxWidgets drawing to a wxWidgets Canvas (not recommended) (requires wxPython)
TkAgg Agg rendering to a Tk canvas (requires Tklnter)
QtAgg Agg rendering to a Ot canvas (requires PyQt)

Qtd4Agg Agg rendering to a Q4 canvas (requires PyQt4)
FLTKAgg | Aggrendering to a FLTK canvas (requires pyFLTK)

9.4.2 How do | compile matplotlib with PyGTK-2.4?

There is a bug in PyGTK-2.4. You need to edit pygobject.h to add the G_BEGIN_DECLS and G_END_DECLS
macros, and rename typename parameter to typename_:

- const char *typename,
+ const char *typename_,

9.5 0S-X questions

9.5.1 How can | easy_install my egg?

I downloaded the egg for 0.98 from the matplotlib webpages, and I am trying to easy_install it, but I am
getting an error:

> easy_install ./matplotlib-0.98.0-py2.5-macosx-10.3-fat.egg
Processing matplotlib-0.98.0-py2.5-macosx-10.3-fat.egg

removing ’/Library/Python/2.5/site-packages/matplotlib-0.98.0-py2.5-
...snip...

Reading http://matplotlib.sourceforge.net

Reading http://cheeseshop.python.org/pypi/matplotlib/0.91.3

80

http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Raster_graphics
http://www.antigrain.com/
http://en.wikipedia.org/wiki/PostScript
http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Cairo_(graphics)
http://en.wikipedia.org/wiki/GDK
http://www.pygtk.org
http://www.pygtk.org
http://www.pygtk.org
http://www.wxpython.org/
http://www.wxpython.org/
http://wiki.python.org/moin/TkInter
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://pyfltk.sourceforge.net
http://bugzilla.gnome.org/show_bug.cgi?id=155304

Matplotlib, Release 0.98

No local packages or download links found for matplotlib==0.98.0
error: Could not find suitable distribution for
Requirement.parse(’matplotlib==0.98.0")

If you rename matplotlib-0.98.0-py2.5-macosx-10.3-fat.egg to
matplotlib-0.98.0-py2.5.egg, easy_install will install it from the disk. Many Mac OS X
eggs with cruft at the end of the filename, which prevents their installation through easy_install. Renaming
is all it takes to install them; still, it’s annoying.

9.6 Windows questions

9.6.1 Where can | get binary installers for windows?

If you have already installed python, you can use one of the matplotlib binary installers for windows — you
can get these from the sourceforge download site. Choose the files that match your version of python (eg
py2.5 if you installed Python 2.5) which have the exe extension. If you haven’t already installed python,
you can get the official version from the python web site. There are also two packaged distributions of
python that come preloaded with matplotlib and many other tools like ipython, numpy, scipy, vtk and user
interface toolkits. These packages are quite large because they come with so much, but you get everything
with a single click installer.

o the enthought python distribution EPD

e python (x, y)

81

http://sourceforge.net/project/platformdownload.php?group_id=80706
http://python.org/download/
http://www.enthought.com/products/epd.php
http://www.pythonxy.com/foreword.php

82

CHAPTER
TEN

Troubleshooting

Contents

e Troubleshooting

— What is my matplotlib version?
— Where is matplotlib installed?
— Where is my .matplotlib directory?

— How do I report a problem?

— I am having trouble with a recent svn update, what should I do?

10.1 What is my matplotlib version?

To find out your matplotlib version number, import it and print the __version__ attribute:

>>> import matplotlib
>>> matplotlib.__version__
’0.98.0°

10.2 Where is matplotlib installed?

You can find what directory matplotlib is installed in by importing it and printing the __file__ attribute:

>>> import matplotlib
>>> matplotlib.__file__
’ /home/jdhunter/dev/1ib64/python2.5/site-packages/matplotlib/__init__.pyc’

83

Matplotlib, Release 0.98

10.3 Where is my .matplotlib directory?

Each wuser has a .matplotlib/ directory which may contain a matplotlibrc file and vari-
ous caches to improve matplotlib’s performance. To locate your .matplotlib/ directory, use
matplotlib.get_configdir():

>>> import matplotlib as mpl
>>> mpl.get_configdir()
’ /home/darren/.matplotlib’

On unix like systems, this directory is generally located in your HOME directory. On windows, it is in your
documents and settings directory by default:

>>> import matplotlib
>>> mpl.get_configdir()
"C:\\Documents and Settings\\jdhunter\\.matplotlib’

If you would like to use a different configuration directory, you can do so by specifying the location in your
MPLCONFIGDIR environment variable — see Setting environment variables in Linux and OS-X.

10.4 How do | report a problem?

If you are having a problem with matplotlib, search the mailing lists first: There’s a good chance someone
else has already run into your problem.

If not, please provide the following information in your e-mail to the mailing list:

e your operating system; on Linux/UNIX post the output of uname -a

e matplotlib version:
python -c ‘import matplotlib; print matplotlib.__version__°

e where you obtained matplotlib (e.g. your Linux distribution’s packages or the matplotlib Sourceforge
site, or the enthought python distribution EPD.

e any customizations to your matplotlibrc file (see Customizing matplotlib).

o if the problem is reproducible, please try to provide a minimal, standalone Python script that demon-
strates the problem. This is the critical step. If you can’t post a piece of code that we can run and
reproduce your error, the chances of getting help are significantly diminished. Very often, the mere
act of trying to minimize your code to the smallest bit that produces the error will help you find a bug
in your code that is causing the problem.

e you can get very helpful debugging output from matlotlib by running your script with a
verbose-helpful or -verbose-debug flags and posting the verbose output the lists:

> python simple_plot.py --verbose-helpful > output.txt

84

http://lists.sourceforge.net/mailman/listinfo/matplotlib-users
http://www.enthought.com/products/epd.php

Matplotlib, Release 0.98

If you compiled matplotlib yourself, please also provide

e any changes you have made to setup.py or setupext.py
e the output of:

rm -rf build
python setup.py build

The beginning of the build output contains lots of details about your platform that are useful for the
matplotlib developers to diagnose your problem.

e your compiler version — eg, gcc -version

Including this information in your first e-mail to the mailing list will save a lot of time.

You will likely get a faster response writing to the mailing list than filing a bug in the bug tracker. Most
developers check the bug tracker only periodically. If your problem has been determined to be a bug and
can not be quickly solved, you may be asked to file a bug in the tracker so the issue doesn’t get lost.

