
Matplotlib
Release 0.98

Darren Dale, Michael Droettboom, Eric Firing, John Hunter

August 07, 2008

ii

CONTENTS

I The Matplotlib User’s Guide 1

1 Introduction 3

2 Installing 5
2.1 Dependencies . 5

3 pyplot tutorial 7
3.1 Controlling line properties . 10
3.2 Working with multiple figures and axes . 12
3.3 Working with text . 14

4 Interactive navigation 19

5 Customizing matplotlib 21
5.1 The matplotlibrc file . 21
5.2 Dynamic rc settings . 21

6 Working with text 29
6.1 Text introduction . 29
6.2 Basic text commands . 29
6.3 Text properties and layout . 31
6.4 Writing mathematical expressions . 34
6.5 Text rendering With LaTeX . 44
6.6 Annotating text . 47

7 Artist tutorial 51
7.1 Customizing your objects . 53
7.2 Object containers . 55
7.3 Figure container . 55
7.4 Axes container . 57
7.5 Axis containers . 59
7.6 Tick containers . 62

8 Event handling and picking 65
8.1 Event connections . 65

i

8.2 Event attributes . 66
8.3 Object picking . 70

II The Matplotlib FAQ 75

9 Installation 77
9.1 How do I report a compilation problem? . 77
9.2 matplotlib compiled fine, but I can’t get anything to plot 77
9.3 How do I cleanly rebuild and reinstall everything? . 78
9.4 Backends . 79
9.5 OS-X questions . 80
9.6 Windows questions . 81

10 Troubleshooting 83
10.1 What is my matplotlib version? . 83
10.2 Where is matplotlib installed? . 83
10.3 Where is my .matplotlib directory? . 84
10.4 How do I report a problem? . 84
10.5 I am having trouble with a recent svn update, what should I do? 85

11 Howto 87
11.1 How do I find all the objects in my figure of a certain type? 87
11.2 How do I save transparent figures? . 88
11.3 How do I move the edge of my axes area over to make room for my tick labels? 88
11.4 How do I automatically make room for my tick labels? . 89
11.5 How do I configure the tick linewidths? . 91
11.6 How do I align my ylabels across multiple subplots? . 91
11.7 How do I use matplotlib in a web application server? . 92
11.8 How do I skip dates where there is no data? . 93

12 Environment Variables 95
12.1 Setting environment variables in Linux and OS-X . 95
12.2 Setting environment variables in windows . 96

III The Matplotlib Developers’s Guide 97

13 Coding guide 99
13.1 Version control . 99
13.2 Style guide . 100
13.3 Documentation and docstrings . 103
13.4 Licenses . 104

14 Documenting matplotlib 107
14.1 Getting started . 107
14.2 Organization of matplotlib’s documentation . 107
14.3 Formatting . 108
14.4 Figures . 110

ii

14.5 Referring to mpl documents . 111
14.6 Internal section references . 111
14.7 Section names, etc . 112
14.8 Inheritance diagrams . 112
14.9 Emacs helpers . 112

15 Doing a matplolib release 115
15.1 Testing . 115
15.2 Packaging . 115
15.3 Uploading . 115
15.4 Announcing . 116

16 Working with transformations 117
16.1 matplotlib.transforms . 117
16.2 matplotlib.path . 133

17 Adding new scales and projections to matplotlib 137
17.1 Creating a new scale . 137
17.2 Creating a new projection . 138

18 Docs outline 139
18.1 Reviewer notes . 143

IV The Matplotlib API 145

19 matplotlib configuration 147
19.1 matplotlib . 147

20 matplotlib afm 151
20.1 matplotlib.afm . 151

21 matplotlib artists 153
21.1 matplotlib.artist . 153
21.2 matplotlib.lines . 160
21.3 matplotlib.patches . 165
21.4 matplotlib.text . 178

22 matplotlib figure 187
22.1 matplotlib.figure . 187

23 matplotlib axes 201
23.1 matplotlib.axes . 201

24 matplotlib axis 291
24.1 matplotlib.axis . 291

25 matplotlib cbook 299
25.1 matplotlib.cbook . 299

iii

26 matplotlib cm 309
26.1 matplotlib.cm . 309

27 matplotlib collections 311
27.1 matplotlib.collections . 311

28 matplotlib colorbar 321
28.1 matplotlib.colorbar . 321

29 matplotlib colors 323
29.1 matplotlib.colors . 323

30 matplotlib pyplot 329
30.1 matplotlib.pyplot . 329

31 matplotlib backends 433
31.1 matplotlib.backend_bases . 433
31.2 matplotlib.backends.backend_gtkagg . 445
31.3 matplotlib.backends.backend_qt4agg . 445
31.4 matplotlib.backends.backend_wxagg . 445

V Glossary 447

iv

Part I

The Matplotlib User’s Guide

1

CHAPTER

ONE

Introduction

matplotlib is a library for making 2D plots of arrays in Python. Although it has its origins in emulating
the MATLAB™ graphics commands, it does not require MATLAB, and can be used in a Pythonic, object
oriented way. Although matplotlib is written primarily in pure Python, it makes heavy use of NumPy and
other extension code to provide good performance even for large arrays.

matplotlib is designed with the philosophy that you should be able to create simple plots with just a few
commands, or just one! If you want to see a histogram of your data, you shouldn’t need to instantiate
objects, call methods, set properties, and so on; it should just work.

For years, I used to use MATLAB exclusively for data analysis and visualization. MATLAB excels at mak-
ing nice looking plots easy. When I began working with EEG data, I found that I needed to write applications
to interact with my data, and developed and EEG analysis application in MATLAB. As the application grew
in complexity, interacting with databases, http servers, manipulating complex data structures, I began to
strain against the limitations of MATLAB as a programming language, and decided to start over in Python.
Python more than makes up for all of MATLAB’s deficiencies as a programming language, but I was having
difficulty finding a 2D plotting package (for 3D VTK) more than exceeds all of my needs).

When I went searching for a Python plotting package, I had several requirements:

• Plots should look great - publication quality. One important requirement for me is that the text looks
good (antialiased, etc.)

• Postscript output for inclusion with TeX documents

• Embeddable in a graphical user interface for application development

• Code should be easy enough that I can understand it and extend it

• Making plots should be easy

Finding no package that suited me just right, I did what any self-respecting Python programmer would do:
rolled up my sleeves and dived in. Not having any real experience with computer graphics, I decided to
emulate MATLAB’s plotting capabilities because that is something MATLAB does very well. This had the
added advantage that many people have a lot of MATLAB experience, and thus they can quickly get up to
steam plotting in python. From a developer’s perspective, having a fixed user interface (the pylab interface)
has been very useful, because the guts of the code base can be redesigned without affecting user code.

The matplotlib code is conceptually divided into three parts: the pylab interface is the set of functions
provided by matplotlib.pylab which allow the user to create plots with code quite similar to MATLAB

3

http://www.python.org
http://www.mathworks.com
http://www.numpy.org
http://www.vtk.org/

Matplotlib, Release 0.98

figure generating code. The matplotlib frontend or matplotlib API is the set of classes that do the heavy
lifting, creating and managing figures, text, lines, plots and so on. This is an abstract interface that knows
nothing about output. The backends are device dependent drawing devices, aka renderers, that transform
the frontend representation to hardcopy or a display device. Example backends: PS creates PostScript®
hardcopy, SVG creates Scalable Vector Graphics hardcopy, Agg creates PNG output using the high quality
Anti-Grain Geometry library that ships with matplotlib, GTK embeds matplotlib in a Gtk+ application,
GTKAgg uses the Anti-Grain renderer to create a figure and embed it a Gtk+ application, and so on for
PDF, WxWidgets, Tkinter etc.

matplotlib is used by many people in many different contexts. Some people want to automatically generate
PostScript® files to send to a printer or publishers. Others deploy matplotlib on a web application server to
generate PNG output for inclusion in dynamically-generated web pages. Some use matplotlib interactively
from the Python shell in Tkinter on Windows™. My primary use is to embed matplotlib in a Gtk+ EEG
application that runs on Windows, Linux and Macintosh OS X.

4

http://http://www.adobe.com/products/postscript/
http://www.w3.org/Graphics/SVG/
http://www.antigrain.com
http://www.gtk.org/
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.wxpython.org/
http://docs.python.org/lib/module-Tkinter.html

CHAPTER

TWO

Installing

2.1 Dependencies

Requirements

These are external packages which you will need to install before installing matplotlib. Windows users
only need the first two (python and numpy) since the others are built into the matplotlib windows installers
available for download at the sourceforge site.

python 2.4 (or later but not python3) matplotlib requires python 2.4 or later (download)

numpy 1.1 (or later) array support for python (download)

libpng 1.1 (or later) library for loading and saving PNG files (download). libpng requires zlib. If you are
a windows user, you can ignore this since we build support into the matplotlib single click installer

freetype 1.4 (or later) library for reading true type font files. If you are a windows user, you can ignore this
since we build support into the matplotlib single click installer.

Optional

These are optional packages which you may want to install to use matplotlib with a user interface toolkit.
See What is a backend? for more details on the optional matplotlib backends and the capabilities they
provide

tk 8.3 or later The TCL/Tk widgets library used by the TkAgg backend

pyqt 3.1 or later The Qt3 widgets library python wrappers for the QtAgg backend

pyqt 4.0 or later The Qt4 widgets library python wrappersfor the Qt4Agg backend

pygtk 2.2 or later The python wrappers for the GTK widgets library for use with the GTK or GTKAgg
backend

wxpython 2.6 or later The python wrappers for the wx widgets library for use with the WXAgg backend

wxpython 2.8 or later The python wrappers for the wx widgets library for use with the WX backend

pyfltk 1.0 or later The python wrappers of the FLTK widgets library for use with FLTKAgg

5

http://www.python.org/download/
http://sourceforge.net/project/showfiles.php?group_id=1369\&package_id=175103
http://www.libpng.org/pub/png/libpng.html

Matplotlib, Release 0.98

Required libraries that ship with matplotlib

If you are downloading matplotlib or installing from source or subversion, you can ignore this section. This
is useful for matplotlib developers and packagers who may want to disable the matplotlib version and ship
a packaged version.

agg 2.4 The antigrain C++ rendering engine

pytz 2007g or later timezone handling for python datetime objects

dateutil 1.1 or later extensions to python datetime handling

Optional libraries that ship with matplotlib

As above, if you are downloading matplotlib or installing from source or subversion, you can ignore this
section. This is useful for matplotlib developers and packagers who may want to disable the matplotlib
version and ship a packaged version.

enthought traits 2.6 The traits component of the Enthought Tool Suite used in the experimental matplotlib
traits rc system. matplotlib has decided to stop installing this library so packagers should not distribute
the version included with matplotlib. packagers do not need to list this as a requirement because the
traits support is experimental and disabled by default.

6

CHAPTER

THREE

Pyplot tutorial

matplotlib.pyplot is a collection of command style functions that make matplotlib work like matlab.
Each pyplot function makes some change to a figure: eg, create a figure, create a plotting area in a figure,
plot some lines in a plotting area, decorate the plot with labels, etc.... matplotlib.pyplot is stateful, in
that it keeps track of the current figure and plotting area, and the plotting functions are directed to the current
axes

import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.ylabel(’some numbers’)
plt.show()

7

Matplotlib, Release 0.98

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0
so

m
e
 n

u
m

b
e
rs

You may be wondering why the x-axis ranges from 0-3 and the y-axis from 1-4. If you provide a single list
or array to the plot() command, matplotlib assumes it a sequence of y values, and automatically generates
the x values for you. Since python ranges start with 0, the default x vector has the same length as y but starts
with 0. Hence the x data are [0,1,2,3].

plot() is a versatile command, and will take an arbitrary number of arguments. For example, to plot x
versus y, you can issue the command:

plt.plot([1,2,3,4], [1,4,9,16])

For every x, y pair of arguments, there is a optional third argument which is the format string that indicates
the color and line type of the plot. The letters and symbols of the format string are from matlab, and you
concatenate a color string with a line style string. The default format string is ‘b-‘, which is a solid blue line.
For example, to plot the above with red circles, you would issue

import matplotlib.pyplot as plt
plt.plot([1,2,3,4], [1,4,9,16], ’ro’)
plt.axis([0, 6, 0, 20])

8

Matplotlib, Release 0.98

0 1 2 3 4 5 6
0

5

10

15

20

See the plot() documentation for a complete list of line styles and format strings. The axis() command
in the example above takes a list of [xmin, xmax, ymin, ymax] and specifies the viewport of the axes.

If matplotlib were limited to working with lists, it would be fairly useless for numeric processing. Generally,
you will use numpy arrays. In fact, all sequences are converted to numpy arrays internally. The example
below illustrates a plotting several lines with different format styles in one command using arrays.

import numpy as np
import matplotlib.pyplot as plt

evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)

red dashes, blue squares and green triangles
plt.plot(t, t, ’r--’, t, t**2, ’bs’, t, t**3, ’g^’)

9

http://numpy.scipy.org

Matplotlib, Release 0.98

0 1 2 3 4 5
0

20

40

60

80

100

120

3.1 Controlling line properties

Lines have many attributes that you can set: linewidth, dash style, antialiased, etc; see
matplotlib.lines.Line2D. There are several ways to set line properties

• Use keyword args:

plt.plot(x, y, linewidth=2.0)

• Use the setter methods of the Line2D instance. plot returns a list of lines; eg line1, line2 =
plot(x1,y1,x2,x2). Below I have only one line so it is a list of7 length 1. I use tuple unpacking in
the line, = plot(x, y, ’o’) to get the first element of the list:

line, = plt.plot(x, y, ’o’)
line.set_antialiased(False) # turn off antialising

• Use the setp() command. The example below uses matlab handle graphics style command to set
multiple properties on a list of lines. setp works transparently with a list of objects or a single object.
You can either use python keyword arguments or matlab-style string/value pairs:

10

Matplotlib, Release 0.98

lines = plt.plot(x1, y1, x2, y2)
use keyword args
plt.setp(lines, color=’r’, linewidth=2.0)
or matlab style string value pairs
plt.setp(lines, ’color’, ’r’, ’linewidth’, 2.0)

Here are the available Line2D properties.

Property Value Type
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a Transform instance, a Patch
color or c any matplotlib color
contains the hit testing function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ...]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker used in interactive line selection
pickradius the line pick selection radius
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

To get a list of settable line properties, call the setp() function with a line or lines as argument

In [69]: lines = plot([1,2,3])

In [70]: setp(lines)
alpha: float
animated: [True | False]

11

Matplotlib, Release 0.98

antialiased or aa: [True | False]
...snip

3.2 Working with multiple figures and axes

Matlab, and pyplot, have the concept of the current figure and the current axes. All plotting commands ap-
ply to the current axes. The function gca() returns the current axes (a matplotlib.axes.Axes instance),
and gcf() returns the current figure (matplotlib.figure.Figure instance). Normally, you don’t have to
worry about this, because it is all taken care of behind the scenes. Below is an script to create two subplots.

import numpy as np
import matplotlib.pyplot as plt

def f(t):
return np.exp(-t) * np.cos(2*np.pi*t)

t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)

plt.figure(1)
plt.subplot(211)
plt.plot(t1, f(t1), ’bo’, t2, f(t2), ’k’)

plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), ’r--’)

12

Matplotlib, Release 0.98

0 1 2 3 4 5
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

0 1 2 3 4 5
1.0

0.5

0.0

0.5

1.0

The figure() command here is optional because figure(1) will be created by default, just as a
subplot(111) will be created by default if you don’t manually specify an axes. The subplot() com-
mand specifies numrows, numcols, fignum where fignum ranges from 1 to numrows*numcols. The
commas in the subplot command are optional if “numrows*numcols<10. So subplot(211) is
identical to subplot(2,1,1). You can create an arbitrary number of subplots and axes. If you want to
place an axes manually, ie, not on a rectangular grid, use the axes() command, which allows you to spec-
ify the location as axes([left, bottom, width, height]) where all values are in fractional (0 to 1)
coordinates. See axes_demo.py for an example of placing axes manually and line_styles.py for an example
with lots-o-subplots.

You can create multiple figures by using multiple figure() calls with an increasing figure number. Of
course, each figure can contain as many axes and subplots as your heart desires:

import matplotlib.pyplot as plt
plt.figure(1) # the first figure
plt.subplot(211) # the first subplot in the first figure
plt.plot([1,2,3])
plt.subplot(212) # the second subplot in the first figure
plt.plot([4,5,6])

plt.figure(2) # a second figure
plt.plot([4,5,6]) # creates a subplot(111) by default

13

http://matplotlib.sf.net/examples/axes_demo.py
http://matplotlib.sf.net/examples/line_styles.py

Matplotlib, Release 0.98

plt.figure(1) # figure 1 current; subplot(212) still current
plt.subplot(211) # make subplot(211) in figure1 current
plt.title(’Easy as 1,2,3’) # subplot 211 title

You can clear the current figure with clf() and the current axes with cla(). If you find this statefulness,
annoying, don’t despair, this is just a thin stateful wrapper around an object oriented API, which you can
use instead (see Artist tutorial)

3.3 Working with text

The text() command can be used to add text in an arbitrary location, and the xlabel(), ylabel() and
title() are used to add text in the indicated locations (see Text introduction for a more detailed example)

import numpy as np
import matplotlib.pyplot as plt

mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)

the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor=’g’, alpha=0.75)

plt.xlabel(’Smarts’)
plt.ylabel(’Probability’)
plt.title(’Histogram of IQ’)
plt.text(60, .025, r’$\mu=100,\ \sigma=15$’)
plt.axis([40, 160, 0, 0.03])
plt.grid(True)

14

Matplotlib, Release 0.98

40 60 80 100 120 140 160
Smarts

0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
ro

b
a
b
ili

ty

µ=100, σ=15

Histogram of IQ

All of the text() commands return an matplotlib.text.Text instance. Just as with with lines above,
you can customize the properties by passing keyword arguments into the text functions or using setp():

t = plt.xlabel(’my data’, fontsize=14, color=’red’)

These properties are covered in more detail in Text properties and layout.

3.3.1 Using mathematical expressions in text

matplotlib accepts TeX equation expressions in any text expression. For example to write the expression
σi = 15 in the title, you can write a TeX expression surrounded by dollar signs:

plt.title(r’$\sigma_i=15$’)

The r preceeding the title string is important – it signifies that the string is a raw string and not to treate
backslashes and python escapes. matplotlib has a built-in TeX expression parser and layout engine, and
ships its own math fonts – for details see Writing mathematical expressions. Thus you can use mathematical
text across platforms without requiring a TeX installation. For those who have LaTeX and dvipng installed,
you can also use LaTeX to format your text and incorporate the output directly into your display figures or
saved postscript – see Text rendering With LaTeX.

15

Matplotlib, Release 0.98

3.3.2 Annotating text

The uses of the basic text() command above place text at an arbitrary position on the Axes. A common use
case of text is to annotate some feature of the plot, and the annotate() method provides helper functionality
to make annotations easy. In an annotation, there are two points to consider: the location being annotated
represented by the argument xy and the location of the text xytext. Both of these arguments are (x,y)
tuples.

import numpy as np
import matplotlib.pyplot as plt

ax = plt.subplot(111)

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = plt.plot(t, s, lw=2)

plt.annotate(’local max’, xy=(2, 1), xytext=(3, 1.5),
arrowprops=dict(facecolor=’black’, shrink=0.05),
)

plt.ylim(-2,2)
plt.show()

0 1 2 3 4 5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

local max

16

Matplotlib, Release 0.98

In this basic example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates.
There are a variety of other coordinate systems one can choose – see Annotating text for details. More
examples can be found in the annotations demo

17

http://matplotlib.sf.net/examples/pylab_examples/annotation_demo.py

18

CHAPTER

FOUR

Interactive navigation

All figure windows come with a navigation toolbar, which can be used to navigate through the data set. Here
is a description of each of the buttons at the bottom of the toolbar

The Forward and Back buttons These are akin to the web browser forward and back buttons. They are
used to navigate back and forth between previously defined views. They have no meaning unless you
have already navigated somewhere else using the pan and zoom buttons. This is analogous to trying
to click Back on your web browser before visiting a new page –nothing happens. Home always takes
you to the first, default view of your data. For Home, Forward and Back, think web browser where
data views are web pages. Use the pan and zoom to rectangle to define new views.

The Pan/Zoom button This button has two modes: pan and zoom. Click the toolbar button to activate
panning and zooming, then put your mouse somewhere over an axes. Press the left mouse button
and hold it to pan the figure, dragging it to a new position. When you release it, the data under the
point where you pressed will be moved to the point where you released. If you press ‘x’ or ‘y’ while
panning the motion will be contrained to the x or y axis, respectively. Press the right mouse button
to zoom, dragging it to a new position. The x axis will be zoomed in proportionate to the rightward
movement and zoomed out proportionate to the leftward movement. Ditto for the yaxis and up/down
motions. The point under your mouse when you begin the zoom remains stationary, allowing you to
zoom to an arbitrary point in the figure. You can use the modifier keys ‘x’, ‘y’ or ‘CONTROL’ to
constrain the zoom to the x axes, the y axes, or aspect ratio preserve, respectively.

With polar plots, the pan and zoom functionality behaves differently. The radius axis labels can be
dragged using the left mouse button. The radius scale can be zoomed in and out using the right mouse
button.

19

Matplotlib, Release 0.98

The Zoom-to-rectangle button Click this toolbar button to activate this mode. Put your mouse some-
where over and axes and press the left mouse button. Drag the mouse while holding the button to
a new location and release. The axes view limits will be zoomed to the rectangle you have defined.
There is also an experimental ‘zoom out to rectangle’ in this mode with the right button, which will
place your entire axes in the region defined by the zoom out rectangle.

The Subplot-configuration button Use this tool to configure the parameters of the subplot: the left,
right, top, bottom, space between the rows and space between the columns.

The Save button Click this button to launch a file save dialog. You can save files with the following
extensions: png, ps, eps, svg and pdf.

If you are using matplotlib.pyplot the toolbar will be created automatically for every figure. If you are
writing your own user interface code, you can add the toolbar as a widget. The exact syntax depends on
your UI, but we have examples for every supported UI in the matplotlib/examples/user_interfaces
directory. Here is some example code for GTK:

from matplotlib.figure import Figure
from matplotlib.backends.backend_gtkagg import FigureCanvasGTKAgg as FigureCanvas
from matplotlib.backends.backend_gtkagg import NavigationToolbar2GTKAgg as NavigationToolbar

win = gtk.Window()
win.connect("destroy", lambda x: gtk.main_quit())
win.set_default_size(400,300)
win.set_title("Embedding in GTK")

vbox = gtk.VBox()
win.add(vbox)

fig = Figure(figsize=(5,4), dpi=100)
ax = fig.add_subplot(111)
ax.plot([1,2,3])

canvas = FigureCanvas(fig) # a gtk.DrawingArea
vbox.pack_start(canvas)
toolbar = NavigationToolbar(canvas, win)
vbox.pack_start(toolbar, False, False)

win.show_all()
gtk.main()

20

CHAPTER

FIVE

Customizing matplotlib

5.1 The matplotlibrc file

matplotlib uses matplotlibrc configuration files to customize all kinds of properties, which we call rc
settings or rc parameters. You can control the defaults of almost every property in matplotlib: figure size
and dpi, line width, color and style, axes, axis and grid properties, text and font properties and so on.
matplotlib looks for matplotlibrc in three locations, in the following order:

1. matplotlibrc in the current working directory, usually used for specific customizations that you do
not want to apply elsewhere.

2. .matplotlib/matplotlibrc, for the user’s default customizations. See Where is my .matplotlib
directory?.

3. INSTALL/matplotlib/mpl-data/matplotlibrc, where INSTALL is some-
thing like /usr/lib/python2.5/site-packages on Linux, and maybe
C:\Python25\Lib\site-packages on Windows. Every time you install matplotlib, this file
will be overwritten, so if you want your customizations to be saved, please move this file to you
.matplotlib directory.

See below for a sample matplotlibrc file.

5.2 Dynamic rc settings

You can also dynamically change the default rc settings in a python script or interactively from the python
shell. All of the rc settings are stored in a dictionary-like variable called matplotlib.rcParams, which is
global to the matplotlib package. rcParams can be modified directly, for example:

import matplotlib as mpl
mpl.rcParams[’lines.linewidth’] = 2
mpl.rcParams[’lines.color’] = ’r’

Matplotlib also provides a couple of convenience functions for modifying rc settings. The
matplotlib.rc() command can be used to modify multiple settings in a single group at once, using
keyword arguments:

21

Matplotlib, Release 0.98

import matplotlib as mpl
mpl.rc(’lines’, linewidth=2, color=’r’)

There matplotlib.rcdefaults() command will restore the standard matplotlib default settings.

There is some degree of validation when setting the values of rcParams, see matplotlib.rcsetup for
details.

5.2.1 A sample matplotlibrc file

MATPLOTLIBRC FORMAT

This is a sample matplotlib configuration file - you can find a copy
of it on your system in
site-packages/matplotlib/mpl-data/matplotlibrc. If you edit it
there, please note that it will be overridden in your next install.
If you want to keep a permanent local bopy that will not be
over-written, place it in HOME/.matplotlib/matplotlibrc (unix/linux
like systems) and C:\Documents and Settings\yourname\.matplotlib
(win32 systems).
#
This file is best viewed in a editor which supports python mode
syntax highlighting # Blank lines, or lines starting with a comment
symbol, are ignored, as are trailing comments. Other lines must
have the format # key : val # optional comment # Colors: for the
color values below, you can either use - a matplotlib color string,
such as r, k, or b - an rgb tuple, such as (1.0, 0.5, 0.0) - a hex
string, such as ff00ff or #ff00ff - a scalar grayscale intensity
such as 0.75 - a legal html color name, eg red, blue, darkslategray

CONFIGURATION BEGINS HERE

the default backend; one of GTK GTKAgg GTKCairo CocoaAgg FltkAgg
QtAgg Qt4Agg TkAgg WX WXAgg Agg Cairo GDK PS PDF SVG Template You
can also deploy your own backend outside of matplotlib by referring
to the module name (which must be in the PYTHONPATH) as
’module://my_backend’
backend : GTKAgg

if you are runing pyplot inside a GUI and your backend choice
conflicts, we will automatically try and find a compatible one for
you if backend_fallback is True
#backend_fallback: True
numerix : numpy # numpy, Numeric or numarray
#maskedarray : False # True to use external maskedarray module

instead of numpy.ma; this is a temporary
setting for testing maskedarray.

#interactive : False # see http://matplotlib.sourceforge.net/interactive.html
#toolbar : toolbar2 # None | classic | toolbar2
#timezone : UTC # a pytz timezone string, eg US/Central or Europe/Paris

22

Matplotlib, Release 0.98

Where your matplotlib data lives if you installed to a non-default
location. This is where the matplotlib fonts, bitmaps, etc reside
#datapath : /home/jdhunter/mpldata

LINES
See http://matplotlib.sourceforge.net/matplotlib.lines.html for more
information on line properties.
#lines.linewidth : 1.0 # line width in points
#lines.linestyle : - # solid line
#lines.color : blue
#lines.marker : None # the default marker
#lines.markeredgewidth : 0.5 # the line width around the marker symbol
#lines.markersize : 6 # markersize, in points
#lines.dash_joinstyle : miter # miter|round|bevel
#lines.dash_capstyle : butt # butt|round|projecting
#lines.solid_joinstyle : miter # miter|round|bevel
#lines.solid_capstyle : projecting # butt|round|projecting
#lines.antialiased : True # render lines in antialised (no jaggies)

PATCHES
Patches are graphical objects that fill 2D space, like polygons or
circles. See
http://matplotlib.sourceforge.net/matplotlib.patches.html for more
information on patch properties
#patch.linewidth : 1.0 # edge width in points
#patch.facecolor : blue
#patch.edgecolor : black
#patch.antialiased : True # render patches in antialised (no jaggies)

FONT
#
font properties used by text.Text. See
http://matplotlib.sourceforge.net/matplotlib.font_manager.html for more
information on font properties. The 6 font properties used for font
matching are given below with their default values.
#
The font.family property has five values: ’serif’ (e.g. Times),
’sans-serif’ (e.g. Helvetica), ’cursive’ (e.g. Zapf-Chancery),
’fantasy’ (e.g. Western), and ’monospace’ (e.g. Courier). Each of
these font families has a default list of font names in decreasing
order of priority associated with them.
#
The font.style property has three values: normal (or roman), italic
or oblique. The oblique style will be used for italic, if it is not
present.
#
The font.variant property has two values: normal or small-caps. For
TrueType fonts, which are scalable fonts, small-caps is equivalent
to using a font size of ’smaller’, or about 83% of the current font
size.
#
The font.weight property has effectively 13 values: normal, bold,

23

Matplotlib, Release 0.98

bolder, lighter, 100, 200, 300, ..., 900. Normal is the same as
400, and bold is 700. bolder and lighter are relative values with
respect to the current weight.
#
The font.stretch property has 11 values: ultra-condensed,
extra-condensed, condensed, semi-condensed, normal, semi-expanded,
expanded, extra-expanded, ultra-expanded, wider, and narrower. This
property is not currently implemented.
#
The font.size property is the default font size for text, given in pts.
12pt is the standard value.
#
#font.family : sans-serif
#font.style : normal
#font.variant : normal
#font.weight : medium
#font.stretch : normal
note that font.size controls default text sizes. To configure
special text sizes tick labels, axes, labels, title, etc, see the rc
settings for axes and ticks. Special text sizes can be defined
relative to font.size, using the following values: xx-small, x-small,
small, medium, large, x-large, xx-large, larger, or smaller
#font.size : 12.0
#font.serif : Bitstream Vera Serif, New Century Schoolbook, Century Schoolbook L, Utopia, ITC Bookman, Bookman, Nimbus Roman No9 L, Times New Roman, Times, Palatino, Charter, serif
#font.sans-serif : Bitstream Vera Sans, Lucida Grande, Verdana, Geneva, Lucid, Arial, Helvetica, Avant Garde, sans-serif
#font.cursive : Apple Chancery, Textile, Zapf Chancery, Sand, cursive
#font.fantasy : Comic Sans MS, Chicago, Charcoal, Impact, Western, fantasy
#font.monospace : Bitstream Vera Sans Mono, Andale Mono, Nimbus Mono L, Courier New, Courier, Fixed, Terminal, monospace

TEXT
text properties used by text.Text. See
http://matplotlib.sourceforge.net/matplotlib.text.html for more
information on text properties

#text.color : black

LaTeX customizations. See http://www.scipy.org/Wiki/Cookbook/Matplotlib/UsingTex
#text.usetex : False # use latex for all text handling. The following fonts

are supported through the usual rc parameter settings:
new century schoolbook, bookman, times, palatino,
zapf chancery, charter, serif, sans-serif, helvetica,
avant garde, courier, monospace, computer modern roman,
computer modern sans serif, computer modern typewriter
If another font is desired which can loaded using the
LaTeX \usepackage command, please inquire at the
matplotlib mailing list

#text.latex.unicode : False # use "ucs" and "inputenc" LaTeX packages for handling
unicode strings.

#text.latex.preamble : # IMPROPER USE OF THIS FEATURE WILL LEAD TO LATEX FAILURES
AND IS THEREFORE UNSUPPORTED. PLEASE DO NOT ASK FOR HELP
IF THIS FEATURE DOES NOT DO WHAT YOU EXPECT IT TO.
preamble is a comma separated list of LaTeX statements
that are included in the LaTeX document preamble.

24

Matplotlib, Release 0.98

An example:
text.latex.preamble : \usepackage{bm},\usepackage{euler}
The following packages are always loaded with usetex, so
beware of package collisions: color, geometry, graphicx,
type1cm, textcomp. Adobe Postscript (PSSNFS) font packages
may also be loaded, depending on your font settings

#text.dvipnghack : None # some versions of dvipng don’t handle alpha
channel properly. Use True to correct
and flush ~/.matplotlib/tex.cache
before testing and False to force
correction off. None will try and
guess based on your dvipng version

#text.markup : ’plain’ # Affects how text, such as titles and labels, are
interpreted by default.
’plain’: As plain, unformatted text
’tex’: As TeX-like text. Text between $’s will be
formatted as a TeX math expression.
This setting has no effect when text.usetex is True.
In that case, all text will be sent to TeX for
processing.

The following settings allow you to select the fonts in math mode.
They map from a TeX font name to a fontconfig font pattern.
These settings are only used if mathtext.fontset is ’custom’.
Note that this "custom" mode is unsupported and may go away in the
future.
#mathtext.cal : cursive
#mathtext.rm : serif
#mathtext.tt : monospace
#mathtext.it : serif:italic
#mathtext.bf : serif:bold
#mathtext.sf : sans
#mathtext.fontset : cm # Should be ’cm’ (Computer Modern), ’stix’,

’stixsans’ or ’custom’
#mathtext.fallback_to_cm : True # When True, use symbols from the Computer Modern

fonts when a symbol can not be found in one of
the custom math fonts.

AXES
default face and edge color, default tick sizes,
default fontsizes for ticklabels, and so on. See
http://matplotlib.sourceforge.net/matplotlib.axes.html#Axes
#axes.hold : True # whether to clear the axes by default on
#axes.facecolor : white # axes background color
#axes.edgecolor : black # axes edge color
#axes.linewidth : 1.0 # edge linewidth
#axes.grid : False # display grid or not
#axes.titlesize : large # fontsize of the axes title
#axes.labelsize : medium # fontsize of the x any y labels
#axes.labelcolor : black
#axes.axisbelow : False # whether axis gridlines and ticks are below

25

Matplotlib, Release 0.98

the axes elements (lines, text, etc)
#axes.formatter.limits : -7, 7 # use scientific notation if log10

of the axis range is smaller than the
first or larger than the second

#polaraxes.grid : True # display grid on polar axes

TICKS
see http://matplotlib.sourceforge.net/matplotlib.axis.html#Ticks
#xtick.major.size : 4 # major tick size in points
#xtick.minor.size : 2 # minor tick size in points
#xtick.major.pad : 4 # distance to major tick label in points
#xtick.minor.pad : 4 # distance to the minor tick label in points
#xtick.color : k # color of the tick labels
#xtick.labelsize : medium # fontsize of the tick labels
#xtick.direction : in # direction: in or out

#ytick.major.size : 4 # major tick size in points
#ytick.minor.size : 2 # minor tick size in points
#ytick.major.pad : 4 # distance to major tick label in points
#ytick.minor.pad : 4 # distance to the minor tick label in points
#ytick.color : k # color of the tick labels
#ytick.labelsize : medium # fontsize of the tick labels
#ytick.direction : in # direction: in or out

GRIDS
#grid.color : black # grid color
#grid.linestyle : : # dotted
#grid.linewidth : 0.5 # in points

Legend
#legend.isaxes : True
#legend.numpoints : 2 # the number of points in the legend line
#legend.fontsize : large
#legend.pad : 0.2 # the fractional whitespace inside the legend border
#legend.markerscale : 1.0 # the relative size of legend markers vs. original
the following dimensions are in axes coords
#legend.labelsep : 0.010 # the vertical space between the legend entries
#legend.handlelen : 0.05 # the length of the legend lines
#legend.handletextsep : 0.02 # the space between the legend line and legend text
#legend.axespad : 0.02 # the border between the axes and legend edge
#legend.shadow : False

FIGURE
See http://matplotlib.sourceforge.net/matplotlib.figure.html#Figure
#figure.figsize : 8, 6 # figure size in inches
#figure.dpi : 80 # figure dots per inch
#figure.facecolor : 0.75 # figure facecolor; 0.75 is scalar gray
#figure.edgecolor : white # figure edgecolor

The figure subplot parameters. All dimensions are fraction of the
figure width or height

26

Matplotlib, Release 0.98

#figure.subplot.left : 0.125 # the left side of the subplots of the figure
#figure.subplot.right : 0.9 # the right side of the subplots of the figure
#figure.subplot.bottom : 0.1 # the bottom of the subplots of the figure
#figure.subplot.top : 0.9 # the top of the subplots of the figure
#figure.subplot.wspace : 0.2 # the amount of width reserved for blank space between subplots
#figure.subplot.hspace : 0.2 # the amount of height reserved for white space between subplots

IMAGES
#image.aspect : equal # equal | auto | a number
#image.interpolation : bilinear # see help(imshow) for options
#image.cmap : jet # gray | jet etc...
#image.lut : 256 # the size of the colormap lookup table
#image.origin : upper # lower | upper

CONTOUR PLOTS
#contour.negative_linestyle : dashed # dashed | solid

SAVING FIGURES
the default savefig params can be different for the GUI backends.
Eg, you may want a higher resolution, or to make the figure
background white
#savefig.dpi : 100 # figure dots per inch
#savefig.facecolor : white # figure facecolor when saving
#savefig.edgecolor : white # figure edgecolor when saving

#cairo.format : png # png, ps, pdf, svg

tk backend params
#tk.window_focus : False # Maintain shell focus for TkAgg
#tk.pythoninspect : False # tk sets PYTHONINSEPCT

ps backend params
#ps.papersize : letter # auto, letter, legal, ledger, A0-A10, B0-B10
#ps.useafm : False # use of afm fonts, results in small files
#ps.usedistiller : False # can be: None, ghostscript or xpdf

Experimental: may produce smaller files.
xpdf intended for production of publication quality files,
but requires ghostscript, xpdf and ps2eps

#ps.distiller.res : 6000 # dpi
#ps.fonttype : 3 # Output Type 3 (Type3) or Type 42 (TrueType)

pdf backend params
#pdf.compression : 6 # integer from 0 to 9

0 disables compression (good for debugging)
#pdf.fonttype : 3 # Output Type 3 (Type3) or Type 42 (TrueType)

svg backend params
#svg.image_inline : True # write raster image data directly into the svg file
#svg.image_noscale : False # suppress scaling of raster data embedded in SVG
#svg.embed_char_paths : True # embed character outlines in the SVG file

Set the verbose flags. This controls how much information

27

Matplotlib, Release 0.98

matplotlib gives you at runtime and where it goes. The verbosity
levels are: silent, helpful, debug, debug-annoying. Any level is
inclusive of all the levels below it. If you setting is debug,
you’ll get all the debug and helpful messages. When submitting
problems to the mailing-list, please set verbose to helpful or debug
and paste the output into your report.
#
The fileo gives the destination for any calls to verbose.report.
These objects can a filename, or a filehandle like sys.stdout.
#
You can override the rc default verbosity from the command line by
giving the flags --verbose-LEVEL where LEVEL is one of the legal
levels, eg --verbose-helpful.
#
You can access the verbose instance in your code
from matplotlib import verbose.
#verbose.level : silent # one of silent, helpful, debug, debug-annoying
#verbose.fileo : sys.stdout # a log filename, sys.stdout or sys.stderr

28

CHAPTER

SIX

Working with text

6.1 Text introduction

matplotlib has excellent text support, including mathematical expressions, truetype support for raster and
vector outputs, newline separated text with arbitrary rotations, and unicode support. Because we embed the
fonts directly in the output documents, eg for postscript or PDF, what you see on the screen is what you get
in the hardcopy. freetype2 support produces very nice, antialiased fonts, that look good even at small raster
sizes. matplotlib includes its own matplotlib.font_manager, thanks to Paul Barrett, which implements
a cross platform, W3C compliant font finding algorithm.

You have total control over every text property (font size, font weight, text location and color, etc) with
sensible defaults set in the rc file. And significantly for those interested in mathematical or scientific fig-
ures, matplotlib implements a large number of TeX math symbols and commands, to support mathematical
expressions anywhere in your figure.

6.2 Basic text commands

The following commands are used to create text in the pyplot interface

• text() - add text at an arbitrary location to the Axes; matplotlib.axes.Axes.text() in the API.

• xlabel() - add an axis label to the x-axis; matplotlib.axes.Axes.set_xlabel() in the API.

• ylabel() - add an axis label to the y-axis; matplotlib.axes.Axes.set_ylabel() in the API.

• title() - add a title to the Axes; matplotlib.axes.Axes.set_title() in the API.

• figtext() - add text at an arbitrary location to the Figure; matplotlib.figure.Figure.text()
in the API.

• suptitle() - add a title to the Figure; matplotlib.figure.Figure.suptitle() in the API.

• annotate() - add an annotation, with optional arrow, to the Axes ;
matplotlib.axes.Axes.annotate() in the API.

All of these functions create and return a matplotlib.text.Text() instance, which can bew configured
with a variety of font and other properties. The example below shows all of these commands in action.

29

http://freetype.sourceforge.net/index2.html

Matplotlib, Release 0.98

-*- coding: utf-8 -*-
import matplotlib.pyplot as plt

fig = plt.figure()
fig.suptitle(’bold figure suptitle’, fontsize=14, fontweight=’bold’)

ax = fig.add_subplot(111)
fig.subplots_adjust(top=0.85)
ax.set_title(’axes title’)

ax.set_xlabel(’xlabel’)
ax.set_ylabel(’ylabel’)

ax.text(3, 8, ’boxed italics text in data coords’, style=’italic’,
bbox={’facecolor’:’red’, ’alpha’:0.5, ’pad’:10})

ax.text(2, 6, r’an equation: $E=mc^2$’, fontsize=15)

ax.text(3, 2, unicode(’unicode: Institut f\374r Festk\366rperphysik’, ’latin-1’))

ax.text(0.95, 0.01, ’colored text in axes coords’,
verticalalignment=’bottom’, horizontalalignment=’right’,
transform=ax.transAxes,
color=’green’, fontsize=15)

ax.plot([2], [1], ’o’)
ax.annotate(’annotate’, xy=(2, 1), xytext=(3, 4),

arrowprops=dict(facecolor=’black’, shrink=0.05))

ax.axis([0, 10, 0, 10])

plt.show()

30

Matplotlib, Release 0.98

0 2 4 6 8 10
xlabel

0

2

4

6

8

10

y
la

b
e
l

boxed italics text in data coords

an equation: E=mc2

unicode: Institut für Festkörperphysik

colored text in axes coords

annotate

axes title

bold figure suptitle

6.3 Text properties and layout

The matplotlib.text.Text instances have a variety of properties which can be configured via keyword
arguments to the text commands (eg title(), xlabel() and text()).