10.5 | am having trouble with a recent svn update, what should | do?

First make sure you have a clean build and install (see How do I cleanly rebuild and reinstall everything ?),
get the latest svn update, install it and run a simple test script in debug mode:

rm -rf build
rm -rf /path/to/site-packages/matplotlib*
svn up

python setup.py install > build.out
python examples/pylab_examples/simple_plot.py --verbose-debug > run.out

and post build.out and run.out to the matplotlib-devel mailing list (please do not post svn problems to
the users list).

Of course, you will want to clearly describe your problem, what you are expecting and what you are getting,
but often a clean build and install will help. See also How do I report a problem?.

85

http://lists.sourceforge.net/mailman/listinfo/matplotlib-devel
http://lists.sourceforge.net/mailman/listinfo/matplotlib-users

86

CHAPTER
ELEVEN

Howto

Contents

e Howto

— How do I find all the objects in my figure of a certain type?

— How do I save transparent figures?

— How do I move the edge of my axes area over to make room for my tick labels?
— How do I automatically make room for my tick labels?

— How do I configure the tick linewidths?

— How do I align my ylabels across multiple subplots?

— How do I use matplotlib in a web application server?

x How do I use matplotlib with apache?
x* How do I use matplotlib with django?
+ How do I use matplotlib with zope?

— How do I skip dates where there is no data?

11.1 How do | find all the objects in my figure of a certain type?

Every matplotlib artist (see Artist tutorial) has a method called findobj () that can be used to recursively
search the artist for any artists it may contain that meet some criteria (eg match all Line2D instances or
match some arbitrary filter function). For example, the following snippet finds every object in the figure
which has a set_color property and makes the object blue:

def myfunc(x):
return hasattr(x, ’set_color’)

for o in fig.findobj(myfunc):
o.set_color(’blue’)

You can also filter on class instances:

87

Matplotlib, Release 0.98

import matplotlib.text as text
for o in fig.findobj(text.Text):
o.set_fontstyle(’italic’)

11.2 How do | save transparent figures?

The savefig() command has a keyword argument transparent which, if True, will make the figure and
axes backgrounds transparent when saving, but will not affect the displayed image on the screen. If you
need finer grained control, eg you do not want full transparency or you to affect the screen displayed version
as well, you can set the alpha properties directly. The figure has a matplotlib.patches.Rectangle
instance called patch and the axes has a Rectangle instance called patch. You can set any property on them
directly (facecolor, edgecolor, linewidth, linestyle, alpha). Eg:

fig = plt.figure()
fig.patch.set_alpha(0.5)
ax = fig.add_subplot(111)
ax.patch.set_alpha(0.5)

If you need all the figure elements to be transparent, there is currently no global alpha setting, but you can
set the alpha channel on individual elements, eg:

ax.plot(x, y, alpha=0.5)
ax.set_xlabel(’volts’, alpha=0.5)

11.3 How do | move the edge of my axes area over to make room for my
tick labels?

For subplots, you can control the default spacing on the left, right, bottom, and top as
well as the horizontal and vertical spacing between multiple rows and columns using the
matplotlib.figure.Figure.subplots_adjust() method (in pyplot it is subplots_adjust()). For
example, to move the bottom of the subplots up to make room for some rotated x tick labels:

fig = plt.figure()

fig.subplots_adjust(bottom=0.2)
ax = fig.add_subplot(111)

You can control the defaults for these parameters in your matplotlibrc file; see Customizing matplotlib.
For example, to make the above setting permanent, you would set:

figure.subplot.bottom : 0.2 # the bottom of the subplots of the figure

The other parameters you can configure are, with their defaults

left = 0.125 the left side of the subplots of the figure

88

Matplotlib, Release 0.98

right = 0.9 the right side of the subplots of the figure

bottom = 0.1 the bottom of the subplots of the figure

top = 0.9 the top of the subplots of the figure

wspace = 0.2 the amount of width reserved for blank space between subplots

hspace = 0.2 the amount of height reserved for white space between subplots

If you want additional control, you can create an Axes using the axes () command (or equivalently the figure
matplotlib. figure.Figure.add_axes() method), which allows you to specify the location explicitly:

ax = fig.add_axes([left, bottom, width, height])

where all values are in fractional (0 to 1) coordinates. See axes_demo.py for an example of placing axes
manually.

11.4 How do | automatically make room for my tick labels?

In most use cases, it is enought to simpy change the subplots adjust parameters as described in How do 1
move the edge of my axes area over to make room for my tick labels?. But in some cases, you don’t know
ahead of time what your tick labels will be, or how large they will be (data and labels outside your control
may be being fed into your graphing application), and you may need to automatically adjust your subplot
parameters based on the size of the tick labels. Any matplotlib.text.Text instance can report its extent
in window coordinates (a negative x coordinate is outside the window), but there is a rub.

The matplotlib.backend_bases.RendererBase instance, which is used to calculate the text size, is
not known until the figure is drawn (matplotlib.figure.Figure.draw()). After the window is drawn
and the text instance knows its renderer, you can call matplotlib.text.Text.get_window_extent ‘().
One way to solve this chicken and egg problem is to wait until the figure is draw by con-
necting (matplotlib.backend_bases.FigureCanvasBase.mpl_connect()) to the “on_draw” signal
(DrawEvent) and get the window extent there, and then do something with it, eg move the left of the canvas
over; see Event handling and picking.