31

Matplotlib, Release 0.98

Property Value Type
alpha float
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a Transform instance, a Patch
color any matplotlib color
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion
transform a matplotlib.transform transformation instance
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

You can layout text with the alignment arguments horizontalalignment, verticalalignment, and
multialignment. horizontalalignment controls whether the x positional argument for the text in-
dicates the left, center or right side of the text bounding box. verticalalignment controls whether
the y positional argument for the text indicates the bottom, center or top side of the text bounding box.
multialignment, for newline separated strings only, controls whether the different lines are left, center or
right justified. Here is an example which uses the text() command to show the various alignment possibil-
ities. The use of transform=ax.transAxes throughout the code indicates that the coordinates are given
relative to the axes bounding box, with 0,0 being the lower left of the axes and 1,1 the upper right.

import matplotlib.pyplot as plt
import matplotlib.patches as patches

build a rectangle in axes coords
left, width = .25, .5
bottom, height = .25, .5
right = left + width
top = bottom + height

fig = plt.figure()

32

Matplotlib, Release 0.98

ax = fig.add_axes([0,0,1,1])

axes coordinates are 0,0 is bottom left and 1,1 is upper right
p = patches.Rectangle(

(left, bottom), width, height,
fill=False, transform=ax.transAxes, clip_on=False
)

ax.add_patch(p)

ax.text(left, bottom, ’left top’,
horizontalalignment=’left’,
verticalalignment=’top’,
transform=ax.transAxes)

ax.text(left, bottom, ’left bottom’,
horizontalalignment=’left’,
verticalalignment=’bottom’,
transform=ax.transAxes)

ax.text(right, top, ’right bottom’,
horizontalalignment=’right’,
verticalalignment=’bottom’,
transform=ax.transAxes)

ax.text(right, top, ’right top’,
horizontalalignment=’right’,
verticalalignment=’top’,
transform=ax.transAxes)

ax.text(right, bottom, ’center top’,
horizontalalignment=’center’,
verticalalignment=’top’,
transform=ax.transAxes)

ax.text(left, 0.5*(bottom+top), ’right center’,
horizontalalignment=’right’,
verticalalignment=’center’,
rotation=’vertical’,
transform=ax.transAxes)

ax.text(left, 0.5*(bottom+top), ’left center’,
horizontalalignment=’left’,
verticalalignment=’center’,
rotation=’vertical’,
transform=ax.transAxes)

ax.text(0.5*(left+right), 0.5*(bottom+top), ’middle’,
horizontalalignment=’center’,
verticalalignment=’center’,
fontsize=20, color=’red’,
transform=ax.transAxes)

33

Matplotlib, Release 0.98

ax.text(right, 0.5*(bottom+top), ’centered’,
horizontalalignment=’center’,
verticalalignment=’center’,
rotation=’vertical’,
transform=ax.transAxes)

ax.text(left, top, ’rotated\nwith newlines’,
horizontalalignment=’center’,
verticalalignment=’center’,
rotation=45,
transform=ax.transAxes)

ax.set_axis_off()
plt.show()

left top
left bottom

right bottom
right top

center top

ri
g
h
t

ce
n
te

r
le

ft
 c

e
n
te

r

middle
ce

n
te

re
d

ro
ta

te
d

with
 n

ew
lin

es

6.4 Writing mathematical expressions

You can use TeX markup in any matplotlib text string. Note that you do not need to have TeX installed, since
matplotlib ships its own TeX expression parser, layout engine and fonts. The layout engine is a fairly direct
adaptation of the layout algorithms in Donald Knuth’s TeX, so the quality is quite good (matplotlib also
provides a usetex option for those who do want to call out to TeX to generate their text (see Text rendering

34

Matplotlib, Release 0.98

With LaTeX).

Any text element can use math text. You need to use raw strings (preceed the quotes with an ’r’), and
surround the string text with dollar signs, as in TeX. Regular text and mathtext can be interleaved within the
same string. Mathtext can use the Computer Modern fonts (from (La)TeX), STIX fonts (with are designed
to blend well with Times) or a Unicode font that you provide. The mathtext font can be selected with the
customization variable mathtext.fontset (see Customizing matplotlib)

Here is a simple example:

plain text
plt.title(’alpha > beta’)

produces “alpha > beta”.

Whereas this:

math text
plt.title(r’$\alpha > \beta$’)

produces “α > β“.

6.4.1 Subscripts and superscripts

To make subscripts and superscripts, use the ’_’ and ’^’ symbols:

r’$\alpha_i > \beta_i$’

αi > βi (6.1)

Some symbols automatically put their sub/superscripts under and over the operator. For example, to write
the sum of xi from 0 to∞, you could do:

r’$\sum_{i=0}^\infty x_i$’

∞∑
i=0

xi (6.2)

6.4.2 Fractions

Fractions can be created with the \frac{}{} command:

r’$\frac{3}{4}$’

produces
3
4

(6.3)

Fractions can be arbitrarily nested:

35

http://www.aip.org/stixfonts/

Matplotlib, Release 0.98

r’$\frac{5 - \frac{1}{x}}{4}$’

produces
5 − 1

x

4
(6.4)

Note that special care needs to be taken to place parentheses and brackets around fractions. Doing things
the obvious way produces brackets that are too small:

r’$(\frac{5 - \frac{1}{x}}{4})$’

(
5 − 1

x

4
) (6.5)

The solution is to precede the bracket with \left and \right to inform the parser that those brackets
encompass the entire object:

r’$\left(\frac{5 - \frac{1}{x}}{4}\right)$’5 − 1
x

4

 (6.6)

6.4.3 Radicals

Radicals can be produced with the \sqrt[]{} command. For example:

r’$\sqrt{2}$’

√
2 (6.7)

Any base can (optionally) be provided inside square brackets. Note that the base must be a simple expres-
sion, and can not contain layout commands such as fractions or sub/superscripts:

r’$\sqrt[3]{x}$’

3√x (6.8)

6.4.4 Fonts

The default font is italics for mathematical symbols. To change fonts, eg, to write “sin” in a Roman font,
enclose the text in a font command:

r’$s(t) = \mathcal{A}\mathrm{sin}(2 \omega t)$’

s(t) = Asin(2ωt) (6.9)

More conveniently, many commonly used function names that are typeset in a Roman font have shortcuts.
So the expression above could be written as follows:

36

Matplotlib, Release 0.98

r’$s(t) = \mathcal{A}\sin(2 \omega t)$’

s(t) = A sin(2ωt) (6.10)

Here “s” and “t” are variable in italics font (default), “sin” is in Roman font, and the amplitude “A” is in
calligraphy font.

The choices available with all fonts are:

Command Result
\mathrm{Roman} Roman
\mathit{Italic} Italic
\mathtt{Typewriter} Typewriter

\mathcal{CALLIGRAPHY} CALLIGRAPHY

When using the STIX fonts, you also have the choice of:

Command Result
\mathbb{blackboard} lakoar

\mathrm{\mathbb{blackboard}} lakoar

\mathfrak{Fraktur} Fraktur

\mathsf{sansserif} sansserif
\mathrm{\mathsf{sansserif}} sansserif

There are also three global “font sets” to choose from, which are selected using the mathtext.fontset
parameter in matplotlibrc.

cm: Computer Modern (TeX)

stix: STIX (designed to blend well with Times)

stixsans: STIX sans-serif

Custom fonts

mathtext also provides a way to use custom fonts for math. This method is fairly tricky to use, and should
be considered an experimental feature for patient users only. By setting the rcParam mathtext.fontset

37

Matplotlib, Release 0.98

to custom, you can then set the following parameters, which control which font file to use for a particular
set of math characters.

Parameter Corresponds to
mathtext.it \mathit{} or default italic
mathtext.rm \mathrm{} Roman (upright)
mathtext.tt \mathtt{} Typewriter (monospace)
mathtext.bf \mathbf{} bold italic
mathtext.cal \mathcal{} calligraphic
mathtext.sf \mathsf{} sans-serif

Each parameter should be set to a fontconfig font descriptor (as defined in the yet-to-be-written font chapter).

The fonts used should have a Unicode mapping in order to find any non-Latin characters, such as Greek.
If you want to use a math symbol that is not contained in your custom fonts, you can set the rcParam
mathtext.fallback_to_cm to True which will cause the mathtext system to use characters from the
default Computer Modern fonts whenever a particular character can not be found in the custom font.

Note that the math glyphs specified in Unicode have evolved over time, and many fonts may not have glyphs
in the correct place for mathtext.

6.4.5 Accents

An accent command may precede any symbol to add an accent above it. There are long and short forms for
some of them.

Command Result
\acute a or \’a á
\bar a ā
\breve a ă
\ddot a or \"a ä
\dot a or \.a ȧ
\grave a or \‘a à
\hat a or \^a â
\tilde a or \~a ã
\vec a ~a

In addition, there are two special accents that automatically adjust to the width of the symbols below:

Command Result
\widehat{xyz} x̂yz
\widetilde{xyz} x̃yz

Care should be taken when putting accents on lower-case i’s and j’s. Note that in the following \imath is
used to avoid the extra dot over the i:

r"$\hat i\ \ \hat \imath$"

î ı̂ (6.11)

38

Matplotlib, Release 0.98

6.4.6 Symbols

You can also use a large number of the TeX symbols, as in \infty, \leftarrow, \sum, \int.

Lower-case Greek

α \alpha β \beta χ \chi δ \delta z \digamma
ε \epsilon η \eta γ \gamma ι \iota κ \kappa
λ \lambda µ \mu ν \nu ω \omega φ \phi
π \pi ψ \psi ρ \rho σ \sigma τ \tau
θ \theta υ \upsilon ε \varepsilon κ \varkappa ϕ \varphi
$ \varpi % \varrho ς \varsigma ϑ \vartheta ξ \xi
ζ \zeta

Upper-case Greek

∆ \Delta Γ \Gamma Λ \Lambda Ω \Omega Φ \Phi Π \Pi
Ψ \Psi Σ \Sigma Θ \Theta Υ \Upsilon Ξ \Xi f \mho
∇ \nabla

Hebrew

ℵ \aleph i \beth k \daleth ג \gimel

Delimiters

/ / [[⇓ \Downarrow ⇑ \Uparrow ‖ \Vert \ \backslash
↓ \downarrow 〈 \langle d \lceil b \lfloor x \llcorner y \lrcorner
〉 \rangle e \rceil c \rfloor p \ulcorner ↑ \uparrow q \urcorner
| \vert { \{ ‖ \| } \}]] | |

Big symbols⋂
\bigcap

⋃
\bigcup

⊙
\bigodot

⊕
\bigoplus

⊗
\bigotimes⊎

\biguplus
∨

\bigvee
∧

\bigwedge
∐

\coprod
∫
\int∮

\oint
∏

\prod
∑

\sum

Standard function names

Pr \Pr arccos \arccos arcsin \arcsin arctan \arctan
arg \arg cos \cos cosh \cosh cot \cot
coth \coth csc \csc deg \deg det \det
dim \dim exp \exp gcd \gcd hom \hom
inf \inf ker \ker lg \lg lim \lim
lim inf \liminf lim sup \limsup ln \ln log \log
max \max min \min sec \sec sin \sin
sinh \sinh sup \sup tan \tan tanh \tanh

Binary operation and relation symbols

39

Matplotlib, Release 0.98

m \Bumpeq e \Cap d \Cup
+ \Doteq Z \Join b \Subset
c \Supset
 \Vdash � \Vvdash
≈ \approx u \approxeq ∗ \ast
� \asymp � \backepsilon v \backsim
w \backsimeq Z \barwedge ∵ \because
G \between © \bigcirc 5 \bigtriangledown
4 \bigtriangleup J \blacktriangleleft I \blacktriangleright
⊥ \bot ./ \bowtie � \boxdot
� \boxminus � \boxplus � \boxtimes
• \bullet l \bumpeq ∩ \cap
· \cdot ◦ \circ $ \circeq
D \coloneq � \cong ∪ \cup
2 \curlyeqprec 3 \curlyeqsucc g \curlyvee
f \curlywedge † \dag a \dashv
‡ \ddag � \diamond ÷ \div
> \divideontimes � \doteq + \doteqdot
u \dotplus [\doublebarwedge P \eqcirc
E \eqcolon h \eqsim 1 \eqslantgtr
0 \eqslantless ≡ \equiv ; \fallingdotseq

^ \frown ≥ \geq = \geqq
> \geqslant � \gg ≫ \ggg
� \gnapprox 	 \gneqq � \gnsim
' \gtrapprox m \gtrdot R \gtreqless
T \gtreqqless ≷ \gtrless & \gtrsim
∈ \in ᵀ \intercal h \leftthreetimes
≤ \leq 5 \leqq 6 \leqslant
/ \lessapprox l \lessdot Q \lesseqgtr
S \lesseqqgtr ≶ \lessgtr . \lesssim
� \ll ≪ \lll � \lnapprox
� \lneqq � \lnsim n \ltimes
| \mid |= \models ∓ \mp
3 \nVDash 1 \nVdash 0 \napprox
� \ncong , \ne , \neq
, \neq . \nequiv � \ngeq
≯ \ngtr 3 \ni � \nleq
≮ \nless - \nmid < \notin
∦ \nparallel ⊀ \nprec / \nsim
1 \nsubset * \nsubseteq � \nsucc
2 \nsupset + \nsupseteq 6 \ntriangleleft

40

Matplotlib, Release 0.98

5 \ntrianglelefteq 7 \ntriangleright 4 \ntrianglerighteq
2 \nvDash 0 \nvdash � \odot
	 \ominus ⊕ \oplus � \oslash
⊗ \otimes ‖ \parallel ⊥ \perp
t \pitchfork ± \pm ≺ \prec
v \precapprox 4 \preccurlyeq � \preceq
� \precnapprox � \precnsim - \precsim
∝ \propto i \rightthreetimes : \risingdotseq
o \rtimes ∼ \sim ' \simeq
/ \slash _ \smile u \sqcap
t \sqcup @ \sqsubset @ \sqsubset
v \sqsubseteq A \sqsupset A \sqsupset
w \sqsupseteq ? \star ⊂ \subset
⊆ \subseteq j \subseteqq (\subsetneq
$ \subsetneqq � \succ w \succapprox
< \succcurlyeq � \succeq � \succnapprox
� \succnsim % \succsim ⊃ \supset
⊇ \supseteq k \supseteqq) \supsetneq
% \supsetneqq ∴ \therefore × \times
> \top / \triangleleft E \trianglelefteq

, \triangleq . \triangleright D \trianglerighteq
] \uplus � \vDash ∝ \varpropto
C \vartriangleleft B \vartriangleright ` \vdash
∨ \vee Y \veebar ∧ \wedge
o \wr

Arrow symbols

⇓ \Downarrow ⇐ \Leftarrow
⇔ \Leftrightarrow W \Lleftarrow
⇐= \Longleftarrow ⇐⇒ \Longleftrightarrow
=⇒ \Longrightarrow � \Lsh
t \Nearrow v \Nwarrow
⇒ \Rightarrow V \Rrightarrow
� \Rsh u \Searrow
w \Swarrow ⇑ \Uparrow
m \Updownarrow 	 \circlearrowleft
� \circlearrowright x \curvearrowleft
y \curvearrowright c \dashleftarrow
d \dashrightarrow ↓ \downarrow
� \downdownarrows � \downharpoonleft
� \downharpoonright ←↩ \hookleftarrow
↪→ \hookrightarrow { \leadsto
← \leftarrow � \leftarrowtail
↽ \leftharpoondown ↼ \leftharpoonup
⇔ \leftleftarrows ↔ \leftrightarrow
� \leftrightarrows � \leftrightharpoons
! \leftrightsquigarrow f \leftsquigarrow

41

Matplotlib, Release 0.98

←− \longleftarrow ←→ \longleftrightarrow
7−→ \longmapsto −→ \longrightarrow
" \looparrowleft # \looparrowright
7→ \mapsto (\multimap
: \nLeftarrow < \nLeftrightarrow
; \nRightarrow ↗ \nearrow
8 \nleftarrow = \nleftrightarrow
9 \nrightarrow ↖ \nwarrow
→ \rightarrow � \rightarrowtail
⇁ \rightharpoondown ⇀ \rightharpoonup
� \rightleftarrows � \rightleftarrows

 \rightleftharpoons
 \rightleftharpoons
⇒ \rightrightarrows ⇒ \rightrightarrows
 \rightsquigarrow ↘ \searrow
↙ \swarrow → \to
� \twoheadleftarrow � \twoheadrightarrow
↑ \uparrow l \updownarrow
l \updownarrow � \upharpoonleft
� \upharpoonright � \upuparrows

Miscellaneous symbols

$ \$ Å \AA ` \Finv
a \Game = \Im ¶ \P
< \Re § \S ∠ \angle
8 \backprime F \bigstar � \blacksquare
N \blacktriangle H \blacktriangledown · · · \cdots
X \checkmark r \circledR s \circledS
♣ \clubsuit { \complement © \copyright
. . . \ddots ♦ \diamondsuit ` \ell
∅ \emptyset ð \eth ∃ \exists
[\flat ∀ \forall ~ \hbar

♥ \heartsuit } \hslash
#

\iiint!
\iint

!
\iint ı \imath

∞ \infty  \jmath . . . \ldots
] \measuredangle \ \natural ¬ \neg

@ \nexists
)

\oiiint ∂ \partial
′ \prime] \sharp ♠ \spadesuit
^ \sphericalangle \ss O \triangledown

∅ \varnothing M \vartriangle
... \vdots

℘ \wp U \yen

If a particular symbol does not have a name (as is true of many of the more obscure symbols in the STIX
fonts), Unicode characters can also be used:

42

Matplotlib, Release 0.98

ur’$\u23ce$’

6.4.7 Example

Here is an example illustrating many of these features in context.

import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0.0, 2.0, 0.01)
s = np.sin(2*np.pi*t)

plt.plot(t,s)
plt.title(r’$\alpha_i > \beta_i$’, fontsize=20)
plt.text(1, -0.6, r’$\sum_{i=0}^\infty x_i$’, fontsize=20)
plt.text(0.6, 0.6, r’$\mathcal{A}\mathrm{sin}(2 \omega t)$’,

fontsize=20)
plt.xlabel(’time (s)’)
plt.ylabel(’volts (mV)’)

0.0 0.5 1.0 1.5 2.0
time (s)

1.0

0.5

0.0

0.5

1.0

v
o
lt

s
(m

V
)

∞∑
i=0
xi

Asin(2ωt)

αi >βi

43

Matplotlib, Release 0.98

6.5 Text rendering With LaTeX

Matplotlib has the option to use LaTeX to manage all text layout. This option is available with the following
backends:

• Agg

• PS

• PDF

The LaTeX option is activated by setting text.usetex : True in your rc settings. Text handling with
matplotlib’s LaTeX support is slower than matplotlib’s very capable mathtext, but is more flexible, since
different LaTeX packages (font packages, math packages, etc.) can be used. The results can be striking,
especially when you take care to use the same fonts in your figures as in the main document.

Matplotlib’s LaTeX support requires a working LaTeX installation, dvipng (which may be included with
your LaTeX installation), and Ghostscript (GPL Ghostscript 8.60 or later is recommended). The executables
for these external dependencies must all be located on your PATH.

There are a couple of options to mention, which can be changed using rc settings. Here is an example
matplotlibrc file:

font.family : serif
font.serif : Times, Palatino, New Century Schoolbook, Bookman, Computer Modern Roman
font.sans-serif : Helvetica, Avant Garde, Computer Modern Sans serif
font.cursive : Zapf Chancery
font.monospace : Courier, Computer Modern Typewriter

text.usetex : true

The first valid font in each family is the one that will be loaded. If the fonts are not specified, the Computer
Modern fonts are used by default. All of the other fonts are Adobe fonts. Times and Palatino each have their
own accompanying math fonts, while the other Adobe serif fonts make use of the Computer Modern math
fonts. See the PSNFSS documentation for more details.

To use LaTeX and select Helvetica as the default font, without editing matplotlibrc use:

from matplotlib import rc
rc(’font’,**{’family’:’sans-serif’,’sans-serif’:[’Helvetica’]})
for Palatino and other serif fonts use:
#rc(’font’,**{’family’:’serif’,’serif’:[’Palatino’]))
rc(’text’, usetex=True)

Here is the standard example, tex_demo.py:

from matplotlib import rc
from numpy import arange, cos, pi
from matplotlib.pyplot import figure, axes, plot, xlabel, ylabel, title, \

grid, savefig, show

44

http://www.tug.org
http://sourceforge.net/projects/dvipng
http://www.cs.wisc.edu/~{}ghost/
http://www.ctan.org/tex-archive/macros/latex/required/psnfss/psnfss2e.pdf

Matplotlib, Release 0.98

rc(’text’, usetex=True)
rc(’font’, family=’serif’)
figure(1, figsize=(6,4))
ax = axes([0.1, 0.1, 0.8, 0.7])
t = arange(0.0, 1.0+0.01, 0.01)
s = cos(2*2*pi*t)+2
plot(t, s)

xlabel(r’\textbf{time (s)}’)
ylabel(r’\textit{voltage (mV)}’,fontsize=16)
title(r"\TeX\ is Number $\displaystyle\sum_{n=1}^\infty\frac{-e^{i\pi}}{2^n}$!",

fontsize=16, color=’r’)
grid(True)

0.0 0.2 0.4 0.6 0.8 1.0
time (s)

1.0

1.5

2.0

2.5

3.0

vo
lt

ag
e

(m
V

)

TEX is Number
∞∑

n=1

−eiπ
2n

!

Note that display math mode ($$ e=mc^2 $$) is not supported, but adding the command \displaystyle,
as in tex_demo.py, will produce the same results.

6.5.1 usetex with unicode

It is also possible to use unicode strings with the LaTeX text manager, here is an example taken from
tex_unicode_demo.py:

-*- coding: latin-1 -*-
from matplotlib import rcParams
rcParams[’text.usetex’]=True
rcParams[’text.latex.unicode’]=True
from numpy import arange, cos, pi

45

Matplotlib, Release 0.98

from matplotlib.pyplot import figure, axes, plot, xlabel, ylabel, title, \
grid, savefig, show

figure(1, figsize=(6,4))
ax = axes([0.1, 0.1, 0.8, 0.7])
t = arange(0.0, 1.0+0.01, 0.01)
s = cos(2*2*pi*t)+2
plot(t, s)

xlabel(r’\textbf{time (s)}’)
ylabel(unicode(’\\textit{Velocity (\xB0/sec)}’,’latin-1’),fontsize=16)
title(r"\TeX\ is Number $\displaystyle\sum_{n=1}^\infty\frac{-e^{i\pi}}{2^n}$!",

fontsize=16, color=’r’)
grid(True)

0.0 0.2 0.4 0.6 0.8 1.0
time (s)

1.0

1.5

2.0

2.5

3.0

Ve
lo

ci
ty

(°
/s

ec
)

TEX is Number
∞∑

n=1

−eiπ
2n

!

6.5.2 Postscript options

In order to produce encapsulated postscript files that can be embedded in a new LaTeX document, the default
behavior of matplotlib is to distill the output, which removes some postscript operators used by LaTeX that
are illegal in an eps file. This step produces results which may be unacceptable to some users, because
the text is coarsely rasterized and converted to bitmaps, which are not scalable like standard postscript, and
the text is not searchable. One workaround is to to set ps.distiller.res to a higher value (perhaps
6000) in your rc settings, which will produce larger files but may look better and scale reasonably. A better
workaround, which requires Poppler or Xpdf, can be activated by changing the ps.usedistiller rc setting
to xpdf. This alternative produces postscript without rasterizing text, so it scales properly, can be edited in
Adobe Illustrator, and searched text in pdf documents.

46

http://poppler.freedesktop.org/
http://www.foolabs.com/xpdf

Matplotlib, Release 0.98

6.5.3 Possible hangups

• On Windows, the PATH environment variable may need to be modified to include the directories
containing the latex, dvipng and ghostscript executables. See Environment Variables and Setting
environment variables in windows for details.

• Using MiKTeX with Computer Modern fonts, if you get odd *Agg and PNG results, go to MiK-
TeX/Options and update your format files

• The fonts look terrible on screen. You are probably running Mac OS, and there is some funny business
with older versions of dvipng on the mac. Set text.dvipnghack : True in your matplotlibrc file.

• On Ubuntu and Gentoo, the base texlive install does not ship with the type1cm package. You may
need to install some of the extra packages to get all the goodies that come bundled with other latex
distributions.

• Some progress has been made so matplotlib uses the dvi files directly for text layout. This allows
latex to be used for text layout with the pdf and svg backends, as well as the *Agg and PS backends.
In the future, a latex installation may be the only external dependency.

6.5.4 Troubleshooting

• Try deleting your .matplotlib/tex.cache directory. If you don’t know where to find
.matplotlib, see Where is my .matplotlib directory?.

• Make sure LaTeX, dvipng and ghostscript are each working and on your PATH.

• Make sure what you are trying to do is possible in a LaTeX document, that your LaTeX syntax is valid
and that you are using raw strings if necessary to avoid unintended escape sequences.

• Most problems reported on the mailing list have been cleared up by upgrading Ghostscript. If possible,
please try upgrading to the latest release before reporting problems to the list.

• The text.latex.preamble rc setting is not officially supported. This option provides lots of flexi-
bility, and lots of ways to cause problems. Please disable this option before reporting problems to the
mailing list.

• If you still need help, please see How do I report a problem?

6.6 Annotating text

The uses of the basic text() command above place text at an arbitrary position on the Axes. A common use
case of text is to annotate some feature of the plot, and the annotate() method provides helper functionality
to make annotations easy. In an annotation, there are two points to consider: the location being annotated
represented by the argument xy and the location of the text xytext. Both of these arguments are (x,y)
tuples.

47

http://www.cs.wisc.edu/~{}ghost/

Matplotlib, Release 0.98

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111)

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = ax.plot(t, s, lw=2)

ax.annotate(’local max’, xy=(2, 1), xytext=(3, 1.5),
arrowprops=dict(facecolor=’black’, shrink=0.05),
)

ax.set_ylim(-2,2)
plt.show()

0 1 2 3 4 5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

local max

In this example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates. There
are a variety of other coordinate systems one can choose – you can specify the coordinate system of xy and
xytext with one of the following strings for xycoords and textcoords (default is ‘data’)

48

Matplotlib, Release 0.98

argument coordinate system
‘figure points’ points from the lower left corner of the figure
‘figure pixels’ pixels from the lower left corner of the figure
‘figure fraction’ 0,0 is lower left of figure and 1,1 is upper, right
‘axes points’ points from lower left corner of axes
‘axes pixels’ pixels from lower left corner of axes
‘axes fraction’ 0,1 is lower left of axes and 1,1 is upper right
‘data’ use the axes data coordinate system

For example to place the text coordinates in fractional axes coordinates, one could do:

ax.annotate(’local max’, xy=(3, 1), xycoords=’data’,
xytext=(0.8, 0.95), textcoords=’axes fraction’,
arrowprops=dict(facecolor=’black’, shrink=0.05),
horizontalalignment=’right’, verticalalignment=’top’,
)

For physical coordinate systems (points or pixels) the origin is the (bottom, left) of the figure or axes. If
the value is negative, however, the origin is from the (right, top) of the figure or axes, analogous to negative
indexing of sequences.

Optionally, you can specify arrow properties which draws an arrow from the text to the annotated point by
giving a dictionary of arrow properties in the optional keyword argument arrowprops.

arrowprops key description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
headwidth the width of the base of the arrow head in points
shrink move the tip and base some percent away from the annotated point and text
**kwargs any key for matplotlib.patches.Polygon, eg facecolor

In the example below, the xy point is in native coordinates (xycoords defaults to ‘data’). For a polar
axes, this is in (theta, radius) space. The text in this example is placed in the fractional figure coordinate
system. matplotlib.text.Text keyword args like horizontalalignment, verticalalignment and
fontsize are passed from the ‘~matplotlib.Axes.annotate‘ to the “Text instance

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
r = np.arange(0,1,0.001)
theta = 2*2*np.pi*r
line, = ax.plot(theta, r, color=’#ee8d18’, lw=3)

ind = 800
thisr, thistheta = r[ind], theta[ind]
ax.plot([thistheta], [thisr], ’o’)
ax.annotate(’a polar annotation’,

xy=(thistheta, thisr), # theta, radius
xytext=(0.05, 0.05), # fraction, fraction
textcoords=’figure fraction’,

49

Matplotlib, Release 0.98

arrowprops=dict(facecolor=’black’, shrink=0.05),
horizontalalignment=’left’,
verticalalignment=’bottom’,
)

plt.show()

0°

45°

90°

135°

180°

225°

270°

315°

0.2
0.4

0.6
0.8

1.0

a polar annotation

See the annotations demo for more examples.

50

http://matplotlib.sf.net/examples/pylab_examples/annotation_demo.py

CHAPTER

SEVEN

Artist tutorial

There are three layers to the matplotlib API. The matplotlib.backend_bases.FigureCanvas is the area
onto which the figure is drawn, the matplotlib.backend_bases.Renderer is the object which knows
how to draw on the FigureCanvas, and the matplotlib.artist.Artist is the object that knows how to
use a renderer to paint onto the canvas. The FigureCanvas and Renderer handle all the details of talking
to user interface toolkits like wxPython or drawing languages like PostScript®, and the Artist handles all
the high level constructs like representing and laying out the figure, text, and lines. The typical user will
spend 95% of his time working with the Artists.

There are two types of Artists: primitives and containers. The primitives represent the standard graph-
ical objects we want to paint onto our canvas: Line2D, Rectangle, Text, AxesImage, etc., and the
containers are places to put them (Axis, Axes and Figure). The standard use is to create a Figure
instance, use the Figure to create one or more Axes or Subplot instances, and use the Axes instance
helper methods to create the primitives. In the example below, we create a Figure instance using
matplotlib.pyplot.figure(), which is a convenience method for instantiating Figure instances and
connecting them with your user interface or drawing toolkit FigureCanvas. As we will discuss below,
this is not necessary, and you can work directly with PostScript, PDF Gtk+, or wxPython FigureCanvas
instances. For example, instantiate your Figures directly and connect them yourselves, but since we are
focusing here on the Artist API we’ll let pyplot handle some of those details for us:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(2,1,1) # two rows, one column, first plot

The Axes is probably the most important class in the matplotlib API, and the one you will be working with
most of the time. This is because the Axes is the plotting area into which most of the objects go, and the
Axes has many special helper methods (plot(), text(), hist(), imshow()) to create the most common
graphics primitives (Line2D, Text, Rectangle, Image, respectively). These helper methods will take your
data (eg. numpy arrays and strings) create primitive Artist instances as needed (eg. Line2D), add them
to the relevant containers, and draw them when requested. Most of you are probably familiar with the
Subplot, which is just a special case of an Axes that lives on a regular rows by columns grid of Subplot
instances. If you want to create an Axes at an arbitrary location, simply use the add_axes() method which
takes a list of [left, bottom, width, height] values in 0-1 relative figure coordinates:

fig2 = plt.figure()
ax2 = fig2.add_axes([0.15, 0.1, 0.7, 0.3])

51

http://www.wxpython.org

Matplotlib, Release 0.98

Continuing with our example:

import numpy as np
t = np.arange(0.0, 1.0, 0.01)
s = np.sin(2*np.pi*t)
line, = ax.plot(t, s, color=’blue’, lw=2)

In this example, ax is the Axes instance created by the fig.add_subplot call above (remember Subplot
is just a subclass of Axes) and when you call ax.plot, it createsa Line2D instance and adds it the
Axes.lines list. In the interactive ipython session below, you can see that Axes.lines list is length
one and contains the same line that was returned by the line, = ax.plot(x, y, ’o’) call:

In [101]: ax.lines[0]
Out[101]: <matplotlib.lines.Line2D instance at 0x19a95710>

In [102]: line
Out[102]: <matplotlib.lines.Line2D instance at 0x19a95710>

If you make subsequent calls to ax.plot (and the hold state is “on” which is the default) then additional
lines will be added to the list. You can remove lines later simply by calling the list methods; either of these
will work:

del ax.lines[0]
ax.lines.remove(line) # one or the other, not both!

The Axes also has helper methods to configure and decorate the x-axis and y-axis tick, ticklabels and axis
labels:

xtext = ax.set_xlabel(’my xdata’) # returns a Text instance
ytext = ax.set_ylabel(’my xdata’)

When you call ax.set_xlabel, it passes the information on the Text instance of the XAxis. Each Axes
instance contains an XAxis and a YAxis instance, which handle the layout and drawing of the ticks, tick
labels and axis labels.

Try creating the figure below.

52

http://ipython.scipy.org/

Matplotlib, Release 0.98

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.5

0.0

0.5

1.0

v
o
lt

s

a sine wave

4 3 2 1 0 1 2 3
time (s)

0

10

20

30

40

50

60

7.1 Customizing your objects

Every element in the figure is represented by a matplotlib Artist, and each has an extensive list of properties
to configure its appearance. The figure itself contains a Rectangle exactly the size of the figure, which you
can use to set the background color and transparency of the figures. Likewise, each Axes bounding box
(the standard white box with black edges in the typical matplotlib plot, has a Rectangle instance that
determines the color, transparency, and other properties of the Axes. These instances are stored as member
variables Figure.patch and Axes.patch (“Patch” is a name inherited from MATLAB™, and is a 2D
“patch” of color on the figure, eg. rectangles, circles and polygons). Every matplotlib Artist has the
following properties

53

Matplotlib, Release 0.98

Property Description
alpha The transparency - a scalar from 0-1
animated A boolean that is used to facilitate animated drawing
axes The axes that the Artist lives in, possibly None
clip_box The bounding box that clips the Artist
clip_on Whether clipping is enabled
clip_path The path the artist is clipped to
contains A picking function to test whether the artist contains the pick point
figure The figure instance the aritst lives in, possibly None
label A text label (eg for auto-labeling)
picker A python object that controls object picking
transform The transformation
visible A boolean whether the artist should be drawn
zorder A number which determines the drawing order

Each of the properties is accessed with an old-fashioned setter or getter (yes we know this irritates Python-
istas and we plan to support direct access via properties or traits but it hasn’t been done yet). For example,
to multiply the current alpha by a half:

a = o.get_alpha()
o.set_alpha(0.5*a)

If you want to set a number of properties at once, you can also use the set method with keyword arguments.
For example:

o.set(alpha=0.5, zorder=2)

If you are working interactively at the python shell, a handy way to inspect the Artist properties is to use
the matplotlib.artist.getp() function (simply getp() in pylab), which lists the properties and their
values. This works for classes derived from Artist as well, eg. Figure and Rectangle. Here are the
Figure rectangle properties mentioned above:

In [149]: matplotlib.artist.getp(fig.patch)
alpha = 1.0
animated = False
antialiased or aa = True
axes = None
clip_box = None
clip_on = False
clip_path = None
contains = None
edgecolor or ec = w
facecolor or fc = 0.75
figure = Figure(8.125x6.125)
fill = 1
hatch = None
height = 1
label =
linewidth or lw = 1.0
picker = None

54

Matplotlib, Release 0.98

transform = <Affine object at 0x134cca84>
verts = ((0, 0), (0, 1), (1, 1), (1, 0))
visible = True
width = 1
window_extent = <Bbox object at 0x134acbcc>
x = 0
y = 0
zorder = 1

The docstrings for all of the classes also contain the Artist properties, so you can consult the interactive
“help”, the online html docs at http://matplotlib.sourceforge.net/classdocs.html or PDF documentation at
http://matplotlib.sourceforge.net/api.pdf for a listing of properties for a give object.

7.2 Object containers

Now that we know how to inspect set the properties of a given object we want to configure, we need to
now how to get at that object. As mentioned in the introduction, there are two kinds of objects: primitives
and containers. The primitives are usually the things you want to configure (the font of a Text instance,
the width of a Line2D) although the containers also have some properties as well – for example the Axes
Artist is a container that contains many of the primitives in your plot, but it also has properties like the
xscale to control whether the xaxis is ‘linear’ or ‘log’. In this section we’ll review where the various
container objects store the Artists that you want to get at.

7.3 Figure container

The top level container Artist is the matplotlib.figure.Figure, and it contains everything in the
figure. The background of the figure is a Rectangle which is stored in Figure.patch. As you add subplots
(add_subplot()) and axes (add_axes()) to the figure these will be appended to the Figure.axes. These
are also returned by the methods that create them:

In [156]: fig = plt.figure()

In [157]: ax1 = fig.add_subplot(211)

In [158]: ax2 = fig.add_axes([0.1, 0.1, 0.7, 0.3])

In [159]: ax1
Out[159]: <matplotlib.axes.Subplot instance at 0xd54b26c>

In [160]: print fig.axes
[<matplotlib.axes.Subplot instance at 0xd54b26c>, <matplotlib.axes.Axes instance at 0xd3f0b2c>]

Because the figure maintains the concept of the “current axes” (see Figure.gca and Figure.sca) to
support the pylab/pyplot state machine, you should not insert or remove axes directly from the axes list, but
rather use the add_subplot() and add_axes() methods to insert, and the delaxes() method to delete.
You are free however, to iterate over the list of axes or index into it to get access to Axes instances you want
to customize. Here is an example which turns all the axes grids on:

55

http://matplotlib.sourceforge.net/classdocs.html
http://matplotlib.sourceforge.net/api.pdf

Matplotlib, Release 0.98

for ax in fig.axes:
ax.grid(True)

The figure also has its own text, lines, patches and images, which you can use to add primitives directly. The
default coordinate system for the Figure will simply be in pixels (which is not usually what you want) but
you can control this by setting the transform property of the Artist you are adding to the figure.

More useful is “figure coordinates” where (0, 0) is the bottom-left of the figure and (1, 1) is the top-right of
the figure which you can obtain by setting the Artist transform to fig.transFigure:

In [191]: fig = plt.figure()

In [192]: l1 = matplotlib.lines.Line2D([0, 1], [0, 1],
transform=fig.transFigure, figure=fig)

In [193]: l2 = matplotlib.lines.Line2D([0, 1], [1, 0],
transform=fig.transFigure, figure=fig)

In [194]: fig.lines.extend([l1, l2])

In [195]: fig.canvas.draw()

56

Matplotlib, Release 0.98

Here is a summary of the Artists the figure contains

Figure attribute Description
axes A list of Axes instances (includes Subplot)
patch The Rectangle background
images A list of FigureImages patches - useful for raw pixel display
legends A list of Figure Legend instances (different from Axes.legends)
lines A list of Figure Line2D instances (rarely used, see Axes.lines)
patches A list of Figure patches (rarely used, see Axes.patches)
texts A list Figure Text instances

7.4 Axes container

The matplotlib.axes.Axes is the center of the matplotlib universe – it contains the vast majority of all
the Artists used in a figure with many helper methods to create and add these Artists to itself, as well
as helper methods to access and customize the Artists it contains. Like the Figure, it contains a Patch
patch which is a Rectangle for Cartesian coordinates and a Circle for polar coordinates; this patch
determines the shape, background and border of the plotting region:

ax = fig.add_subplot(111)
rect = ax.patch # a Rectangle instance
rect.set_facecolor(’green’)

When you call a plotting method, eg. the canonical plot() and pass in arrays or lists of values, the method
will create a matplotlib.lines.Line2D() instance, update the line with all the Line2D properties passed
as keyword arguments, add the line to the Axes.lines container, and returns it to you:

In [213]: x, y = np.random.rand(2, 100)

In [214]: line, = ax.plot(x, y, ’-’, color=’blue’, linewidth=2)

plot returns a list of lines because you can pass in multiple x, y pairs to plot, and we are unpacking the first
element of the length one list into the line variable. The line has been added to the Axes.lines list:

In [229]: print ax.lines
[<matplotlib.lines.Line2D instance at 0xd378b0c>]

Similarly, methods that create patches, like bar() creates a list of rectangles, will add the patches to the
Axes.patches list:

In [233]: n, bins, rectangles = ax.hist(np.random.randn(1000), 50, facecolor=’yellow’)

In [234]: rectangles
Out[234]: <a list of 50 Patch objects>

In [235]: print len(ax.patches)

57

Matplotlib, Release 0.98

You should not add objects directly to the Axes.lines or Axes.patches lists unless you know exactly
what you are doing, because the Axes needs to do a few things when it creates and adds an object. It sets the
figure and axes property of the Artist, as well as the default Axes transformation (unless a transformation is
set). It also inspects the data contained in the Artist to update the data structures controlling auto-scaling,
so that the view limits can be adjusted to contain the plotted data. You can, nonetheless, create objects
yourself and add them directly to the Axes using helper methods like add_line() and add_patch().
Here is an annotated interactive session illustrating what is going on:

In [261]: fig = plt.figure()

In [262]: ax = fig.add_subplot(111)

create a rectangle instance
In [263]: rect = matplotlib.patches.Rectangle((1,1), width=5, height=12)

by default the axes instance is None
In [264]: print rect.get_axes()
None

and the transformation instance is set to the "identity transform"
In [265]: print rect.get_transform()
<Affine object at 0x13695544>

now we add the Rectangle to the Axes
In [266]: ax.add_patch(rect)

and notice that the ax.add_patch method has set the axes
instance
In [267]: print rect.get_axes()
Subplot(49,81.25)

and the transformation has been set too
In [268]: print rect.get_transform()
<Affine object at 0x15009ca4>

the default axes transformation is ax.transData
In [269]: print ax.transData
<Affine object at 0x15009ca4>

notice that the xlimits of the Axes have not been changed
In [270]: print ax.get_xlim()
(0.0, 1.0)

but the data limits have been updated to encompass the rectangle
In [271]: print ax.dataLim.get_bounds()
(1.0, 1.0, 5.0, 12.0)

we can manually invoke the auto-scaling machinery
In [272]: ax.autoscale_view()

and now the xlim are updated to encompass the rectangle
In [273]: print ax.get_xlim()
(1.0, 6.0)

58

Matplotlib, Release 0.98

we have to manually force a figure draw
In [274]: ax.figure.canvas.draw()

There are many, many Axes helper methods for creating primitive Artists and adding them to their respec-
tive containers. The table below summarizes a small sampling of them, the kinds of Artist they create,
and where they store them

Helper method Artist Container
ax.annotate - text annotations Annotate ax.texts
ax.bar - bar charts Rectangle ax.patches
ax.errorbar - error bar plots Line2D and Rectangle ax.lines and ax.patches
ax.fill - shared area Polygon ax.patches
ax.hist - histograms Rectangle ax.patches
ax.imshow - image data AxesImage ax.images
ax.legend - axes legends Legend ax.legends
ax.plot - xy plots Line2D ax.lines
ax.scatter - scatter charts PolygonCollection ax.collections
ax.text - text Text ax.texts

In addition to all of these Artists, the Axes contains two important Artist containers: the XAxis and
YAxis, which handle the drawing of the ticks and labels. These are stored as instance variables xaxis and
yaxis. The XAxis and YAxis containers will be detailed below, but note that the Axes contains many
helper methods which forward calls on to the Axis instances so you often do not need to work with them
directly unless you want to. For example, you can set the font size of the XAxis ticklabels using the Axes
helper method:

for label in ax.get_xticklabels():
label.set_color(’orange’)

Below is a summary of the Artists that the Axes contains

Axes attribute Description
artists A list of Artist instances
patch Rectangle instance for Axes background
collections A list of Collection instances
images A list of AxesImage
legends A list of Legend instances
lines A list of Line2D instances
patches A list of Patch instances
texts A list of Text instances
xaxis matplotlib.axis.XAxis instance
yaxis matplotlib.axis.YAxis instance

7.5 Axis containers

The matplotlib.axis.Axis instances handle the drawing of the tick lines, the grid lines, the tick labels
and the axis label. You can configure the left and right ticks separately for the y-axis, and the upper and

59

Matplotlib, Release 0.98

lower ticks separately for the x-axis. The Axis also stores the data and view intervals used in auto-scaling,
panning and zooming, as well as the Locator and Formatter instances which control where the ticks are
placed and how they are represented as strings.