Here is that gets a bounding box in relative figure coordinates (0..1) of each of the labels and uses it to move
the left of the subplots over so that the tick labels fit in the figure

import matplotlib.pyplot as plt

import matplotlib.transforms as mtransforms

fig = plt.figure()

ax = fig.add_subplot(111)

ax.plot(range(10))

ax.set_yticks((2,5,7))

labels = ax.set_yticklabels((’really, really, really’, ’'long’, ’labels’))

def on_draw(event):
bboxes = []
for label in labels:
bbox = label.get_window_extent()

89

http://matplotlib.sf.net/examples/axes_demo.py

Matplotlib, Release 0.98

the figure transform goes from relative coords->pixels and we
want the inverse of that

bboxi = bbox.inverse_transformed(fig.transFigure)
bboxes.append(bboxi)

this is the bbox that bounds all the bboxes, again in relative

figure coords

bbox = mtransforms.Bbox.union(bboxes)

if fig.subplotpars.left < bbox.width:
we need to move it over
fig.subplots_adjust(left=1.1*bbox.width) # pad a little
fig.canvas.draw()

return False

fig.canvas.mpl_connect(’draw_event’, on_draw)

plt.show()

T
L

labels

T
L

long

T
L

really, really, really

90

Matplotlib, Release 0.98

11.5 How do | configure the tick linewidths?

In matplotlib, the ticks are markers. All Line2D objects support a line (solid, dashed, etc) and a marker
(circle, square, tick). The tick linewidth is controlled by the “markeredgewidth” property:

import matplotlib.pyplot as plt
fig = plt.figure()

ax = fig.add_subplot(111)
ax.plot(range(10))

for line in ax.get_xticklines() + ax.get_yticklines():
line.set_markersize(10)

plt.show()

The other properties that control the tick marker, and all markers, are markerfacecolor,
markeredgecolor, markeredgewidth, markersize. For more information on configuring ticks, see
Axis containers and Tick containers.

11.6 How do | align my ylabels across multiple subplots?

If you have multiple subplots over one another, and the y data have different scales, you can often get ylabels
that do not align vertically across the multiple subplots, which can be unattractive. By default, matplotlib
positions the x location of the ylabel so that it does not overlap any of the y ticks. You can override this
default behavior by specifying the coordinates of the label. The example below shows the default behavior
in the left subplots, and the manual setting in the right subplots.

import numpy as np
import matplotlib.pyplot as plt

box

dict(facecolor="yellow’, pad=5, alpha=0.2)

fig = plt.figure(Q
fig.subplots_adjust(left=0.2, wspace=0.6)

axl = fig.add_subplot(221)
axl.plot(2000*np.random.rand(10))
axl.set_title(’ylabels not aligned’)
axl.set_ylabel('misaligned 1’, bbox=box)
axl.set_ylim(0, 2000)

ax3 = fig.add_subplot(223)
ax3.set_ylabel('misaligned 2’ ,bbox=box)
ax3.plot(np.random.rand(10))

labelx = -0.3 # axes coords

ax2 = fig.add_subplot(222)
ax2.set_title(’ylabels aligned’)

91

Matplotlib, Release 0.98

ax2
ax2
ax2

ax4
ax4

ax4

plt.

.plot(2000*np.random.rand(10))
.set_ylabel(’aligned 1’, bbox=box)
.yaxis.set_label_coords(labelx, 0.5)
ax2.

set_ylim(®, 2000)

= fig.add_subplot(224)

.plot(np.random.rand(10))
ax4.

set_ylabel(’aligned 2’, bbox=box)

.yaxis.set_label_coords(labelx, 0.5)

show ()

ylabels not aligned
2000 T T T T T T T

=
Ul
o
o

1000

misaligned 1

500

©
o

o
>

misaligned 2

o
N

0.0

012345673829

aligned 1

aligned 2

ylabels aligned
2000—

T T T T T T T

1500

1000

500

11.7 How do | use matplotlib in a web application server?

Many users report initial problems trying to use maptlotlib in web application servers, because by default
matplotlib ships configured to work with a graphical user interface which may require an X11 connection.
Since many barebones application servers do not have X11 enabled, you may get errors if you don’t config-
ure matplotlib for use in these environments. Most importantly, you need to decide what kinds of images
you want to generate (PNG, PDF, SVG) and configure the appropriate default backend. For 99% of users,
this will be the Agg backend, which uses the C++ antigrain rendering engine to make nice PNGs. The Agg

92

http://antigrain.com

Matplotlib, Release 0.98

backend is also configured to recognize requests to generate other output formats (PDF, PS, EPS, SVG).
The easiest way to configure matplotlib to use Agg is to call:

do this before importing pylab or pyplot
import matplotlib

matplotlib.use(’Agg’)

import matplotlib.pyplot as plt

For more on configuring your backend, see What is a backend?.

Alternatively, you can avoid pylab/pyplot altogeher, which will give you a little more control, by calling the
API directly as shown in agg_o00.py .

You can either generate hardcopy on the filesystem by calling savefig:
do this before importing pylab or pyplot

import matplotlib

matplotlib.use(’Agg’)

import matplotlib.pyplot as plt

fig = plt.figure()

ax = fig.add_subplot(111)

ax.plot([1,2,3])

fig.savefig(’test.png’)

or by saving to a file handle:

import sys
fig.savefig(sys.stdout)

11.7.1 How do | use matplotlib with apache?

TODO

11.7.2 How do | use matplotlib with django?

TODO

11.7.3 How do | use matplotlib with zope?

TODO

11.8 How do | skip dates where there is no data?

When plotting time series, eg financial time series, one often wants to leave out days on which there is no
data, eg weekends. By passing in dates on the x-xaxis, you get large horizontal gaps on periods when there
is not data. The solution is to pass in some proxy x-data, eg evenly sampled indicies, and then use a custom

93

http://matplotlib.sf.net/examples/api/agg_oo.py

Matplotlib, Release 0.98

formatter to format these as dates. The example below shows how to use an ‘index formatter’ to achieve the
desired plot:

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import matplotlib.ticker as ticker

r = mlab.csv2rec(’../data/aapl.csv’)
r.sort()
r = r[-30:] # get the last 30 days

N len(r)
ind = np.arange(N) # the evenly spaced plot indices

def format_date(x, pos=None):
thisind = np.clip(int(x+0.5), 0, N-1)
return r.date[thisind].strftime(’%Y-%m-%d’)

fig = plt.figure(Q)

ax = fig.add_subplot(111)

ax.plot(ind, r.adj_close, ’'o-")
ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))
fig.autofmt_xdate()

plt.show()

94

CHAPTER
TWELVE

Environment Variables

Contents

e Environment Variables

— Setting environment variables in Linux and OS-X

x BASH/KSH
x CSH/TCSH

— Setting environment variables in windows

HOME
The user’s home directory. On linux, ~ is shorthand for HOME.

PATH
The list of directories searched to find executable programs

PYTHONPATH
The list of directories that is added to Python’s standard search list when importing packages and
modules

MPLCONFIGDIR
This is the directory used to store user customizations to matplotlib, as well as some caches to improve
performance. If MPLCONFIGDIR is not defined, HOME/ .matplotlib is used by default.

12.1 Setting environment variables in Linux and OS-X

To list the current value of PYTHONPATH, which may be empty, try:

echo $PYTHONPATH

The procedure for setting environment variables in depends on what your default shell is. BASH seems to
be the most common, but CSH is also common. You should be able to determine which by running at the
command prompt:

95

Matplotlib, Release 0.98

echo $SHELL

12.1.1 BASH/KSH
To create a new environment variable:

export PYTHONPATH=~/Python

To prepend to an existing environment variable:

export PATH=~/bin:${PATH}

The search order may be important to you, do you want ~/bin to be searched first or last? To append to an
existing environment variable:

export PATH=${PATH}:~/bin

To make your changes available in the future, add the commands to your ~/ .bashrc file.

12.1.2 CSH/TCSH
To create a new environment variable:

setenv PYTHONPATH ~/Python

To prepend to an existing environment variable:

setenv PATH ~/bin:${PATH}

The search order may be important to you, do you want ~/bin to be searched first or last? To append to an
existing environment variable:

setenv PATH ${PATH}:~/bin

To make your changes available in the future, add the commands to your ~/ . cshrc file.

12.2 Setting environment variables in windows

Open the Control Panel (Start — Control Panel), start the System program. Click the Advanced tab and
select the Environment Variables button. You can edit or add to the User Variables.

96

Part 111

The Matplotlib Developers’s Guide

97

CHAPTER
THIRTEEN

Coding guide

13.1 Version control

13.1.1 svn checkouts
Checking out everything in the trunk (matplotlib and toolKkits):

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk \
matplotlib --username=youruser --password=yourpass

Checking out the main source:

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk/\
matplotlib mpl --username=youruser --password=yourpass

Branch checkouts, eg the maintenance branch:

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/branches/\
v0_91_maint mpl91 --username=youruser --password=yourpass

13.1.2 Committing changes

When committing changes to matplotlib, there are a few things to bear in mind.

o if your changes are non-trivial, please make an entry in the CHANGELOG

¢ if you change the API, please document it in API_CHANGES, and consider posting to matplotlib-devel
e Are your changes python2.4 compatible? We still support 2.4, so avoid features new to 2.5

e Can you pass examples/tests/backend_driver.py? This is our poor man’s unit test.

o If you have altered extension code, do you pass unit/memleak_hawaii.py?

o if you have added new files or directories, or reorganized existing ones, are the new files included in
the match patterns in MANIFEST. in. This file determines what goes into the source distribution of the
mpl build.

99

http://lists.sourceforge.net/mailman/listinfo/matplotlib-devel

Matplotlib, Release 0.98

e Keep the maintenance branch and trunk in sync where it makes sense. If there is a bug on both that
needs fixing, use svnmerge.py to keep them in sync. The basic procedure is:

— install svnmerge.py in your PATH:

> wget http://svn.collab.net/repos/svn/trunk/contrib/client-side/\
svnmerge/svnmerge.py

— get a svn copy of the maintenance branch and the trunk (see above)

— Michael advises making the change on the branch and committing it. Make sure you svn upped
on the trunk and have no local modifications, and then from the svn trunk do:

> svnmerge.py merge
If you wish to merge only specific revisions (in an unusual situation), do:
> svnmerge.py merge -rNNN1-NNN2

where the NNN are the revision numbers. Ranges are also acceptable.

The merge may have found some conflicts (code that must be manually resolved). Correct those
conflicts, build matplotlib and test your choices. If you have resolved any conflicts, you can let
svn clean up the conflict files for you:

> svn -R resolved .

svnmerge . py automatically creates a file containing the commit messages, so you are ready to
make the commit:

> svn commit -F svnmerge-commit-message.txt

13.2 Style guide

13.2.1 Importing and name spaces

For numpy, use:

import numpy as np
a = np.array([1,2,3])

For masked arrays, use:

import numpy.ma as ma

For matplotlib main module, use:

import matplotlib as mpl
mpl.rcParams[’xtick.major.pad’] = 6

For matplotlib modules (or any other modules), use:

100

http://www.orcaware.com/svn/wiki/Svnmerge.py
http://www.numpy.org

Matplotlib, Release 0.98

import matplotlib.cbook as cbook

if cbook.iterable(z):
pass

We prefer this over the equivalent from matplotlib import cbook because the latter is ambiguous as
to whether cbook is a module or a function. The former makes it explicit that you are importing a module
or package. There are some modules with names that match commonly used local variable names, eg
matplotlib.lines or matplotlib.colors. To avoid the clash, use the prefix ‘m’ with the import
some.thing as mthing syntax, eg:

import matplotlib.lines as mlines

import matplotlib.transforms as transforms # OK

import matplotlib.transforms as mtransforms # OK, if you want to disambiguate
import matplotlib.transforms as mtrans # OK, if you want to abbreviate

13.2.2 Naming, spacing, and formatting conventions

In general, we want to hew as closely as possible to the standard coding guidelines for python written by
Guido in PEP 0008, though we do not do this throughout.

e functions and class methods: lower or lower_underscore_separated
e attributes and variables: lower or lowerUpper

e classes: Upper or MixedCase

Prefer the shortest names that are still readable.

Configure your editor to use spaces, not hard tabs. The standard indentation unit is always four spaces; if
there is a file with tabs or a different number of spaces it is a bug — please fix it. To detect and fix these and
other whitespace errors (see below), use reindent.py as a command-line script. Unless you are sure your
editor always does the right thing, please use reindent.py before checking changes into svn.

Keep docstrings uniformly indented as in the example below, with nothing to the left of the triple quotes.
The matplotlib.cbook.dedent () function is needed to remove excess indentation only if something
will be interpolated into the docstring, again as in the example below.

Limit line length to 80 characters. If a logical line needs to be longer, use parentheses to break it; do not use
an escaped newline. It may be preferable to use a temporary variable to replace a single long line with two
shorter and more readable lines.