Each Axis object contains a label attribute (this is what the pylab calls to xlabel() and ylabel() set)
as well as a list of major and minor ticks. The ticks are XTick and YTick instances, which contain the
actual line and text primitives that render the ticks and ticklabels. Because the ticks are dynamically created
as needed (eg. when panning and zooming), you should access the lists of major and minor ticks through
their accessor methods get_major_ticks() and get_minor_ticks(). Although the ticks contain all the
primitives and will be covered below, the Axis methods contain accessor methods to return the tick lines,
tick labels, tick locations etc.:

In [285]: axis = ax.xaxis

In [286]: axis.get_ticklocs()
Out[286]: array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

In [287]: axis.get_ticklabels()
Out[287]: <a list of 10 Text major ticklabel objects>

note there are twice as many ticklines as labels because by
default there are tick lines at the top and bottom but only tick
labels below the xaxis; this can be customized
In [288]: axis.get_ticklines()
Out[288]: <a list of 20 Line2D ticklines objects>

by default you get the major ticks back
In [291]: axis.get_ticklines()
Out[291]: <a list of 20 Line2D ticklines objects>

but you can also ask for the minor ticks
In [292]: axis.get_ticklines(minor=True)
Out[292]: <a list of 0 Line2D ticklines objects>

Here is a summary of some of the useful accessor methods of the Axis (these have corresponding setters
where useful, such as set_major_formatter)

60

Matplotlib, Release 0.98

Accessor method Description
get_scale The scale of the axis, eg ‘log’ or ‘linear’
get_view_interval The interval instance of the axis view limits
get_data_interval The interval instance of the axis data limits
get_gridlines A list of grid lines for the Axis
get_label The axis label - a Text instance
get_ticklabels A list of Text instances - keyword minor=True|False
get_ticklines A list of Line2D instances - keyword minor=True|False
get_ticklocs A list of Tick locations - keyword minor=True|False
get_major_locator The matplotlib.ticker.Locator instance for major ticks
get_major_formatter The matplotlib.ticker.Formatter instance for major ticks
get_minor_locator The matplotlib.ticker.Locator instance for minor ticks
get_minor_formatter The matplotlib.ticker.Formatter instance for minor ticks
get_major_ticks A list of Tick instances for major ticks
get_minor_ticks A list of Tick instances for minor ticks
grid Turn the grid on or off for the major or minor ticks

Here is an example, not recommended for its beauty, which customizes the axes and tick properties

import numpy as np
import matplotlib.pyplot as plt

plt.figure creates a matplotlib.figure.Figure instance
fig = plt.figure()
rect = fig.patch # a rectangle instance
rect.set_facecolor(’lightgoldenrodyellow’)

ax1 = fig.add_axes([0.1, 0.3, 0.4, 0.4])
rect = ax1.patch
rect.set_facecolor(’lightslategray’)

for label in ax1.xaxis.get_ticklabels():
label is a Text instance
label.set_color(’red’)
label.set_rotation(45)
label.set_fontsize(16)

for line in ax1.yaxis.get_ticklines():
line is a Line2D instance
line.set_color(’green’)
line.set_markersize(25)
line.set_markeredgewidth(3)

61

Matplotlib, Release 0.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

7.6 Tick containers

The matplotlib.axis.Tick is the final container object in our descent from the Figure to the Axes to
the Axis to the Tick. The Tick contains the tick and grid line instances, as well as the label instances for
the upper and lower ticks. Each of these is accessible directly as an attribute of the Tick. In addition, there
are boolean variables that determine whether the upper labels and ticks are on for the x-axis and whether the
right labels and ticks are on for the y-axis.

Tick attribute Description
tick1line Line2D instance
tick2line Line2D instance
gridline Line2D instance
label1 Text instance
label2 Text instance
gridOn boolean which determines whether to draw the tickline
tick1On boolean which determines whether to draw the 1st tickline
tick2On boolean which determines whether to draw the 2nd tickline
label1On boolean which determines whether to draw tick label
label2On boolean which determines whether to draw tick label

Here is an example which sets the formatter for the upper ticks with dollar signs and colors them green on

62

Matplotlib, Release 0.98

the right side of the yaxis

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(100*np.random.rand(20))

formatter = ticker.FormatStrFormatter(’$%1.2f’)
ax.yaxis.set_major_formatter(formatter)

for tick in ax.yaxis.get_major_ticks():
tick.label1On = False
tick.label2On = True
tick.label2.set_color(’green’)

0 5 10 15 20
$0.00

$10.00

$20.00

$30.00

$40.00

$50.00

$60.00

$70.00

$80.00

$90.00

63

64

CHAPTER

EIGHT

Event handling and picking

matplotlib works with 5 user interface toolkits (wxpython, tkinter, qt, gtk and fltk) and in order to support
features like interactive panning and zooming of figures, it is helpful to the developers to have an API for
interacting with the figure via key presses and mouse movements that is “GUI neutral” so we don’t have to
repeat a lot of code across the different user interfaces. Although the event handling API is GUI neutral,
it is based on the GTK model, which was the first user interface matplotlib supported. The events that
are triggered are also a bit richer vis-a-vis matplotlib than standard GUI events, including information like
which matplotlib.axes.Axes the event occurred in. The events also understand the matplotlib coordinate
system, and report event locations in both pixel and data coordinates.

8.1 Event connections

To receive events, you need to write a callback function and then connect your function to the event manager,
which is part of the FigureCanvasBase. Here is a simple example that prints the location of the mouse
click and which button was pressed:

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(np.random.rand(10))

def onclick(event):
print ’button=%d, x=%d, y=%d, xdata=%f, ydata=%f’%(

event.button, event.x, event.y, event.xdata, event.ydata)

cid = fig.canvas.mpl_connect(’button_press_event’, onclick)

The FigureCanvas method mpl_connect() returns a connection id which is simply an integer. When you
want to disconnect the callback, just call:

fig.canvas.mpl_disconnect(cid)

Here are the events that you can connect to, the class instances that are sent back to you when the event
occurs, and the event descriptions

65

Matplotlib, Release 0.98

Event name Class and description
‘button_press_event’ MouseEvent - mouse button is pressed
‘button_release_event’ MouseEvent - mouse button is released
‘draw_event’ DrawEvent - canvas draw
‘key_press_event’ KeyEvent - key is pressed
‘key_release_event’ KeyEvent - key is released
‘motion_notify_event’ MouseEvent - mouse motion
‘pick_event’ PickEvent - an object in the canvas is selected
‘resize_event’ ResizeEvent - figure canvas is resized
‘scroll_event’ MouseEvent - mouse scroll wheel is rolled

8.2 Event attributes

All matplotlib events inherit from the base class matplotlib.backend_bases.Event, which store the
attributes:

name the event name

canvas the FigureCanvas instance generating the event

guiEvent the GUI event that triggered the matplotlib event

The most common events that are the bread and butter of event handling are key press/release events and
mouse press/release and movement events. The KeyEvent and MouseEvent classes that handle these events
are both derived from the LocationEvent, which has the following attributes

x x position - pixels from left of canvas

y y position - pixels from bottom of canvas

inaxes the Axes instance if mouse is over axes

xdata x coord of mouse in data coords

ydata y coord of mouse in data coords

Let’s look a simple example of a canvas, where a simple line segment is created every time a mouse is
pressed:

class LineBuilder:
def __init__(self, line):

self.line = line
self.xs = list(line.get_xdata())
self.ys = list(line.get_ydata())
self.cid = line.figure.canvas.mpl_connect(’button_press_event’, self)

def __call__(self, event):
print ’click’, event
if event.inaxes!=self.line.axes: return
self.xs.append(event.xdata)
self.ys.append(event.ydata)
self.line.set_data(self.xs, self.ys)

66

Matplotlib, Release 0.98

self.line.figure.canvas.draw()

fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title(’click to build line segments’)
line, = ax.plot([0], [0]) # empty line
linebuilder = LineBuilder(line)

The MouseEvent that we just used is a LocationEvent, so we have access to the data and pixel coordinates
in event.x and event.xdata. In addition to the LocationEvent attributes, it has

button button pressed None, 1, 2, 3, ‘up’, ‘down’ (up and down are used for scroll events)

key the key pressed: None, chr(range(255), ‘shift’, ‘win’, or ‘control’

8.2.1 Draggable rectangle exercise

Write draggable rectangle class that is initialized with a Rectangle instance but will move its x,y location
when dragged. Hint: you will need to store the orginal xy location of the rectangle which is stored as rect.xy
and connect to the press, motion and release mouse events. When the mouse is pressed, check to see if
the click occurs over your rectangle (see matplotlib.patches.Rectangle.contains()) and if it does,
store the rectangle xy and the location of the mouse click in data coords. In the motion event callback,
compute the deltax and deltay of the mouse movement, and add those deltas to the origin of the rectangle
you stored. The redraw the figure. On the button release event, just reset all the button press data you stored
as None.

Here is the solution:

import numpy as np
import matplotlib.pyplot as plt

class DraggableRectangle:
def __init__(self, rect):

self.rect = rect
self.press = None

def connect(self):
’connect to all the events we need’
self.cidpress = self.rect.figure.canvas.mpl_connect(

’button_press_event’, self.on_press)
self.cidrelease = self.rect.figure.canvas.mpl_connect(

’button_release_event’, self.on_release)
self.cidmotion = self.rect.figure.canvas.mpl_connect(

’motion_notify_event’, self.on_motion)

def on_press(self, event):
’on button press we will see if the mouse is over us and store some data’
if event.inaxes != self.rect.axes: return

contains, attrd = self.rect.contains(event)
if not contains: return

67

Matplotlib, Release 0.98

print ’event contains’, self.rect.xy
x0, y0 = self.rect.xy
self.press = x0, y0, event.xdata, event.ydata

def on_motion(self, event):
’on motion we will move the rect if the mouse is over us’
if self.press is None: return
if event.inaxes != self.rect.axes: return
x0, y0, xpress, ypress = self.press
dx = event.xdata - xpress
dy = event.ydata - ypress
#print ’x0=%f, xpress=%f, event.xdata=%f, dx=%f, x0+dx=%f’%(x0, xpress, event.xdata, dx, x0+dx)
self.rect.set_x(x0+dx)
self.rect.set_y(y0+dy)

self.rect.figure.canvas.draw()

def on_release(self, event):
’on release we reset the press data’
self.press = None
self.rect.figure.canvas.draw()

def disconnect(self):
’disconnect all the stored connection ids’
self.rect.figure.canvas.mpl_disconnect(self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self.rect.figure.canvas.mpl_disconnect(self.cidmotion)

fig = plt.figure()
ax = fig.add_subplot(111)
rects = ax.bar(range(10), 20*np.random.rand(10))
drs = []
for rect in rects:

dr = DraggableRectangle(rect)
dr.connect()
drs.append(dr)

plt.show()

Extra credit: use the animation blit techniques discussed in the animations recipe to make the animated
drawing faster and smoother.

Extra credit solution:

draggable rectangle with the animation blit techniques; see
http://www.scipy.org/Cookbook/Matplotlib/Animations
import numpy as np
import matplotlib.pyplot as plt

class DraggableRectangle:
lock = None # only one can be animated at a time
def __init__(self, rect):

68

http://www.scipy.org/Cookbook/Matplotlib/Animations

Matplotlib, Release 0.98

self.rect = rect
self.press = None
self.background = None

def connect(self):
’connect to all the events we need’
self.cidpress = self.rect.figure.canvas.mpl_connect(

’button_press_event’, self.on_press)
self.cidrelease = self.rect.figure.canvas.mpl_connect(

’button_release_event’, self.on_release)
self.cidmotion = self.rect.figure.canvas.mpl_connect(

’motion_notify_event’, self.on_motion)

def on_press(self, event):
’on button press we will see if the mouse is over us and store some data’
if event.inaxes != self.rect.axes: return
if DraggableRectangle.lock is not None: return
contains, attrd = self.rect.contains(event)
if not contains: return
print ’event contains’, self.rect.xy
x0, y0 = self.rect.xy
self.press = x0, y0, event.xdata, event.ydata
DraggableRectangle.lock = self

draw everything but the selected rectangle and store the pixel buffer
canvas = self.rect.figure.canvas
axes = self.rect.axes
self.rect.set_animated(True)
canvas.draw()
self.background = canvas.copy_from_bbox(self.rect.axes.bbox)

now redraw just the rectangle
axes.draw_artist(self.rect)

and blit just the redrawn area
canvas.blit(axes.bbox)

def on_motion(self, event):
’on motion we will move the rect if the mouse is over us’
if DraggableRectangle.lock is not self:

return
if event.inaxes != self.rect.axes: return
x0, y0, xpress, ypress = self.press
dx = event.xdata - xpress
dy = event.ydata - ypress
self.rect.set_x(x0+dx)
self.rect.set_y(y0+dy)

canvas = self.rect.figure.canvas
axes = self.rect.axes
restore the background region
canvas.restore_region(self.background)

69

Matplotlib, Release 0.98

redraw just the current rectangle
axes.draw_artist(self.rect)

blit just the redrawn area
canvas.blit(axes.bbox)

def on_release(self, event):
’on release we reset the press data’
if DraggableRectangle.lock is not self:

return

self.press = None
DraggableRectangle.lock = None

turn off the rect animation property and reset the background
self.rect.set_animated(False)
self.background = None

redraw the full figure
self.rect.figure.canvas.draw()

def disconnect(self):
’disconnect all the stored connection ids’
self.rect.figure.canvas.mpl_disconnect(self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self.rect.figure.canvas.mpl_disconnect(self.cidmotion)

fig = plt.figure()
ax = fig.add_subplot(111)
rects = ax.bar(range(10), 20*np.random.rand(10))
drs = []
for rect in rects:

dr = DraggableRectangle(rect)
dr.connect()
drs.append(dr)

plt.show()

8.3 Object picking

You can enable picking by setting the picker property of an Artist (eg a matplotlib Line2D, Text, Patch,
Polygon, AxesImage, etc...)

There are a variety of meanings of the picker property:

None picking is disabled for this artist (default)

boolean if True then picking will be enabled and the artist will fire a pick event if the mouse
event is over the artist

float if picker is a number it is interpreted as an epsilon tolerance in points and the the artist
will fire off an event if its data is within epsilon of the mouse event. For some artists like

70

Matplotlib, Release 0.98

lines and patch collections, the artist may provide additional data to the pick event that is
generated, eg the indices of the data within epsilon of the pick event.

function if picker is callable, it is a user supplied function which determines whether the
artist is hit by the mouse event. The signature is hit, props = picker(artist,
mouseevent) to determine the hit test. If the mouse event is over the artist, return
hit=True and props is a dictionary of properties you want added to the PickEvent at-
tributes

After you have enabled an artist for picking by setting the picker property, you need to connect to the figure
canvas pick_event to get pick callbacks on mouse press events. Eg:

def pick_handler(event):
mouseevent = event.mouseevent
artist = event.artist
now do something with this...

The PickEvent which is passed to your callback is always fired with two attributes:

mouseevent the mouse event that generate the pick event. The mouse event in turn has at-
tributes like x and y (the coords in display space, eg pixels from left, bottom) and xdata,
ydata (the coords in data space). Additionally, you can get information about which but-
tons were pressed, which keys were pressed, which Axes the mouse is over, etc. See
matplotlib.backend_bases.MouseEvent for details.

artist the Artist that generated the pick event.

Additionally, certain artists like Line2D and PatchCollection may attach additional meta data like the
indices into the data that meet the picker criteria (eg all the points in the line that are within the specified
epsilon tolerance)

8.3.1 Simple picking example

In the example below, we set the line picker property to a scalar, so it represents a tolerance in points (72
points per inch). The onpick callback function will be called when the pick event it within the tolerance
distance from the line, and has the indices of the data vertices that are within the pick distance tolerance.
Our onpick callback function simply prints the data that are under the pick location. Different matplotlib
Artists can attach different data to the PickEvent. For example, Line2D attaches the ind property, which are
the indices into the line data under the pick point. See pick() for details on the PickEvent properties of
the line. Here is the code:

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title(’click on points’)

line, = ax.plot(np.random.rand(100), ’o’, picker=5) # 5 points tolerance

71

Matplotlib, Release 0.98

def onpick(event):
thisline = event.artist
xdata = thisline.get_xdata()
ydata = thisline.get_ydata()
ind = event.ind
print ’onpick points:’, zip(xdata[ind], ydata[ind])

fig.canvas.mpl_connect(’pick_event’, onpick)

plt.show()

8.3.2 Picking exercise

Create a data set of 100 arrays of 1000 Gaussian random numbers and compute the sample mean and
standard deviation of each of them (hint: numpy arrays have a mean and std method) and make a xy marker
plot of the 100 means vs the 100 standard deviations. Connect the line created by the plot command to the
pick event, and plot the original time series of the data that generated the clicked on points. If more than one
point is within the tolerance of the clicked on point, you can use multiple subplots to plot the multiple time
series.

Exercise solution:

"""
compute the mean and stddev of 100 data sets and plot mean vs stddev.
When you click on one of the mu, sigma points, plot the raw data from
the dataset that generated the mean and stddev
"""
import numpy as np
import matplotlib.pyplot as plt

X = np.random.rand(100, 1000)
xs = np.mean(X, axis=1)
ys = np.std(X, axis=1)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title(’click on point to plot time series’)
line, = ax.plot(xs, ys, ’o’, picker=5) # 5 points tolerance

def onpick(event):

if event.artist!=line: return True

N = len(event.ind)
if not N: return True

figi = plt.figure()
for subplotnum, dataind in enumerate(event.ind):

ax = figi.add_subplot(N,1,subplotnum+1)

72

Matplotlib, Release 0.98

ax.plot(X[dataind])
ax.text(0.05, 0.9, ’mu=%1.3f\nsigma=%1.3f’%(xs[dataind], ys[dataind]),

transform=ax.transAxes, va=’top’)
ax.set_ylim(-0.5, 1.5)

figi.show()
return True

fig.canvas.mpl_connect(’pick_event’, onpick)

plt.show()

73

74

Part II

The Matplotlib FAQ

75

CHAPTER

NINE

Installation

Contents

• Installation

– How do I report a compilation problem?

– matplotlib compiled fine, but I can’t get anything to plot

– How do I cleanly rebuild and reinstall everything?

* Easy Install

* Windows installer

* Source install

– Backends

* What is a backend?

* How do I compile matplotlib with PyGTK-2.4?

– OS-X questions

* How can I easy_install my egg?

– Windows questions

* Where can I get binary installers for windows?

9.1 How do I report a compilation problem?

See How do I report a problem?.

9.2 matplotlib compiled fine, but I can’t get anything to plot

The first thing to try is a clean install and see if that helps. If not, the best way to test your install is
by running a script, rather than working interactively from a python shell or an integrated development
environment such as IDLE which add additional complexities. Open up a UNIX shell or a DOS command
prompt and cd into a directory containing a minimal example in a file. Something like simple_plot.py,

77

Matplotlib, Release 0.98

or for example:

from pylab import *
plot([1,2,3])
show()

and run it with:

python simple_plot.py --verbose-helpful

This will give you additional information about which backends matplotlib is loading, version information,
and more. At this point you might want to make sure you understand matplotlib’s configuration process,
governed by the matplotlibrc configuration file which contains instructions within and the concept of the
matplotlib backend.

If you are still having trouble, see How do I report a problem?.

9.3 How do I cleanly rebuild and reinstall everything?

The steps depend on your platform and installation method.

9.3.1 Easy Install

1. Delete the caches from your .matplotlib configuration directory.

2. Run:

easy_install -m PackageName

3. Delete any .egg files or directories from your installation directory.

9.3.2 Windows installer

1. Delete the caches from your .matplotlib configuration directory.

2. Use Start→ Control Panel to start the Add and Remove Software utility.

9.3.3 Source install

Unfortunately:

python setup.py clean

does not properly clean the build directory, and does nothing to the install directory. To cleanly rebuild:

1. Delete the caches from your .matplotlib configuration directory.

78

Matplotlib, Release 0.98

2. Delete the build directory in the source tree

3. Delete any matplotlib directories or eggs from your installation directory <locating-matplotlib-
install>

9.4 Backends

9.4.1 What is a backend?

A lot of documentation on the website and in the mailing lists refers to the “backend” and many new
users are confused by this term. matplotlib targets many different use cases and output formats. Some
people use matplotlib interactively from the python shell and have plotting windows pop up when they type
commands. Some people embed matplotlib into graphical user interfaces like wxpython or pygtk to build
rich applications. Others use matplotlib in batch scripts to generate postscript images from some numerical
simulations, and still others in web application servers to dynamically serve up graphs.

To support all of these use cases, matplotlib can target different outputs, and each of these capabililities is
called a backend (the “frontend” is the user facing code, ie the plotting code, whereas the “backend” does
all the dirty work behind the scenes to make the figure. There are two types of backends: user interface
backends (for use in pygtk, wxpython, tkinter, qt or fltk) and hardcopy backends to make image files (PNG,
SVG, PDF, PS).