Please do not commit lines with trailing white space, as it causes noise in svn diffs. Tell your editor to strip
whitespace from line ends when saving a file. If you are an emacs user, the following in your .emacs will
cause emacs to strip trailing white space upon saving for python, C and C++:

; and similarly for c++-mode-hook and c-mode-hook
(add-hook ’python-mode-hook
(lambda (O
(add-hook ’'write-file-functions ’delete-trailing-whitespace)))

101

http://www.python.org/dev/peps/pep-0008
http://svn.python.org/projects/doctools/trunk/utils/reindent.py

Matplotlib, Release 0.98

for older versions of emacs (emacs<22) you need to do:

(add-hook ’python-mode-hook
(lambda (O
(add-hook ’local-write-file-hooks ’delete-trailing-whitespace)))

13.2.3 Keyword argument processing

Matplotlib makes extensive use of **kwargs for pass-through customizations from one function to another.
A typical example is in matplotlib.pylab.text(). The definition of the pylab text function is a simple
pass-through to matplotlib.axes.Axes.text():

in pylab.py

def text(*args, **kwargs):
ret = gca().text(*args, **kwargs)
draw_if_interactive()
return ret

text() in simplified form looks like this, i.e., it just passes all args and kwargs on to
matplotlib.text.Text.__init__(Q):

in axes.py
def text(self, x, y, s, fontdict=None, withdash=False, **kwargs):
t = Text(x=x, y=y, text=s, **kwargs)

and __init__ () (again with liberties for illustration) just passes them on to the
matplotlib.artist.Artist.update() method:

in text.py

def __init__(self, x=0, y=0, text="’, **kwargs):
Artist.__init__(self)
self.update(kwargs)

update does the work looking for methods named like set_property if property is a keyword argument.
L.e., no one looks at the keywords, they just get passed through the API to the artist constructor which looks
for suitably named methods and calls them with the value.

As a general rule, the use of **kwargs should be reserved for pass-through keyword arguments, as in the
example above. If all the keyword args are to be used in the function, and not passed on, use the key/value
keyword args in the function definition rather than the **kwargs idiom.

In some cases, you may want to consume some keys in the local function, and let others pass through. You
can pop the ones to be used locally and pass on the rest. For example, in plot (), scalex and scaley are
local arguments and the rest are passed on as Line2D () keyword arguments:

in axes.py

def plot(self, *args, **kwargs):
scalex = kwargs.pop(’scalex’, True)
scaley = kwargs.pop(’scaley’, True)
if not self._hold: self.cla()

102

Matplotlib, Release 0.98

lines = []

for line in self._get_lines(*args, **kwargs):
self.add_line(line)
lines.append(line)

Note: there is a use case when kwargs are meant to be used locally in the function (not passed on), but
you still need the **kwargs idiom. That is when you want to use *args to allow variable numbers of non-
keyword args. In this case, python will not allow you to use named keyword args after the *args usage, so
you will be forced to use **kwargs. An example ismatplotlib.contour.ContourLabeler.clabel():

in contour.py
def clabel(self, *args, **kwargs):
fontsize = kwargs.get(’ fontsize’, None)
inline = kwargs.get(’inline’, 1)
self.fmt = kwargs.get(’ fmt’, ’ M)
colors = kwargs.get(’colors’, None)
if len(args) == 0:
levels = self.levels
indices = range(len(self.levels))
elif len(args) == 1:
..etc...

13.3 Documentation and docstrings

Matplotlib uses artist introspection of docstrings to support properties. All properties that you want to
support through setp and getp should have a set_property and get_property method in the Artist
class. Yes, this is not ideal given python properties or enthought traits, but it is a historical legacy for now.
The setter methods use the docstring with the ACCEPTS token to indicate the type of argument the method
accepts. Eg. inmatplotlib.lines.Line2D:

in lines.py
def set_linestyle(self, linestyle):

e

Set the linestyle of the line

ACCEPTS: [-7 | ’-=" | ’=.7 | ’:7 | ’steps’ | ’None’ [~ ’~ | 77]

o

Since matplotlib uses a lot of pass-through kwargs, eg. in every function that creates a line (plot(),
semilogx (), semilogy (), etc...), it can be difficult for the new user to know which kwargs are supported.
Matplotlib uses a docstring interpolation scheme to support documentation of every function that takes a
**kwargs. The requirements are:

1. single point of configuration so changes to the properties don’t require multiple docstring edits.

2. as automated as possible so that as properties change, the docs are updated automagically.

The functions matplotlib.artist.kwdocd and matplotlib.artist.kwdoc() to facilitate this. They
combine python string interpolation in the docstring with the matplotlib artist introspection facility that

103

Matplotlib, Release 0.98

underlies setp and getp. The kwdocd is a single dictionary that maps class name to a docstring of kwargs.
Here is an example from matplotlib.lines:

in lines.py
artist.kwdocd[’Line2D’] = artist.kwdoc(Line2D)

Then in any function accepting Line2D pass-through kwargs, eg. matplotlib.axes.Axes.plot():

in axes.py
def plot(self, *args, **kwargs):

o

Some stuff omitted

The kwargs are Line2D properties:
%(Line2D)s

kwargs scalex and scaley, if defined, are passed on

to autoscale_view to determine whether the x and y axes are
autoscaled; default True. See Axes.autoscale_view for more
information

o

pass
plot.__doc = cbook.dedent(plot.__doc__) % artist.kwdocd

Note there is a problem for Artist __init__ methods, eg. matplotlib.patches.Patch.__init__(),
which supports Patch kwargs, since the artist inspector cannot work until the class is fully defined
and we can’t modify the Patch.__init__.__doc__ docstring outside the class definition. There are

some some manual hacks in this case, violating the ‘“single entry point” requirement above — see the
artist.kwdocd[’Patch’] setting inmatplotlib.patches.

13.4 Licenses

Matplotlib only uses BSD compatible code. If you bring in code from another project make sure it has a
PSF, BSD, MIT or compatible license (see the Open Source Initiative licenses page for details on individual
licenses). If it doesn’t, you may consider contacting the author and asking them to relicense it. GPL and
LGPL code are not acceptable in the main code base, though we are considering an alternative way of
distributing L/GPL code through an separate channel, possibly a toolkit. If you include code, make sure you
include a copy of that code’s license in the license directory if the code’s license requires you to distribute
the license with it. Non-BSD compatible licenses are acceptable in matplotlib toolkits (eg basemap), but
make sure you clearly state the licenses you are using.

13.4.1 Why BSD compatible?

The two dominant license variants in the wild are GPL-style and BSD-style. There are countless other
licenses that place specific restrictions on code reuse, but there is an important different to be considered
in the GPL and BSD variants. The best known and perhaps most widely used license is the GPL, which
in addition to granting you full rights to the source code including redistribution, carries with it an extra
obligation. If you use GPL code in your own code, or link with it, your product must be released under a

104

http://www.opensource.org/licenses

Matplotlib, Release 0.98

GPL compatible license. l.e., you are required to give the source code to other people and give them the
right to redistribute it as well. Many of the most famous and widely used open source projects are released
under the GPL, including sagemath, linux, gcc and emacs.

The second major class are the BSD-style licenses (which includes MIT and the python PSF license). These
basically allow you to do whatever you want with the code: ignore it, include it in your own open source
project, include it in your proprietary product, sell it, whatever. python itself is released under a BSD
compatible license, in the sense that, quoting from the PSF license page:

There is no GPL-like "copyleft" restriction. Distributing
binary-only versions of Python, modified or not, is allowed. There
is no requirement to release any of your source code. You can also
write extension modules for Python and provide them only in binary
form.

Famous projects released under a BSD-style license in the permissive sense of the last paragraph are the
BSD operating system, python and TeX.

There are two primary reasons why early matplotlib developers selected a BSD compatible license. We
wanted to attract as many users and developers as possible, and many software companies will not use GPL
code in software they plan to distribute, even those that are highly committed to open source development,
such as enthought, out of legitimate concern that use of the GPL will “infect” their code base by its viral
nature. In effect, they want to retain the right to release some proprietary code. Companies, and institutions
in general, who use matplotlib often make significant contributions, since they have the resources to get a
job done, even a boring one, if they need it in their code. Two of the matplotlib backends (FLTK and WX)
were contributed by private companies.

The other reason is licensing compatibility with the other python extensions for scientific computing:
ipython, numpy, scipy, the enthought tool suite and python itself are all distributed under BSD compati-
ble licenses.

105

http://enthought.com

106

CHAPTER
FOURTEEN

Documenting matplotlib

14.1 Getting started

The documentation for matplotlib is generated from ReStructured Text using the Sphinx documentation
generation tool. Sphinx-0.4 or later is required. Currently this means we need to install from the svn
repository by doing:

svn co http://svn.python.org/projects/doctools/trunk sphinx
cd sphinx
python setup.py install

The documentation sources are found in the doc/ directory in the trunk. To build the users guide in html
format, cd into doc/ and do:

python make.py html

or:

./make.py html

you can also pass a 1atex flag to make.py to build a pdf, or pass no arguments to build everything.

The output produced by Sphinx can be configured by editing the conf . py file located in the doc/.

14.2 Organization of matplotlib’s documentation

The actual ReStructured Text files are kept in doc/users, doc/devel, doc/api and doc/faq. The main
entry point is doc/index.rst, which pulls in the index.rst file for the users guide, developers guide,
api reference, and fags. The documentation suite is built as a single document in order to make the most
effective use of cross referencing, we want to make navigating the Matplotlib documentation as easy as
possible.

Additional files can be added to the various guides by including their base file name (the .rst extension is
not necessary) in the table of contents. It is also possible to include other documents through the use of an
include statement, such as:

107

http://sphinx.pocoo.org/

Matplotlib, Release 0.98

. include:: ../../TODO

14.3 Formatting

The Sphinx website contains plenty of documentation concerning ReST markup and working with Sphinx
in general. Here are a few additional things to keep in mind:

e Please familiarize yourself with the Sphinx directives for inline markup. Matplotlib’s documentation

makes heavy use of cross-referencing and other semantic markup. For example, when referring to
external files, use the : file: directive.

Function arguments and keywords should be referred to using the emphasis role. This will keep
matplotlib’s documentation consistant with Python’s documentation:

Here is a description of *argument*®

Please do not use the default role:
Please do not describe ‘argument‘ like this.

nor the 1literal role:

Please do not describe ‘‘argument‘‘ like this.

Sphinx does not support tables with column- or row-spanning cells for latex output. Such tables can
not be used when documenting matplotlib.

Mathematical expressions can be rendered as png images in html, and in the usual way by latex. For
example:

:math: ‘\sin(x_n*2) * yields: sin(xﬁ), and:
. math::
\int_{-\infty}*{\infty}\frac{er{i\phi}}{1+xA2\frac{er{i\phi}}{1+x42}}

00 ip
f SN (14.1)
—00 1 + x2

ei¢
1+x2

yields:

Interactive IPython sessions can be illustrated in the documentation using the following directive:

. sourcecode:: ipython
In [69]: lines = plot([1,2,3])

which would yield:

108

http://sphinx.pocoo.org/contents.html
http://sphinx.pocoo.org/markup/inline.html

Matplotlib, Release 0.98

In [69]: lines = plot([1,2,3])

e Footnotes ! can be added using [#]_, followed later by:

. rubric:: Footnotes

[#]

o Use the note and warning directives, sparingly, to draw attention to important comments:

. hote::
Here is a note
yields:
Note: here is a note

also:

Warning: here is a warning

o Use the deprecated directive when appropriate:

. deprecated:: 0.98
This feature is obsolete, use something else.

yields: Deprecated since release 0.98. This feature is obsolete, use something else.

e Use the versionadded and versionchanged directives, which have similar syntax to the deprecated
role:

. versionadded:: 0.98
The transforms have been completely revamped.

New in version 0.98: The transforms have been completely revamped.
e Use the seealso directive, for example:

. seealso::

Using ReST :ref: ‘emacs-helpers‘:
One example

A bit about :ref: ‘referring-to-mpl-docs‘:
One more

yields:
See Also:

Using ResT Emacs helpers: One example

For example.

109

Matplotlib, Release 0.98

A bit about Referring to mpl documents: One more

e Please keep the Glossary in mind when writing documentation. You can create a references to a term
in the glossary with the : term: role.

e The autodoc extension will handle index entries for the API, but additional entries in the index need
to be explicitly added.

14.3.1 Docstrings

In addition to the aforementioned formatting suggestions:

e Please limit the text width of docstrings to 70 characters.

e Keyword arguments should be described using a definition list.

Note: matplotlib makes extensive use of keyword arguments as pass-through arguments, there are a
many cases where a table is used in place of a definition list for autogenerated sections of docstrings.