There are a two primary ways to configure your backend. One is to set the backend parameter in you
matplotlibrc file (see Customizing matplotlib):

backend : WXAgg # use wxpython with antigrain (agg) rendering

The other is to use the matplotlib use() directive:

import matplotlib
matplotlib.use(’PS’) # generate postscript output by default

If you use the use directive, this must be done before importing matplotlib.pyplot or
matplotlib.pylab.

If you are unsure what to do, and just want to get cranking, just set your backend to TkAgg. This will do
the right thing for 95% of the users. It gives you the option of running your scripts in batch or working
interactively from the python shell, with the least amount of hassles, and is smart enough to do the right
thing when you ask for postscript, or pdf, or other image formats.

If however, you want to write graphical user interfaces, or a web application server (How do I use matplotlib
in a web application server?), or need a better understanding of what is going on, read on. To make things
a little more customizable for graphical user interfaces, matplotlib separates the concept of the renderer (the
thing that actually does the drawing) from the canvas (the place where the drawing goes). The canonical
renderer for user interfaces is Agg which uses the antigrain C++ library to make a raster (pixel) image of
the figure. All of the user interfaces can be used with agg rendering, eg WXAgg, GTKAgg, QTAgg, TkAgg. In
addition, some of the user interfaces support other rendering engines. For example, with GTK, you can also
select GDK rendering (backend GTK) or Cairo rendering (backend GTKCairo).

79

http://antigrain.html

Matplotlib, Release 0.98

For the rendering engines, one can also distinguish between vector or raster renderers. Vector graphics
languages issue drawing commands like “draw a line from this point to this point” and hence are scale free,
and raster backends generate a pixel represenation of the line whose accuracy depends on a DPI setting.

Here is a summary of the matplotlib renderers (there is an eponymous backed for each):

Renderer Filetypes Description
AGG png raster graphics – high quality images using the Anti-Grain Geometry engine
PS ps eps vector graphics – Postscript output
PDF pdf vector graphics – Portable Document Format
SVG svg vector graphics – Scalable Vector Graphics
Cairo png ps pdf svg ... vector graphics – Cairo graphics
GDK png jpg tiff ... raster graphics – the Gimp Drawing Kit

And here are the user interfaces and renderer combinations supported:

Backend Description
GTKAgg Agg rendering to a GTK canvas (requires PyGTK)
GTK GDK rendering to a GTK canvas (not recommended) (requires PyGTK)
GTKCairo Cairo rendering to a GTK Canvas (requires PyGTK)
WXAgg Agg rendering to to a wxWidgets canvas (requires wxPython)
WX Native wxWidgets drawing to a wxWidgets Canvas (not recommended) (requires wxPython)
TkAgg Agg rendering to a Tk canvas (requires TkInter)
QtAgg Agg rendering to a Qt canvas (requires PyQt)
Qt4Agg Agg rendering to a Qt4 canvas (requires PyQt4)
FLTKAgg Agg rendering to a FLTK canvas (requires pyFLTK)

9.4.2 How do I compile matplotlib with PyGTK-2.4?

There is a bug in PyGTK-2.4. You need to edit pygobject.h to add the G_BEGIN_DECLS and G_END_DECLS
macros, and rename typename parameter to typename_:

- const char *typename,
+ const char *typename_,

9.5 OS-X questions

9.5.1 How can I easy_install my egg?

I downloaded the egg for 0.98 from the matplotlib webpages, and I am trying to easy_install it, but I am
getting an error:

> easy_install ./matplotlib-0.98.0-py2.5-macosx-10.3-fat.egg
Processing matplotlib-0.98.0-py2.5-macosx-10.3-fat.egg
removing ’/Library/Python/2.5/site-packages/matplotlib-0.98.0-py2.5-
...snip...
Reading http://matplotlib.sourceforge.net
Reading http://cheeseshop.python.org/pypi/matplotlib/0.91.3

80

http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Raster_graphics
http://www.antigrain.com/
http://en.wikipedia.org/wiki/PostScript
http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Cairo_(graphics)
http://en.wikipedia.org/wiki/GDK
http://www.pygtk.org
http://www.pygtk.org
http://www.pygtk.org
http://www.wxpython.org/
http://www.wxpython.org/
http://wiki.python.org/moin/TkInter
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://pyfltk.sourceforge.net
http://bugzilla.gnome.org/show_bug.cgi?id=155304

Matplotlib, Release 0.98

No local packages or download links found for matplotlib==0.98.0
error: Could not find suitable distribution for
Requirement.parse(’matplotlib==0.98.0’)

If you rename matplotlib-0.98.0-py2.5-macosx-10.3-fat.egg to
matplotlib-0.98.0-py2.5.egg, easy_install will install it from the disk. Many Mac OS X
eggs with cruft at the end of the filename, which prevents their installation through easy_install. Renaming
is all it takes to install them; still, it’s annoying.

9.6 Windows questions

9.6.1 Where can I get binary installers for windows?

If you have already installed python, you can use one of the matplotlib binary installers for windows – you
can get these from the sourceforge download site. Choose the files that match your version of python (eg
py2.5 if you installed Python 2.5) which have the exe extension. If you haven’t already installed python,
you can get the official version from the python web site. There are also two packaged distributions of
python that come preloaded with matplotlib and many other tools like ipython, numpy, scipy, vtk and user
interface toolkits. These packages are quite large because they come with so much, but you get everything
with a single click installer.

• the enthought python distribution EPD

• python (x, y)

81

http://sourceforge.net/project/platformdownload.php?group_id=80706
http://python.org/download/
http://www.enthought.com/products/epd.php
http://www.pythonxy.com/foreword.php

82

CHAPTER

TEN

Troubleshooting

Contents

• Troubleshooting

– What is my matplotlib version?

– Where is matplotlib installed?

– Where is my .matplotlib directory?

– How do I report a problem?

– I am having trouble with a recent svn update, what should I do?

10.1 What is my matplotlib version?

To find out your matplotlib version number, import it and print the __version__ attribute:

>>> import matplotlib
>>> matplotlib.__version__
’0.98.0’

10.2 Where is matplotlib installed?

You can find what directory matplotlib is installed in by importing it and printing the __file__ attribute:

>>> import matplotlib
>>> matplotlib.__file__
’/home/jdhunter/dev/lib64/python2.5/site-packages/matplotlib/__init__.pyc’

83

Matplotlib, Release 0.98

10.3 Where is my .matplotlib directory?

Each user has a .matplotlib/ directory which may contain a matplotlibrc file and vari-
ous caches to improve matplotlib’s performance. To locate your .matplotlib/ directory, use
matplotlib.get_configdir():

>>> import matplotlib as mpl
>>> mpl.get_configdir()
’/home/darren/.matplotlib’

On unix like systems, this directory is generally located in your HOME directory. On windows, it is in your
documents and settings directory by default:

>>> import matplotlib
>>> mpl.get_configdir()

’C:\\Documents and Settings\\jdhunter\\.matplotlib’

If you would like to use a different configuration directory, you can do so by specifying the location in your
MPLCONFIGDIR environment variable – see Setting environment variables in Linux and OS-X.

10.4 How do I report a problem?

If you are having a problem with matplotlib, search the mailing lists first: There’s a good chance someone
else has already run into your problem.

If not, please provide the following information in your e-mail to the mailing list:

• your operating system; on Linux/UNIX post the output of uname -a

• matplotlib version:

python -c ‘import matplotlib; print matplotlib.__version__‘

• where you obtained matplotlib (e.g. your Linux distribution’s packages or the matplotlib Sourceforge
site, or the enthought python distribution EPD.

• any customizations to your matplotlibrc file (see Customizing matplotlib).

• if the problem is reproducible, please try to provide a minimal, standalone Python script that demon-
strates the problem. This is the critical step. If you can’t post a piece of code that we can run and
reproduce your error, the chances of getting help are significantly diminished. Very often, the mere
act of trying to minimize your code to the smallest bit that produces the error will help you find a bug
in your code that is causing the problem.

• you can get very helpful debugging output from matlotlib by running your script with a
verbose-helpful or �verbose-debug flags and posting the verbose output the lists:

> python simple_plot.py --verbose-helpful > output.txt

84

http://lists.sourceforge.net/mailman/listinfo/matplotlib-users
http://www.enthought.com/products/epd.php

Matplotlib, Release 0.98

If you compiled matplotlib yourself, please also provide

• any changes you have made to setup.py or setupext.py

• the output of:

rm -rf build
python setup.py build

The beginning of the build output contains lots of details about your platform that are useful for the
matplotlib developers to diagnose your problem.

• your compiler version – eg, gcc �version

Including this information in your first e-mail to the mailing list will save a lot of time.

You will likely get a faster response writing to the mailing list than filing a bug in the bug tracker. Most
developers check the bug tracker only periodically. If your problem has been determined to be a bug and
can not be quickly solved, you may be asked to file a bug in the tracker so the issue doesn’t get lost.

10.5 I am having trouble with a recent svn update, what should I do?

First make sure you have a clean build and install (see How do I cleanly rebuild and reinstall everything?),
get the latest svn update, install it and run a simple test script in debug mode:

rm -rf build
rm -rf /path/to/site-packages/matplotlib*
svn up
python setup.py install > build.out
python examples/pylab_examples/simple_plot.py --verbose-debug > run.out

and post build.out and run.out to the matplotlib-devel mailing list (please do not post svn problems to
the users list).

Of course, you will want to clearly describe your problem, what you are expecting and what you are getting,
but often a clean build and install will help. See also How do I report a problem?.

85

http://lists.sourceforge.net/mailman/listinfo/matplotlib-devel
http://lists.sourceforge.net/mailman/listinfo/matplotlib-users

86

CHAPTER

ELEVEN

Howto

Contents

• Howto

– How do I find all the objects in my figure of a certain type?

– How do I save transparent figures?

– How do I move the edge of my axes area over to make room for my tick labels?

– How do I automatically make room for my tick labels?

– How do I configure the tick linewidths?

– How do I align my ylabels across multiple subplots?

– How do I use matplotlib in a web application server?

* How do I use matplotlib with apache?

* How do I use matplotlib with django?

* How do I use matplotlib with zope?

– How do I skip dates where there is no data?

11.1 How do I find all the objects in my figure of a certain type?

Every matplotlib artist (see Artist tutorial) has a method called findobj() that can be used to recursively
search the artist for any artists it may contain that meet some criteria (eg match all Line2D instances or
match some arbitrary filter function). For example, the following snippet finds every object in the figure
which has a set_color property and makes the object blue:

def myfunc(x):
return hasattr(x, ’set_color’)

for o in fig.findobj(myfunc):
o.set_color(’blue’)

You can also filter on class instances:

87

Matplotlib, Release 0.98

import matplotlib.text as text
for o in fig.findobj(text.Text):

o.set_fontstyle(’italic’)

11.2 How do I save transparent figures?

The savefig() command has a keyword argument transparent which, if True, will make the figure and
axes backgrounds transparent when saving, but will not affect the displayed image on the screen. If you
need finer grained control, eg you do not want full transparency or you to affect the screen displayed version
as well, you can set the alpha properties directly. The figure has a matplotlib.patches.Rectangle
instance called patch and the axes has a Rectangle instance called patch. You can set any property on them
directly (facecolor, edgecolor, linewidth, linestyle, alpha). Eg:

fig = plt.figure()
fig.patch.set_alpha(0.5)
ax = fig.add_subplot(111)
ax.patch.set_alpha(0.5)

If you need all the figure elements to be transparent, there is currently no global alpha setting, but you can
set the alpha channel on individual elements, eg:

ax.plot(x, y, alpha=0.5)
ax.set_xlabel(’volts’, alpha=0.5)

11.3 How do I move the edge of my axes area over to make room for my
tick labels?

For subplots, you can control the default spacing on the left, right, bottom, and top as
well as the horizontal and vertical spacing between multiple rows and columns using the
matplotlib.figure.Figure.subplots_adjust() method (in pyplot it is subplots_adjust()). For
example, to move the bottom of the subplots up to make room for some rotated x tick labels:

fig = plt.figure()
fig.subplots_adjust(bottom=0.2)
ax = fig.add_subplot(111)

You can control the defaults for these parameters in your matplotlibrc file; see Customizing matplotlib.
For example, to make the above setting permanent, you would set:

figure.subplot.bottom : 0.2 # the bottom of the subplots of the figure

The other parameters you can configure are, with their defaults

left = 0.125 the left side of the subplots of the figure

88

Matplotlib, Release 0.98

right = 0.9 the right side of the subplots of the figure

bottom = 0.1 the bottom of the subplots of the figure

top = 0.9 the top of the subplots of the figure

wspace = 0.2 the amount of width reserved for blank space between subplots

hspace = 0.2 the amount of height reserved for white space between subplots

If you want additional control, you can create an Axes using the axes() command (or equivalently the figure
matplotlib.figure.Figure.add_axes() method), which allows you to specify the location explicitly:

ax = fig.add_axes([left, bottom, width, height])

where all values are in fractional (0 to 1) coordinates. See axes_demo.py for an example of placing axes
manually.

11.4 How do I automatically make room for my tick labels?

In most use cases, it is enought to simpy change the subplots adjust parameters as described in How do I
move the edge of my axes area over to make room for my tick labels?. But in some cases, you don’t know
ahead of time what your tick labels will be, or how large they will be (data and labels outside your control
may be being fed into your graphing application), and you may need to automatically adjust your subplot
parameters based on the size of the tick labels. Any matplotlib.text.Text instance can report its extent
in window coordinates (a negative x coordinate is outside the window), but there is a rub.

The matplotlib.backend_bases.RendererBase instance, which is used to calculate the text size, is
not known until the figure is drawn (matplotlib.figure.Figure.draw()). After the window is drawn
and the text instance knows its renderer, you can call matplotlib.text.Text.get_window_extent‘().
One way to solve this chicken and egg problem is to wait until the figure is draw by con-
necting (matplotlib.backend_bases.FigureCanvasBase.mpl_connect()) to the “on_draw” signal
(DrawEvent) and get the window extent there, and then do something with it, eg move the left of the canvas
over; see Event handling and picking.

Here is that gets a bounding box in relative figure coordinates (0..1) of each of the labels and uses it to move
the left of the subplots over so that the tick labels fit in the figure

import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(range(10))
ax.set_yticks((2,5,7))
labels = ax.set_yticklabels((’really, really, really’, ’long’, ’labels’))

def on_draw(event):
bboxes = []
for label in labels:

bbox = label.get_window_extent()

89

http://matplotlib.sf.net/examples/axes_demo.py

Matplotlib, Release 0.98

the figure transform goes from relative coords->pixels and we
want the inverse of that
bboxi = bbox.inverse_transformed(fig.transFigure)
bboxes.append(bboxi)

this is the bbox that bounds all the bboxes, again in relative
figure coords
bbox = mtransforms.Bbox.union(bboxes)
if fig.subplotpars.left < bbox.width:

we need to move it over
fig.subplots_adjust(left=1.1*bbox.width) # pad a little
fig.canvas.draw()

return False

fig.canvas.mpl_connect(’draw_event’, on_draw)

plt.show()

0 1 2 3 4 5 6 7 8 9

really, really, really

long

labels

90

Matplotlib, Release 0.98

11.5 How do I configure the tick linewidths?

In matplotlib, the ticks are markers. All Line2D objects support a line (solid, dashed, etc) and a marker
(circle, square, tick). The tick linewidth is controlled by the “markeredgewidth” property:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(range(10))

for line in ax.get_xticklines() + ax.get_yticklines():
line.set_markersize(10)

plt.show()

The other properties that control the tick marker, and all markers, are markerfacecolor,
markeredgecolor, markeredgewidth, markersize. For more information on configuring ticks, see
Axis containers and Tick containers.

11.6 How do I align my ylabels across multiple subplots?

If you have multiple subplots over one another, and the y data have different scales, you can often get ylabels
that do not align vertically across the multiple subplots, which can be unattractive. By default, matplotlib
positions the x location of the ylabel so that it does not overlap any of the y ticks. You can override this
default behavior by specifying the coordinates of the label. The example below shows the default behavior
in the left subplots, and the manual setting in the right subplots.

import numpy as np
import matplotlib.pyplot as plt

box = dict(facecolor=’yellow’, pad=5, alpha=0.2)

fig = plt.figure()
fig.subplots_adjust(left=0.2, wspace=0.6)

ax1 = fig.add_subplot(221)
ax1.plot(2000*np.random.rand(10))
ax1.set_title(’ylabels not aligned’)
ax1.set_ylabel(’misaligned 1’, bbox=box)
ax1.set_ylim(0, 2000)
ax3 = fig.add_subplot(223)
ax3.set_ylabel(’misaligned 2’,bbox=box)
ax3.plot(np.random.rand(10))

labelx = -0.3 # axes coords

ax2 = fig.add_subplot(222)
ax2.set_title(’ylabels aligned’)

91

Matplotlib, Release 0.98

ax2.plot(2000*np.random.rand(10))
ax2.set_ylabel(’aligned 1’, bbox=box)
ax2.yaxis.set_label_coords(labelx, 0.5)
ax2.set_ylim(0, 2000)

ax4 = fig.add_subplot(224)
ax4.plot(np.random.rand(10))
ax4.set_ylabel(’aligned 2’, bbox=box)
ax4.yaxis.set_label_coords(labelx, 0.5)

plt.show()

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

m
is

a
lig

n
e
d
 1

ylabels not aligned

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

m
is

a
lig

n
e
d
 2

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

a
lig

n
e
d
 1

ylabels aligned

0 1 2 3 4 5 6 7 8 9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

a
lig

n
e
d
 2

11.7 How do I use matplotlib in a web application server?

Many users report initial problems trying to use maptlotlib in web application servers, because by default
matplotlib ships configured to work with a graphical user interface which may require an X11 connection.
Since many barebones application servers do not have X11 enabled, you may get errors if you don’t config-
ure matplotlib for use in these environments. Most importantly, you need to decide what kinds of images
you want to generate (PNG, PDF, SVG) and configure the appropriate default backend. For 99% of users,
this will be the Agg backend, which uses the C++ antigrain rendering engine to make nice PNGs. The Agg

92

http://antigrain.com

Matplotlib, Release 0.98

backend is also configured to recognize requests to generate other output formats (PDF, PS, EPS, SVG).
The easiest way to configure matplotlib to use Agg is to call:

do this before importing pylab or pyplot
import matplotlib
matplotlib.use(’Agg’)
import matplotlib.pyplot as plt

For more on configuring your backend, see What is a backend?.

Alternatively, you can avoid pylab/pyplot altogeher, which will give you a little more control, by calling the
API directly as shown in agg_oo.py .

You can either generate hardcopy on the filesystem by calling savefig:

do this before importing pylab or pyplot
import matplotlib
matplotlib.use(’Agg’)
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot([1,2,3])
fig.savefig(’test.png’)

or by saving to a file handle:

import sys
fig.savefig(sys.stdout)

11.7.1 How do I use matplotlib with apache?

TODO

11.7.2 How do I use matplotlib with django?

TODO

11.7.3 How do I use matplotlib with zope?

TODO

11.8 How do I skip dates where there is no data?

When plotting time series, eg financial time series, one often wants to leave out days on which there is no
data, eg weekends. By passing in dates on the x-xaxis, you get large horizontal gaps on periods when there
is not data. The solution is to pass in some proxy x-data, eg evenly sampled indicies, and then use a custom

93

http://matplotlib.sf.net/examples/api/agg_oo.py

Matplotlib, Release 0.98

formatter to format these as dates. The example below shows how to use an ‘index formatter’ to achieve the
desired plot:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import matplotlib.ticker as ticker

r = mlab.csv2rec(’../data/aapl.csv’)
r.sort()
r = r[-30:] # get the last 30 days

N = len(r)
ind = np.arange(N) # the evenly spaced plot indices

def format_date(x, pos=None):
thisind = np.clip(int(x+0.5), 0, N-1)
return r.date[thisind].strftime(’%Y-%m-%d’)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(ind, r.adj_close, ’o-’)
ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))
fig.autofmt_xdate()

plt.show()

94

CHAPTER

TWELVE

Environment Variables

Contents

• Environment Variables

– Setting environment variables in Linux and OS-X

* BASH/KSH

* CSH/TCSH

– Setting environment variables in windows

HOME
The user’s home directory. On linux, ~ is shorthand for HOME.

PATH
The list of directories searched to find executable programs

PYTHONPATH
The list of directories that is added to Python’s standard search list when importing packages and
modules

MPLCONFIGDIR
This is the directory used to store user customizations to matplotlib, as well as some caches to improve
performance. If MPLCONFIGDIR is not defined, HOME/.matplotlib is used by default.

12.1 Setting environment variables in Linux and OS-X

To list the current value of PYTHONPATH, which may be empty, try:

echo $PYTHONPATH

The procedure for setting environment variables in depends on what your default shell is. BASH seems to
be the most common, but CSH is also common. You should be able to determine which by running at the
command prompt:

95

Matplotlib, Release 0.98

echo $SHELL

12.1.1 BASH/KSH

To create a new environment variable:

export PYTHONPATH=~/Python

To prepend to an existing environment variable:

export PATH=~/bin:${PATH}

The search order may be important to you, do you want ~/bin to be searched first or last? To append to an
existing environment variable:

export PATH=${PATH}:~/bin

To make your changes available in the future, add the commands to your ~/.bashrc file.

12.1.2 CSH/TCSH

To create a new environment variable:

setenv PYTHONPATH ~/Python

To prepend to an existing environment variable:

setenv PATH ~/bin:${PATH}

The search order may be important to you, do you want ~/bin to be searched first or last? To append to an
existing environment variable:

setenv PATH ${PATH}:~/bin

To make your changes available in the future, add the commands to your ~/.cshrc file.