14.4 Figures

14.4.1 Dynamically generated figures

The top level doc dir has a folder called pyplots in which you should include any pyplot plotting scripts
that you want to generate figures for the documentation. It is not necessary to explicitly save the figure
in the script, this will be done automatically at build time to insure that the code that is included runs and
produces the advertised figure. Several figures will be saved with the same basnename as the filename when
the documentation is generated (low and high res PNGs, a PDF). Matplotlib includes a Sphinx extension
(sphinxext/plot_directive.py) for generating the images from the python script and including either
a png copy for html or a pdf for latex:

. plot:: pyplot_simple.py
:include-source:

The :scale: directive rescales the image to some percentage of the original size, though we don’t recom-
mend using this in most cases since it is probably better to choose the correct figure size and dpi in mpl
and let it handle the scaling. : include-source: will present the contents of the file, marked up as source
code.

14.4.2 Static figures

Any figures that rely on optional system configurations need to be handled a little differently. These figures
are not to be generated during the documentation build, in order to keep the prerequisites to the documen-
tation effort as low as possible. Please run the doc/pyplots/make.py script when adding such figures,
and commit the script and the images to svn. Please also add a line to the README in doc/pyplots for any
additional requirements necessary to generate a new figure. Once these steps have been taken, these figures
can be included in the usual way:

110

http://sphinx.pocoo.org/markup/para.html#index-generating-markup

Matplotlib, Release 0.98

. plot:: tex_unicode_demo.py
:include-source

14.5 Referring to mpl documents

In the documentation, you may want to include to a document in the matplotlib src, e.g. a license file, an
image file from mpl-data, or an example. When you include these files, include them using a symbolic link
from the documentation parent directory. This way, if we relocate the mpl documentation directory, all of
the internal pointers to files will not have to change, just the top level symlinks. For example, In the top
level doc directory we have symlinks pointing to the mpl examples and mpl-data:

home:~/mpl/doc2> 1s -1 mpl_*

mpl_data -> ../lib/matplotlib/mpl-data
mpl_examples -> ../examples

In the users subdirectory, if I want to refer to a file in the mpl-data directory, I use the symlink directory. For
example, from customizing.rst:

. literalinclude:: ../mpl_data/matplotlibrc

14.6 Internal section references

To maximize internal consistency in section labeling and references, use hypen separated, descriptive labels
for section references, eg:

. _howto-webapp:

and refer to it using the standard reference syntax:

See :ref: ‘howto-webapp"

Keep in mind that we may want to reorganize the contents later, so let’s avoid top level names in references
like user or devel or faq unless necesssary, because for example the FAQ “what is a backend?” could
later become part of the users guide, so the label:

. _what-is-a-backend

is better than:

. _fag-backend

In addition, since underscores are widely used by Sphinx itself, let’s prefer hyphens to separate words.

111

Matplotlib, Release 0.98

14.7 Section names, etc

For everything but top level chapters, please use Upper lower for section titles, eg Possible hangups
rather than Possible Hangups

14.8 Inheritance diagrams

Class inheritance diagrams can be generated with the inheritance-diagram directive. To use it, you
provide the directive with a number of class or module names (separated by whitespace). If a module name
is provided, all classes in that module will be used. All of the ancestors of these classes will be included in
the inheritance diagram.

A single option is available: parts controls how many of parts in the path to the class are shown. For
example, if parts == 1, the class matplotlib.patches.Patch is shown as Patch. If parts == 2, it is
shown as patches.Patch. If parts == 0, the full path is shown.

Example:

. inheritance-diagram:: matplotlib.patches matplotlib.lines matplotlib.text
:parts: 2

Could not execute ‘dot’. Are you sure you have ‘graphviz’ installed?

14.9 Emacs helpers

There is an emacs mode rst.el which automates many important ReST tasks like building and updateing
table-of-contents, and promoting or demoting section headings. Here is the basic . emacs configuration:

(require ’rst)
(setq auto-mode-alist
(append ’(("\\.txt$" . rst-mode)

("\\.rst$" . rst-mode)
("\\.rest$" . rst-mode)) auto-mode-alist))

Some helpful functions:
C-c TAB - rst-toc-insert
Insert table of contents at point
C-c C-u - rst-toc-update
Update the table of contents at point
C-c C-1 rst-shift-region-left

Shift region to the left

112

http://docutils.sourceforge.net/tools/editors/emacs/rst.el

Matplotlib, Release 0.98

C-c C-r rst-shift-region-right

Shift region to the right

113

114

CHAPTER
FIFTEEN

Doing a matplolib release

A guide for developers who are doing a matplotlib release

e Edit __init__.py and bump the version number

15.1 Testing

Make sure examples/tests/backend_driver.py runs without errors and check the output of the
PNG, PDF, PS and SVG backends

Run unit/memleak_hawaii3.py and make sure there are no memory leaks
try some GUI examples, eg simple_plot.py with GTKAgg, TkAgg, etc...

remove font cache and tex cache from .matplotlib and test with and without cache on some exam-
ple script

15.2 Packaging

Make sure the MANIFEST. in us up to date and remove MANIFEST so it will be rebuilt by MANI-
FEST.in

run svn-clean from in the mpl svn directory before building the sdist
unpack the sdist and make sure you can build from that directory

Use setup.cfg to set the default backends. For windows and OSX, the default backend should be
TkAgg.

on windows, unix2dos the rc file

15.3 Uploading

e Post the win32 and OS-X binaries for testing and make a request on matplotlib-devel for testing.
Pester us if we don’t respond

115

http://svn.collab.net/repos/svn/trunk/contrib/client-side/svn-clean

Matplotlib, Release 0.98

o ftp the source and binaries to the anonymous FTP site:

mpl> svn-clean

mpl> python setup.py sdist

mpl> cd dist/

dist> sftp jdh2358@frs.sourceforge.net
Connecting to frs.sourceforge.net...
sftp> cd uploads

sftp> 1s

sftp> 1ls

matplotlib-0.98.2.tar.gz

sftp> put matplotlib-0.98.2.tar.gz
Uploading matplotlib-0.98.2.tar.gz to /incoming/j/jd/jdh2358/uploads/matplotlib-0.98.2.tar.gz

e go https://sourceforge.net/project/admin/?group_id=80706 and do a file release. Click on the “Ad-
min” tab to log in as an admin, and then the “File Releases” tab. Go to the bottom and click “add
release” and enter the package name but not the version number in the “Package Name” box. You
will then be prompted for the “New release name” at which point you can add the version number, eg
somepackage-0.1 and click “Create this release”.