12.2 Setting environment variables in windows

Open the Control Panel (Start→ Control Panel), start the System program. Click the Advanced tab and
select the Environment Variables button. You can edit or add to the User Variables.

96

Part III

The Matplotlib Developers’s Guide

97

CHAPTER

THIRTEEN

Coding guide

13.1 Version control

13.1.1 svn checkouts

Checking out everything in the trunk (matplotlib and toolkits):

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk \
matplotlib --username=youruser --password=yourpass

Checking out the main source:

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk/\
matplotlib mpl --username=youruser --password=yourpass

Branch checkouts, eg the maintenance branch:

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/branches/\
v0_91_maint mpl91 --username=youruser --password=yourpass

13.1.2 Committing changes

When committing changes to matplotlib, there are a few things to bear in mind.

• if your changes are non-trivial, please make an entry in the CHANGELOG

• if you change the API, please document it in API_CHANGES, and consider posting to matplotlib-devel

• Are your changes python2.4 compatible? We still support 2.4, so avoid features new to 2.5

• Can you pass examples/tests/backend_driver.py? This is our poor man’s unit test.

• If you have altered extension code, do you pass unit/memleak_hawaii.py?

• if you have added new files or directories, or reorganized existing ones, are the new files included in
the match patterns in MANIFEST.in. This file determines what goes into the source distribution of the
mpl build.

99

http://lists.sourceforge.net/mailman/listinfo/matplotlib-devel

Matplotlib, Release 0.98

• Keep the maintenance branch and trunk in sync where it makes sense. If there is a bug on both that
needs fixing, use svnmerge.py to keep them in sync. The basic procedure is:

– install svnmerge.py in your PATH:

> wget http://svn.collab.net/repos/svn/trunk/contrib/client-side/\
svnmerge/svnmerge.py

– get a svn copy of the maintenance branch and the trunk (see above)

– Michael advises making the change on the branch and committing it. Make sure you svn upped
on the trunk and have no local modifications, and then from the svn trunk do:

> svnmerge.py merge

If you wish to merge only specific revisions (in an unusual situation), do:

> svnmerge.py merge -rNNN1-NNN2

where the NNN are the revision numbers. Ranges are also acceptable.
The merge may have found some conflicts (code that must be manually resolved). Correct those
conflicts, build matplotlib and test your choices. If you have resolved any conflicts, you can let
svn clean up the conflict files for you:

> svn -R resolved .

svnmerge.py automatically creates a file containing the commit messages, so you are ready to
make the commit:

> svn commit -F svnmerge-commit-message.txt

13.2 Style guide

13.2.1 Importing and name spaces

For numpy, use:

import numpy as np
a = np.array([1,2,3])

For masked arrays, use:

import numpy.ma as ma

For matplotlib main module, use:

import matplotlib as mpl
mpl.rcParams[’xtick.major.pad’] = 6

For matplotlib modules (or any other modules), use:

100

http://www.orcaware.com/svn/wiki/Svnmerge.py
http://www.numpy.org

Matplotlib, Release 0.98

import matplotlib.cbook as cbook

if cbook.iterable(z):
pass

We prefer this over the equivalent from matplotlib import cbook because the latter is ambiguous as
to whether cbook is a module or a function. The former makes it explicit that you are importing a module
or package. There are some modules with names that match commonly used local variable names, eg
matplotlib.lines or matplotlib.colors. To avoid the clash, use the prefix ‘m’ with the import
some.thing as mthing syntax, eg:

import matplotlib.lines as mlines
import matplotlib.transforms as transforms # OK
import matplotlib.transforms as mtransforms # OK, if you want to disambiguate
import matplotlib.transforms as mtrans # OK, if you want to abbreviate

13.2.2 Naming, spacing, and formatting conventions

In general, we want to hew as closely as possible to the standard coding guidelines for python written by
Guido in PEP 0008, though we do not do this throughout.

• functions and class methods: lower or lower_underscore_separated

• attributes and variables: lower or lowerUpper

• classes: Upper or MixedCase

Prefer the shortest names that are still readable.

Configure your editor to use spaces, not hard tabs. The standard indentation unit is always four spaces; if
there is a file with tabs or a different number of spaces it is a bug – please fix it. To detect and fix these and
other whitespace errors (see below), use reindent.py as a command-line script. Unless you are sure your
editor always does the right thing, please use reindent.py before checking changes into svn.

Keep docstrings uniformly indented as in the example below, with nothing to the left of the triple quotes.
The matplotlib.cbook.dedent() function is needed to remove excess indentation only if something
will be interpolated into the docstring, again as in the example below.

Limit line length to 80 characters. If a logical line needs to be longer, use parentheses to break it; do not use
an escaped newline. It may be preferable to use a temporary variable to replace a single long line with two
shorter and more readable lines.

Please do not commit lines with trailing white space, as it causes noise in svn diffs. Tell your editor to strip
whitespace from line ends when saving a file. If you are an emacs user, the following in your .emacs will
cause emacs to strip trailing white space upon saving for python, C and C++:

; and similarly for c++-mode-hook and c-mode-hook
(add-hook ’python-mode-hook

(lambda ()
(add-hook ’write-file-functions ’delete-trailing-whitespace)))

101

http://www.python.org/dev/peps/pep-0008
http://svn.python.org/projects/doctools/trunk/utils/reindent.py

Matplotlib, Release 0.98

for older versions of emacs (emacs<22) you need to do:

(add-hook ’python-mode-hook
(lambda ()
(add-hook ’local-write-file-hooks ’delete-trailing-whitespace)))

13.2.3 Keyword argument processing

Matplotlib makes extensive use of **kwargs for pass-through customizations from one function to another.
A typical example is in matplotlib.pylab.text(). The definition of the pylab text function is a simple
pass-through to matplotlib.axes.Axes.text():

in pylab.py
def text(*args, **kwargs):

ret = gca().text(*args, **kwargs)
draw_if_interactive()
return ret

text() in simplified form looks like this, i.e., it just passes all args and kwargs on to
matplotlib.text.Text.__init__():

in axes.py
def text(self, x, y, s, fontdict=None, withdash=False, **kwargs):

t = Text(x=x, y=y, text=s, **kwargs)

and __init__() (again with liberties for illustration) just passes them on to the
matplotlib.artist.Artist.update() method:

in text.py
def __init__(self, x=0, y=0, text=’’, **kwargs):

Artist.__init__(self)
self.update(kwargs)

update does the work looking for methods named like set_property if property is a keyword argument.
I.e., no one looks at the keywords, they just get passed through the API to the artist constructor which looks
for suitably named methods and calls them with the value.

As a general rule, the use of **kwargs should be reserved for pass-through keyword arguments, as in the
example above. If all the keyword args are to be used in the function, and not passed on, use the key/value
keyword args in the function definition rather than the **kwargs idiom.

In some cases, you may want to consume some keys in the local function, and let others pass through. You
can pop the ones to be used locally and pass on the rest. For example, in plot(), scalex and scaley are
local arguments and the rest are passed on as Line2D() keyword arguments:

in axes.py
def plot(self, *args, **kwargs):

scalex = kwargs.pop(’scalex’, True)
scaley = kwargs.pop(’scaley’, True)
if not self._hold: self.cla()

102

Matplotlib, Release 0.98

lines = []
for line in self._get_lines(*args, **kwargs):

self.add_line(line)
lines.append(line)

Note: there is a use case when kwargs are meant to be used locally in the function (not passed on), but
you still need the **kwargs idiom. That is when you want to use *args to allow variable numbers of non-
keyword args. In this case, python will not allow you to use named keyword args after the *args usage, so
you will be forced to use **kwargs. An example is matplotlib.contour.ContourLabeler.clabel():

in contour.py
def clabel(self, *args, **kwargs):

fontsize = kwargs.get(’fontsize’, None)
inline = kwargs.get(’inline’, 1)
self.fmt = kwargs.get(’fmt’, ’%1.3f’)
colors = kwargs.get(’colors’, None)
if len(args) == 0:

levels = self.levels
indices = range(len(self.levels))

elif len(args) == 1:
...etc...

13.3 Documentation and docstrings

Matplotlib uses artist introspection of docstrings to support properties. All properties that you want to
support through setp and getp should have a set_property and get_property method in the Artist
class. Yes, this is not ideal given python properties or enthought traits, but it is a historical legacy for now.
The setter methods use the docstring with the ACCEPTS token to indicate the type of argument the method
accepts. Eg. in matplotlib.lines.Line2D:

in lines.py
def set_linestyle(self, linestyle):

"""
Set the linestyle of the line

ACCEPTS: [’-’ | ’--’ | ’-.’ | ’:’ | ’steps’ | ’None’ | ’ ’ | ’’]
"""

Since matplotlib uses a lot of pass-through kwargs, eg. in every function that creates a line (plot(),
semilogx(), semilogy(), etc...), it can be difficult for the new user to know which kwargs are supported.
Matplotlib uses a docstring interpolation scheme to support documentation of every function that takes a
**kwargs. The requirements are:

1. single point of configuration so changes to the properties don’t require multiple docstring edits.

2. as automated as possible so that as properties change, the docs are updated automagically.

The functions matplotlib.artist.kwdocd and matplotlib.artist.kwdoc() to facilitate this. They
combine python string interpolation in the docstring with the matplotlib artist introspection facility that

103

Matplotlib, Release 0.98

underlies setp and getp. The kwdocd is a single dictionary that maps class name to a docstring of kwargs.
Here is an example from matplotlib.lines:

in lines.py
artist.kwdocd[’Line2D’] = artist.kwdoc(Line2D)

Then in any function accepting Line2D pass-through kwargs, eg. matplotlib.axes.Axes.plot():

in axes.py
def plot(self, *args, **kwargs):

"""
Some stuff omitted

The kwargs are Line2D properties:
%(Line2D)s

kwargs scalex and scaley, if defined, are passed on
to autoscale_view to determine whether the x and y axes are
autoscaled; default True. See Axes.autoscale_view for more
information
"""
pass

plot.__doc__ = cbook.dedent(plot.__doc__) % artist.kwdocd

Note there is a problem for Artist __init__ methods, eg. matplotlib.patches.Patch.__init__(),
which supports Patch kwargs, since the artist inspector cannot work until the class is fully defined
and we can’t modify the Patch.__init__.__doc__ docstring outside the class definition. There are
some some manual hacks in this case, violating the “single entry point” requirement above – see the
artist.kwdocd[’Patch’] setting in matplotlib.patches.

13.4 Licenses

Matplotlib only uses BSD compatible code. If you bring in code from another project make sure it has a
PSF, BSD, MIT or compatible license (see the Open Source Initiative licenses page for details on individual
licenses). If it doesn’t, you may consider contacting the author and asking them to relicense it. GPL and
LGPL code are not acceptable in the main code base, though we are considering an alternative way of
distributing L/GPL code through an separate channel, possibly a toolkit. If you include code, make sure you
include a copy of that code’s license in the license directory if the code’s license requires you to distribute
the license with it. Non-BSD compatible licenses are acceptable in matplotlib toolkits (eg basemap), but
make sure you clearly state the licenses you are using.

13.4.1 Why BSD compatible?

The two dominant license variants in the wild are GPL-style and BSD-style. There are countless other
licenses that place specific restrictions on code reuse, but there is an important different to be considered
in the GPL and BSD variants. The best known and perhaps most widely used license is the GPL, which
in addition to granting you full rights to the source code including redistribution, carries with it an extra
obligation. If you use GPL code in your own code, or link with it, your product must be released under a

104

http://www.opensource.org/licenses

Matplotlib, Release 0.98

GPL compatible license. I.e., you are required to give the source code to other people and give them the
right to redistribute it as well. Many of the most famous and widely used open source projects are released
under the GPL, including sagemath, linux, gcc and emacs.

The second major class are the BSD-style licenses (which includes MIT and the python PSF license). These
basically allow you to do whatever you want with the code: ignore it, include it in your own open source
project, include it in your proprietary product, sell it, whatever. python itself is released under a BSD
compatible license, in the sense that, quoting from the PSF license page:

There is no GPL-like "copyleft" restriction. Distributing
binary-only versions of Python, modified or not, is allowed. There
is no requirement to release any of your source code. You can also
write extension modules for Python and provide them only in binary
form.

Famous projects released under a BSD-style license in the permissive sense of the last paragraph are the
BSD operating system, python and TeX.

There are two primary reasons why early matplotlib developers selected a BSD compatible license. We
wanted to attract as many users and developers as possible, and many software companies will not use GPL
code in software they plan to distribute, even those that are highly committed to open source development,
such as enthought, out of legitimate concern that use of the GPL will “infect” their code base by its viral
nature. In effect, they want to retain the right to release some proprietary code. Companies, and institutions
in general, who use matplotlib often make significant contributions, since they have the resources to get a
job done, even a boring one, if they need it in their code. Two of the matplotlib backends (FLTK and WX)
were contributed by private companies.

The other reason is licensing compatibility with the other python extensions for scientific computing:
ipython, numpy, scipy, the enthought tool suite and python itself are all distributed under BSD compati-
ble licenses.

105

http://enthought.com

106

CHAPTER

FOURTEEN

Documenting matplotlib

14.1 Getting started

The documentation for matplotlib is generated from ReStructured Text using the Sphinx documentation
generation tool. Sphinx-0.4 or later is required. Currently this means we need to install from the svn
repository by doing:

svn co http://svn.python.org/projects/doctools/trunk sphinx
cd sphinx
python setup.py install

The documentation sources are found in the doc/ directory in the trunk. To build the users guide in html
format, cd into doc/ and do:

python make.py html

or:

./make.py html

you can also pass a latex flag to make.py to build a pdf, or pass no arguments to build everything.

The output produced by Sphinx can be configured by editing the conf.py file located in the doc/.

14.2 Organization of matplotlib’s documentation

The actual ReStructured Text files are kept in doc/users, doc/devel, doc/api and doc/faq. The main
entry point is doc/index.rst, which pulls in the index.rst file for the users guide, developers guide,
api reference, and faqs. The documentation suite is built as a single document in order to make the most
effective use of cross referencing, we want to make navigating the Matplotlib documentation as easy as
possible.

Additional files can be added to the various guides by including their base file name (the .rst extension is
not necessary) in the table of contents. It is also possible to include other documents through the use of an
include statement, such as:

107

http://sphinx.pocoo.org/

Matplotlib, Release 0.98

.. include:: ../../TODO

14.3 Formatting

The Sphinx website contains plenty of documentation concerning ReST markup and working with Sphinx
in general. Here are a few additional things to keep in mind:

• Please familiarize yourself with the Sphinx directives for inline markup. Matplotlib’s documentation
makes heavy use of cross-referencing and other semantic markup. For example, when referring to
external files, use the :file: directive.

• Function arguments and keywords should be referred to using the emphasis role. This will keep
matplotlib’s documentation consistant with Python’s documentation:

Here is a description of *argument*

Please do not use the default role:

Please do not describe ‘argument‘ like this.

nor the literal role:

Please do not describe ‘‘argument‘‘ like this.

• Sphinx does not support tables with column- or row-spanning cells for latex output. Such tables can
not be used when documenting matplotlib.

• Mathematical expressions can be rendered as png images in html, and in the usual way by latex. For
example:

:math:‘\sin(x_n^2)‘ yields: sin(x2
n), and:

.. math::

\int_{-\infty}^{\infty}\frac{e^{i\phi}}{1+x^2\frac{e^{i\phi}}{1+x^2}}

yields: ∫ ∞
−∞

eiφ

1 + x2 eiφ

1+x2

(14.1)

• Interactive IPython sessions can be illustrated in the documentation using the following directive:

.. sourcecode:: ipython

In [69]: lines = plot([1,2,3])

which would yield:

108

http://sphinx.pocoo.org/contents.html
http://sphinx.pocoo.org/markup/inline.html

Matplotlib, Release 0.98

In [69]: lines = plot([1,2,3])

• Footnotes 1 can be added using [#]_, followed later by:

.. rubric:: Footnotes

.. [#]

• Use the note and warning directives, sparingly, to draw attention to important comments:

.. note::
Here is a note

yields:

Note: here is a note

also:

Warning: here is a warning

• Use the deprecated directive when appropriate:

.. deprecated:: 0.98
This feature is obsolete, use something else.

yields: Deprecated since release 0.98. This feature is obsolete, use something else.

• Use the versionadded and versionchanged directives, which have similar syntax to the deprecated
role:

.. versionadded:: 0.98
The transforms have been completely revamped.

New in version 0.98: The transforms have been completely revamped.

• Use the seealso directive, for example:

.. seealso::

Using ReST :ref:‘emacs-helpers‘:
One example

A bit about :ref:‘referring-to-mpl-docs‘:
One more

yields:

See Also:

Using ResT Emacs helpers: One example

1For example.

109

Matplotlib, Release 0.98

A bit about Referring to mpl documents: One more

• Please keep the Glossary in mind when writing documentation. You can create a references to a term
in the glossary with the :term: role.

• The autodoc extension will handle index entries for the API, but additional entries in the index need
to be explicitly added.

14.3.1 Docstrings

In addition to the aforementioned formatting suggestions:

• Please limit the text width of docstrings to 70 characters.

• Keyword arguments should be described using a definition list.

Note: matplotlib makes extensive use of keyword arguments as pass-through arguments, there are a
many cases where a table is used in place of a definition list for autogenerated sections of docstrings.

14.4 Figures

14.4.1 Dynamically generated figures

The top level doc dir has a folder called pyplots in which you should include any pyplot plotting scripts
that you want to generate figures for the documentation. It is not necessary to explicitly save the figure
in the script, this will be done automatically at build time to insure that the code that is included runs and
produces the advertised figure. Several figures will be saved with the same basnename as the filename when
the documentation is generated (low and high res PNGs, a PDF). Matplotlib includes a Sphinx extension
(sphinxext/plot_directive.py) for generating the images from the python script and including either
a png copy for html or a pdf for latex:

.. plot:: pyplot_simple.py
:include-source:

The :scale: directive rescales the image to some percentage of the original size, though we don’t recom-
mend using this in most cases since it is probably better to choose the correct figure size and dpi in mpl
and let it handle the scaling. :include-source: will present the contents of the file, marked up as source
code.

14.4.2 Static figures

Any figures that rely on optional system configurations need to be handled a little differently. These figures
are not to be generated during the documentation build, in order to keep the prerequisites to the documen-
tation effort as low as possible. Please run the doc/pyplots/make.py script when adding such figures,
and commit the script and the images to svn. Please also add a line to the README in doc/pyplots for any
additional requirements necessary to generate a new figure. Once these steps have been taken, these figures
can be included in the usual way:

110

http://sphinx.pocoo.org/markup/para.html#index-generating-markup

Matplotlib, Release 0.98

.. plot:: tex_unicode_demo.py
:include-source

14.5 Referring to mpl documents

In the documentation, you may want to include to a document in the matplotlib src, e.g. a license file, an
image file from mpl-data, or an example. When you include these files, include them using a symbolic link
from the documentation parent directory. This way, if we relocate the mpl documentation directory, all of
the internal pointers to files will not have to change, just the top level symlinks. For example, In the top
level doc directory we have symlinks pointing to the mpl examples and mpl-data:

home:~/mpl/doc2> ls -l mpl_*
mpl_data -> ../lib/matplotlib/mpl-data
mpl_examples -> ../examples

In the users subdirectory, if I want to refer to a file in the mpl-data directory, I use the symlink directory. For
example, from customizing.rst:

.. literalinclude:: ../mpl_data/matplotlibrc

14.6 Internal section references

To maximize internal consistency in section labeling and references, use hypen separated, descriptive labels
for section references, eg:

.. _howto-webapp:

and refer to it using the standard reference syntax:

See :ref:‘howto-webapp‘

Keep in mind that we may want to reorganize the contents later, so let’s avoid top level names in references
like user or devel or faq unless necesssary, because for example the FAQ “what is a backend?” could
later become part of the users guide, so the label:

.. _what-is-a-backend

is better than:

.. _faq-backend

In addition, since underscores are widely used by Sphinx itself, let’s prefer hyphens to separate words.

111

Matplotlib, Release 0.98

14.7 Section names, etc

For everything but top level chapters, please use Upper lower for section titles, eg Possible hangups
rather than Possible Hangups

14.8 Inheritance diagrams

Class inheritance diagrams can be generated with the inheritance-diagram directive. To use it, you
provide the directive with a number of class or module names (separated by whitespace). If a module name
is provided, all classes in that module will be used. All of the ancestors of these classes will be included in
the inheritance diagram.

A single option is available: parts controls how many of parts in the path to the class are shown. For
example, if parts == 1, the class matplotlib.patches.Patch is shown as Patch. If parts == 2, it is
shown as patches.Patch. If parts == 0, the full path is shown.

Example:

.. inheritance-diagram:: matplotlib.patches matplotlib.lines matplotlib.text
:parts: 2

Could not execute ‘dot’. Are you sure you have ‘graphviz’ installed?