You will then be taken to a fairly self explanatory page where you can enter the Change notes, the
release notes, and select which packages from the incoming ftp archive you want to include in this
release. For each binary, you will need to select the platform and file type, and when you are done
you click on the “notify users who are monitoring this package link”

15.4 Announcing

Announce the release on matplotlib-announce, matplotlib-users and matplotlib-devel. Include a summary
of highlights from the CHANGELOG and/or post the whole CHANGELOG since the last release.

116

CHAPTER
SIXTEEN

Working with transformations

Could not execute ‘dot’. Are you sure you have ‘graphviz’ installed?

16.1 matplotlib.transforms

matplotlib includes a framework for arbitrary geometric transformations that is used determine the final
position of all elements drawn on the canvas.

Transforms are composed into trees of TransformNode objects whose actual value depends on their chil-
dren. When the contents of children change, their parents are automatically invalidated. The next time
an invalidated transform is accessed, it is recomputed to reflect those changes. This invalidation/caching
approach prevents unnecessary recomputations of transforms, and contributes to better interactive perfor-
mance.

For example, here is a graph of the transform tree used to plot data to the graph:

117

Matplotlib, Release 0.98

CompositeGenericTransform

b
CompositeAffine2D
a b
| a BboxTransformFrom BboxTransformTo
boxin boxout
TransformedBbox TransformedBbox
_transform_bbox " bhox Xangfam
| |
TransformWrapper Bbox Bbox BboxTransformTo
child boxout
IdentityTransform TransformedBbox

"bbox \ transform

Bbox Affine2D

The framework can be used for both affine and non-affine transformations. However, for speed, we want
use the backend renderers to perform affine transformations whenever possible. Therefore, it is possible to
perform just the affine or non-affine part of a transformation on a set of data. The affine is always assumed
to occur after the non-affine. For any transform:

full transform == non-affine part + affine part

The backends are not expected to handle non-affine transformations themselves.

118

Matplotlib, Release 0.98

class TransformNode ()
Bases: object

TransformNode is the base class for anything that participates in the transform tree and needs to
invalidate its parents or be invalidated. This includes classes that are not really transforms, such as
bounding boxes, since some transforms depend on bounding boxes to compute their values.

Creates a new TransformNode.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy() might
normally be used.

invalidate()
Invalidate this transform node and all of its ancestors. Should be called any time the transform
changes.

set_children(*children)
Set the children of the transform, to let the invalidation system know which transforms can
invalidate this transform. Should be called from the constructor of any transforms that depend
on other transforms.

class BboxBase ()
Bases: matplotlib.transforms.TransformNode

This is the base class of all bounding boxes, and provides read-only access to its data. A mutable
bounding box is provided by the Bbox class.

The canonical representation is as two points, with no restrictions on their ordering. Convenience
properties are provided to get the left, bottom, right and top edges and width and height, but these are
not stored explicity.

Creates a new TransformNode.

anchored(c, container=None)
Return a copy of the Bbox, shifted to position ¢ within a container.
c: may be either:

ea sequence (cx, cy) where cx, cy range from O to 1, where O is left or bottom and 1 is right
or top
ea string: - C for centered - S for bottom-center - SE for bottom-left - E for left - etc.

Optional argument container is the box within which the Bbox is positioned; it defaults to the
initial Bbox.

bounds
(property) Returns (x0, y0, width, height).
contains(x, y)
Returns True if (x, y) is a coordinate inside the bounding box or on its edge.

containsx(x)
Returns True if x is between or equal to x0 and x1.

containsy(y)
Returns True if y is between or equal to y0 and y1.

119

Matplotlib, Release 0.98

corners()
Return an array of points which are the four corners of this rectangle. For example, if this Bbox
is defined by the points (a, b) and (c, d), corners () returns (a, b), (a, d), (c, b) and (c, d).
count_contains (vertices)
Count the number of vertices contained in the Bbox.
vertices is a Nx2 numpy array.

count_overlaps (bboxes)
Count the number of bounding boxes that overlap this one.

bboxes is a sequence of BboxBase objects

expanded (sw, sh)
Return a new Bbox which is this Bbox expanded around its center by the given factors sw and
sh.

extents
(property) Returns (x0, y0, x1, y1).

frozen()
TransformNode is the base class for anything that participates in the transform tree and needs to
invalidate its parents or be invalidated. This includes classes that are not really transforms, such
as bounding boxes, since some transforms depend on bounding boxes to compute their values.

fully_contains(x, y)
Returns True if (x, y) is a coordinate inside the bounding box, but not on its edge.

fully_containsx(x)
Returns True if x is between but not equal to x0 and x1.

fully_containsy(y)
Returns True if y is between but not equal to y0 and y1.

fully_overlaps (other)
Returns True if this bounding box overlaps with the given bounding box other, but not on its
edge alone.

height
(property) The height of the bounding box. It may be negative if y1 < y0.

intervalx
(property) intervalx is the pair of x coordinates that define the bounding box. It is not guar-
anteed to be sorted from left to right.

intervaly
(property) intervaly is the pair of y coordinates that define the bounding box. It is not guar-
anteed to be sorted from bottom to top.

inverse_transformed (transform)
Return a new Bbox object, statically transformed by the inverse of the given transform.
is_unitQ
Returns True if the Bbox is the unit bounding box from (0, 0) to (1, 1).
max
(property) max is the top-right corner of the bounding box.
min
(property) min is the bottom-left corner of the bounding box.

120

Matplotlib, Release 0.98

overlaps (other)
Returns True if this bounding box overlaps with the given bounding box other.

pO®
(property) pO is the first pair of (x, y) coordinates that define the bounding box. It is not guaran-
teed to be the bottom-left corner. For that, use min.

pl

(property) pl is the second pair of (x, y) coordinates that define the bounding box. It is not
guaranteed to be the top-right corner. For that, use max.

padded(p)
Return a new Bbox that is padded on all four sides by the given value.

rotated (radians)
Return a new bounding box that bounds a rotated version of this bounding box by the given
radians. The new bounding box is still aligned with the axes, of course.

shrunk (mx, my)
Return a copy of the Bbox, shurnk by the factor mx in the x direction and the factor my in the
y direction. The lower left corner of the box remains unchanged. Normally mx and my will be
less than 1, but this is not enforced.

shrunk_to_aspect (box_aspect, container=None, fig_aspect=1.0)
Return a copy of the Bbox, shrunk so that it is as large as it can be while having the desired
aspect ratio, box_aspect. If the box coordinates are relative—that is, fractions