14.9 Emacs helpers

There is an emacs mode rst.el which automates many important ReST tasks like building and updateing
table-of-contents, and promoting or demoting section headings. Here is the basic .emacs configuration:

(require ’rst)
(setq auto-mode-alist

(append ’(("\\.txt$" . rst-mode)
("\\.rst$" . rst-mode)
("\\.rest$" . rst-mode)) auto-mode-alist))

Some helpful functions:

C-c TAB - rst-toc-insert

Insert table of contents at point

C-c C-u - rst-toc-update

Update the table of contents at point

C-c C-l rst-shift-region-left

Shift region to the left

112

http://docutils.sourceforge.net/tools/editors/emacs/rst.el

Matplotlib, Release 0.98

C-c C-r rst-shift-region-right

Shift region to the right

113

114

CHAPTER

FIFTEEN

Doing a matplolib release

A guide for developers who are doing a matplotlib release

• Edit __init__.py and bump the version number

15.1 Testing

• Make sure examples/tests/backend_driver.py runs without errors and check the output of the
PNG, PDF, PS and SVG backends

• Run unit/memleak_hawaii3.py and make sure there are no memory leaks

• try some GUI examples, eg simple_plot.py with GTKAgg, TkAgg, etc...

• remove font cache and tex cache from .matplotlib and test with and without cache on some exam-
ple script

15.2 Packaging

• Make sure the MANIFEST.in us up to date and remove MANIFEST so it will be rebuilt by MANI-
FEST.in

• run svn-clean from in the mpl svn directory before building the sdist

• unpack the sdist and make sure you can build from that directory

• Use setup.cfg to set the default backends. For windows and OSX, the default backend should be
TkAgg.

• on windows, unix2dos the rc file

15.3 Uploading

• Post the win32 and OS-X binaries for testing and make a request on matplotlib-devel for testing.
Pester us if we don’t respond

115

http://svn.collab.net/repos/svn/trunk/contrib/client-side/svn-clean

Matplotlib, Release 0.98

• ftp the source and binaries to the anonymous FTP site:

mpl> svn-clean
mpl> python setup.py sdist
mpl> cd dist/
dist> sftp jdh2358@frs.sourceforge.net
Connecting to frs.sourceforge.net...
sftp> cd uploads
sftp> ls
sftp> lls
matplotlib-0.98.2.tar.gz
sftp> put matplotlib-0.98.2.tar.gz
Uploading matplotlib-0.98.2.tar.gz to /incoming/j/jd/jdh2358/uploads/matplotlib-0.98.2.tar.gz

• go https://sourceforge.net/project/admin/?group_id=80706 and do a file release. Click on the “Ad-
min” tab to log in as an admin, and then the “File Releases” tab. Go to the bottom and click “add
release” and enter the package name but not the version number in the “Package Name” box. You
will then be prompted for the “New release name” at which point you can add the version number, eg
somepackage-0.1 and click “Create this release”.

You will then be taken to a fairly self explanatory page where you can enter the Change notes, the
release notes, and select which packages from the incoming ftp archive you want to include in this
release. For each binary, you will need to select the platform and file type, and when you are done
you click on the “notify users who are monitoring this package link”

15.4 Announcing

Announce the release on matplotlib-announce, matplotlib-users and matplotlib-devel. Include a summary
of highlights from the CHANGELOG and/or post the whole CHANGELOG since the last release.

116

CHAPTER

SIXTEEN

Working with transformations

Could not execute ‘dot’. Are you sure you have ‘graphviz’ installed?

16.1 matplotlib.transforms

matplotlib includes a framework for arbitrary geometric transformations that is used determine the final
position of all elements drawn on the canvas.

Transforms are composed into trees of TransformNode objects whose actual value depends on their chil-
dren. When the contents of children change, their parents are automatically invalidated. The next time
an invalidated transform is accessed, it is recomputed to reflect those changes. This invalidation/caching
approach prevents unnecessary recomputations of transforms, and contributes to better interactive perfor-
mance.

For example, here is a graph of the transform tree used to plot data to the graph:

117

Matplotlib, Release 0.98

The framework can be used for both affine and non-affine transformations. However, for speed, we want
use the backend renderers to perform affine transformations whenever possible. Therefore, it is possible to
perform just the affine or non-affine part of a transformation on a set of data. The affine is always assumed
to occur after the non-affine. For any transform:

full transform == non-affine part + affine part

The backends are not expected to handle non-affine transformations themselves.

118

Matplotlib, Release 0.98

class TransformNode()
Bases: object

TransformNode is the base class for anything that participates in the transform tree and needs to
invalidate its parents or be invalidated. This includes classes that are not really transforms, such as
bounding boxes, since some transforms depend on bounding boxes to compute their values.

Creates a new TransformNode.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy() might
normally be used.

invalidate()
Invalidate this transform node and all of its ancestors. Should be called any time the transform
changes.

set_children(*children)
Set the children of the transform, to let the invalidation system know which transforms can
invalidate this transform. Should be called from the constructor of any transforms that depend
on other transforms.

class BboxBase()
Bases: matplotlib.transforms.TransformNode

This is the base class of all bounding boxes, and provides read-only access to its data. A mutable
bounding box is provided by the Bbox class.

The canonical representation is as two points, with no restrictions on their ordering. Convenience
properties are provided to get the left, bottom, right and top edges and width and height, but these are
not stored explicity.

Creates a new TransformNode.

anchored(c, container=None)
Return a copy of the Bbox, shifted to position c within a container.
c: may be either:

•a sequence (cx, cy) where cx, cy range from 0 to 1, where 0 is left or bottom and 1 is right
or top
•a string: - C for centered - S for bottom-center - SE for bottom-left - E for left - etc.

Optional argument container is the box within which the Bbox is positioned; it defaults to the
initial Bbox.

bounds
(property) Returns (x0, y0, width, height).

contains(x, y)
Returns True if (x, y) is a coordinate inside the bounding box or on its edge.

containsx(x)
Returns True if x is between or equal to x0 and x1.

containsy(y)
Returns True if y is between or equal to y0 and y1.

119

Matplotlib, Release 0.98

corners()
Return an array of points which are the four corners of this rectangle. For example, if this Bbox
is defined by the points (a, b) and (c, d), corners() returns (a, b), (a, d), (c, b) and (c, d).

count_contains(vertices)
Count the number of vertices contained in the Bbox.
vertices is a Nx2 numpy array.

count_overlaps(bboxes)
Count the number of bounding boxes that overlap this one.
bboxes is a sequence of BboxBase objects

expanded(sw, sh)
Return a new Bbox which is this Bbox expanded around its center by the given factors sw and
sh.

extents
(property) Returns (x0, y0, x1, y1).

frozen()
TransformNode is the base class for anything that participates in the transform tree and needs to
invalidate its parents or be invalidated. This includes classes that are not really transforms, such
as bounding boxes, since some transforms depend on bounding boxes to compute their values.

fully_contains(x, y)
Returns True if (x, y) is a coordinate inside the bounding box, but not on its edge.

fully_containsx(x)
Returns True if x is between but not equal to x0 and x1.

fully_containsy(y)
Returns True if y is between but not equal to y0 and y1.

fully_overlaps(other)
Returns True if this bounding box overlaps with the given bounding box other, but not on its
edge alone.

height
(property) The height of the bounding box. It may be negative if y1 < y0.

intervalx
(property) intervalx is the pair of x coordinates that define the bounding box. It is not guar-
anteed to be sorted from left to right.

intervaly
(property) intervaly is the pair of y coordinates that define the bounding box. It is not guar-
anteed to be sorted from bottom to top.

inverse_transformed(transform)
Return a new Bbox object, statically transformed by the inverse of the given transform.

is_unit()
Returns True if the Bbox is the unit bounding box from (0, 0) to (1, 1).

max
(property) max is the top-right corner of the bounding box.

min
(property) min is the bottom-left corner of the bounding box.

120

Matplotlib, Release 0.98

overlaps(other)
Returns True if this bounding box overlaps with the given bounding box other.

p0
(property) p0 is the first pair of (x, y) coordinates that define the bounding box. It is not guaran-
teed to be the bottom-left corner. For that, use min.

p1
(property) p1 is the second pair of (x, y) coordinates that define the bounding box. It is not
guaranteed to be the top-right corner. For that, use max.

padded(p)
Return a new Bbox that is padded on all four sides by the given value.

rotated(radians)
Return a new bounding box that bounds a rotated version of this bounding box by the given
radians. The new bounding box is still aligned with the axes, of course.

shrunk(mx, my)
Return a copy of the Bbox, shurnk by the factor mx in the x direction and the factor my in the
y direction. The lower left corner of the box remains unchanged. Normally mx and my will be
less than 1, but this is not enforced.

shrunk_to_aspect(box_aspect, container=None, fig_aspect=1.0)
Return a copy of the Bbox, shrunk so that it is as large as it can be while having the desired
aspect ratio, box_aspect. If the box coordinates are relative—that is, fractions of a larger box
such as a figure—then the physical aspect ratio of that figure is specified with fig_aspect, so that
box_aspect can also be given as a ratio of the absolute dimensions, not the relative dimensions.

size
(property) The width and height of the bounding box. May be negative, in the same way as
width and height.

splitx(*args)
e.g., bbox.splitx(f1, f2, ...)

Returns a list of new Bbox objects formed by splitting the original one with vertical lines at
fractional positions f1, f2, ...

splity(*args)
e.g., bbox.splitx(f1, f2, ...)

Returns a list of new Bbox objects formed by splitting the original one with horizontal lines at
fractional positions f1, f2, ...

transformed(transform)
Return a new Bbox object, statically transformed by the given transform.

translated(tx, ty)
Return a copy of the Bbox, statically translated by tx and ty.

union
Return a Bbox that contains all of the given bboxes.

width
(property) The width of the bounding box. It may be negative if x1 < x0.

x0
(property) x0 is the first of the pair of x coordinates that define the bounding box. x0 is not
guaranteed to be less than x1. If you require that, use xmin.

121

Matplotlib, Release 0.98

x1
(property) x1 is the second of the pair of x coordinates that define the bounding box. x1 is not
guaranteed to be greater than x0. If you require that, use xmax.

xmax
(property) xmax is the right edge of the bounding box.

xmin
(property) xmin is the left edge of the bounding box.

y0
(property) y0 is the first of the pair of y coordinates that define the bounding box. y0 is not
guaranteed to be less than y1. If you require that, use ymin.

y1
(property) y1 is the second of the pair of y coordinates that define the bounding box. y1 is not
guaranteed to be greater than y0. If you require that, use ymax.

ymax
(property) ymax is the top edge of the bounding box.

ymin
(property) ymin is the bottom edge of the bounding box.

class Bbox(points)
Bases: matplotlib.transforms.BboxBase

A mutable bounding box.

points: a 2x2 numpy array of the form [[x0, y0], [x1, y1]]

If you need to create a Bbox object from another form of data, consider the static methods unit,
from_bounds and from_extents.

from_bounds
(staticmethod) Create a new Bbox from x0, y0, width and height.
width and height may be negative.

from_extents
(staticmethod) Create a new Bbox from left, bottom, right and top.
The y-axis increases upwards.

get_points()
Get the points of the bounding box directly as a numpy array of the form: [[x0, y0], [x1, y1]].

ignore(value)
Set whether the existing bounds of the box should be ignored by subsequent calls to
update_from_data() or update_from_data_xy().
value:

•When True, subsequent calls to update_from_data() will ignore the existing bounds of
the Bbox.
•When False, subsequent calls to update_from_data() will include the existing bounds of
the Bbox.

set(other)
Set this bounding box from the “frozen” bounds of another Bbox.

122

Matplotlib, Release 0.98

set_points(points)
Set the points of the bounding box directly from a numpy array of the form: [[x0, y0], [x1, y1]].
No error checking is performed, as this method is mainly for internal use.

unit
(staticmethod) Create a new unit Bbox from (0, 0) to (1, 1).

update_from_data(x, y, ignore=None)
Update the bounds of the Bbox based on the passed in data.
x: a numpy array of x-values
y: a numpy array of y-values

ignore: • when True, ignore the existing bounds of the Bbox.
• when False, include the existing bounds of the Bbox.
• when None, use the last value passed to ignore().

update_from_data_xy(xy, ignore=None)
Update the bounds of the Bbox based on the passed in data.
xy: a numpy array of 2D points

ignore: • when True, ignore the existing bounds of the Bbox.
• when False, include the existing bounds of the Bbox.
• when None, use the last value passed to ignore().

class TransformedBbox(bbox, transform)
Bases: matplotlib.transforms.BboxBase

A Bbox that is automatically transformed by a given transform. When either the child bounding box
or transform changes, the bounds of this bbox will update accordingly.

bbox: a child bbox

transform: a 2D transform

get_points()
Get the points of the bounding box directly as a numpy array of the form: [[x0, y0], [x1, y1]].

class Transform()
Bases: matplotlib.transforms.TransformNode

The base class of all TransformNodes that actually perform a transformation.

All non-affine transformations should be subclasses of this class. New affine transformations should
be subclasses of Affine2D.

Subclasses of this class should override the following members (at minimum):

•input_dims

•output_dims

•transform()

•is_separable

•has_inverse

•inverted() (if has_inverse() can return True)

If the transform needs to do something non-standard with mathplotlib.path.Path objects, such
as adding curves where there were once line segments, it should override:

123

Matplotlib, Release 0.98

•transform_path()

Creates a new TransformNode.

get_affine()
Get the affine part of this transform.

inverted()
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to ‘self’ does not
cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))

transform(values)
Performs the transformation on the given array of values.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(values)
Performs only the affine part of this transformation on the given array of values.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_non_affine(values)
Performs only the non-affine part of the transformation.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path(path)
Returns a transformed copy of path.
path: a Path instance.
In some cases, this transform may insert curves into the path that began as line segments.

transform_path_affine(path)
Returns a copy of path, transformed only by the affine part of this transform.
path: a Path instance
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.
path: a Path instance
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_point(point)
A convenience function that returns the transformed copy of a single point.
The point is given as a sequence of length input_dims. The transformed point is returned as a
sequence of length output_dims.

124

Matplotlib, Release 0.98

class TransformWrapper(child)
Bases: matplotlib.transforms.Transform

A helper class that holds a single child transform and acts equivalently to it.

This is useful if a node of the transform tree must be replaced at run time with a transform of a different
type. This class allows that replacement to correctly trigger invalidation.

Note that TransformWrapper instances must have the same input and output dimensions during their
entire lifetime, so the child transform may only be replaced with another child transform of the same
dimensions.

child: A Transform instance. This child may later be replaced with set().

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy() might
normally be used.

set(child)
Replace the current child of this transform with another one.
The new child must have the same number of input and output dimensions as the current child.

class AffineBase()
Bases: matplotlib.transforms.Transform

The base class of all affine transformations of any number of dimensions.

get_affine()
Get the affine part of this transform.

get_matrix()
Get the underlying transformation matrix as a numpy array.

transform_non_affine(points)
Performs only the non-affine part of the transformation.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path_affine(path)
Returns a copy of path, transformed only by the affine part of this transform.
path: a Path instance
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.
path: a Path instance
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

class Affine2DBase()
Bases: matplotlib.transforms.AffineBase

The base class of all 2D affine transformations.

2D affine transformations are performed using a 3x3 numpy array:

125

Matplotlib, Release 0.98

a c e
b d f
0 0 1

This class provides the read-only interface. For a mutable 2D affine transformation, use Affine2D.

Subclasses of this class will generally only need to override a constructor and ‘get_matrix’ that gen-
erates a custom 3x3 matrix.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy() might
normally be used.

inverted()
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to ‘self’ does not
cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))

matrix_from_values
(staticmethod) Create a new transformation matrix as a 3x3 numpy array of the form:

a c e
b d f
0 0 1

to_values()
Return the values of the matrix as a sequence (a,b,c,d,e,f)

transform(points)
Performs only the affine part of this transformation on the given array of values.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(points)
Performs only the affine part of this transformation on the given array of values.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_point(point)
A convenience function that returns the transformed copy of a single point.
The point is given as a sequence of length input_dims. The transformed point is returned as a
sequence of length output_dims.

class Affine2D(matrix=None)
Bases: matplotlib.transforms.Affine2DBase

126

Matplotlib, Release 0.98

A mutable 2D affine transformation.

Initialize an Affine transform from a 3x3 numpy float array:

a c e
b d f
0 0 1

If matrix is None, initialize with the identity transform.

clear()
Reset the underlying matrix to the identity transform.

from_values
(staticmethod) Create a new Affine2D instance from the given values:

a c e
b d f
0 0 1

get_matrix()
Get the underlying transformation matrix as a 3x3 numpy array:

a c e
b d f
0 0 1

identity
(staticmethod) Return a new Affine2D object that is the identity transform.
Unless this transform will be mutated later on, consider using the faster IdentityTransform
class instead.

rotate(theta)
Add a rotation (in radians) to this transform in place.
Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg,
:meth:‘translate() and scale().

rotate_around(x, y, theta)
Add a rotation (in radians) around the point (x, y) in place.
Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg,
:meth:‘translate() and scale().

rotate_deg(degrees)
Add a rotation (in degrees) to this transform in place.
Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg,
:meth:‘translate() and scale().

rotate_deg_around(x, y, degrees)
Add a rotation (in degrees) around the point (x, y) in place.
Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg,
:meth:‘translate() and scale().

scale(sx, sy=None)
Adds a scale in place.
If sy is None, the same scale is applied in both the x- and y-directions.

127

Matplotlib, Release 0.98

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg,
:meth:‘translate() and scale().

set(other)
Set this transformation from the frozen copy of another Affine2DBase object.

set_matrix(mtx)
Set the underlying transformation matrix from a 3x3 numpy array:

a c e
b d f
0 0 1

translate(tx, ty)
Adds a translation in place.
Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg,
:meth:‘translate() and scale().

class IdentityTransform()
Bases: matplotlib.transforms.Affine2DBase

A special class that does on thing, the identity transform, in a fast way.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy() might
normally be used.

get_affine()
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to ‘self’ does not
cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))

get_matrix()
Get the underlying transformation matrix as a numpy array.

inverted()
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to ‘self’ does not
cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))

transform(points)
Performs only the non-affine part of the transformation.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(points)
Performs only the non-affine part of the transformation.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

128

Matplotlib, Release 0.98

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_non_affine(points)
Performs only the non-affine part of the transformation.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path(path)
Returns a copy of path, transformed only by the non-affine part of this transform.
path: a Path instance
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.
path: a Path instance
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.
path: a Path instance
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

class BlendedGenericTransform(x_transform, y_transform)
Bases: matplotlib.transforms.Transform

A “blended” transform uses one transform for the x-direction, and another transform for the y-
direction.

This “generic” version can handle any given child transform in the x- and y-directions.

Create a new “blended” transform using x_transform to transform the x-axis and y_transform to trans-
form the y_axis.

You will generally not call this constructor directly but use the blended_transform_factory()
function instead, which can determine automatically which kind of blended transform to create.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy() might
normally be used.

get_affine()
Get the affine part of this transform.

inverted()
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to ‘self’ does not
cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))

129

Matplotlib, Release 0.98

transform(points)
Performs the transformation on the given array of values.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(points)
Performs only the affine part of this transformation on the given array of values.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_non_affine(points)
Performs only the non-affine part of the transformation.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

class BlendedAffine2D(x_transform, y_transform)
Bases: matplotlib.transforms.Affine2DBase

A “blended” transform uses one transform for the x-direction, and another transform for the y-
direction.

This version is an optimization for the case where both child transforms are of type Affine2DBase.

Create a new “blended” transform using x_transform to transform the x-axis and y_transform to trans-
form the y_axis.

Both x_transform and y_transform must be 2D affine transforms.

You will generally not call this constructor directly but use the blended_transform_factory()
function instead, which can determine automatically which kind of blended transform to create.

get_matrix()
Get the underlying transformation matrix as a numpy array.

blended_transform_factory(x_transform, y_transform)
Create a new “blended” transform using x_transform to transform the x-axis and y_transform to trans-
form the y_axis.

A faster version of the blended transform is returned for the case where both child transforms are
affine.

class CompositeGenericTransform(a, b)
Bases: matplotlib.transforms.Transform

A composite transform formed by applying transform a then transform b.

This “generic” version can handle any two arbitrary transformations.

Create a new composite transform that is the result of applying transform a then transform b.

130

Matplotlib, Release 0.98

You will generally not call this constructor directly but use the composite_transform_factory()
function instead, which can automatically choose the best kind of composite transform instance to
create.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy() might
normally be used.

get_affine()
Get the affine part of this transform.

inverted()
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to ‘self’ does not
cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))

transform(points)
Performs the transformation on the given array of values.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(points)
Performs only the affine part of this transformation on the given array of values.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_non_affine(points)
Performs only the non-affine part of the transformation.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path(path)
Returns a transformed copy of path.
path: a Path instance.
In some cases, this transform may insert curves into the path that began as line segments.

transform_path_affine(path)
Returns a copy of path, transformed only by the affine part of this transform.
path: a Path instance
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.
path: a Path instance
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

131

Matplotlib, Release 0.98

class CompositeAffine2D(a, b)
Bases: matplotlib.transforms.Affine2DBase

A composite transform formed by applying transform a then transform b.

This version is an optimization that handles the case where both a and b are 2D affines.

Create a new composite transform that is the result of applying transform a then transform b.

Both a and b must be instances of Affine2DBase.

You will generally not call this constructor directly but use the composite_transform_factory()
function instead, which can automatically choose the best kind of composite transform instance to
create.

get_matrix()
Get the underlying transformation matrix as a numpy array.

composite_transform_factory(a, b)
Create a new composite transform that is the result of applying transform a then transform b.

Shortcut versions of the blended transform are provided for the case where both child transforms are
affine, or one or the other is the identity transform.

Composite transforms may also be created using the ‘+’ operator, e.g.:

c = a + b

class BboxTransform(boxin, boxout)
Bases: matplotlib.transforms.Affine2DBase

BboxTransform linearly transforms points from one Bbox to another Bbox.

Create a new BboxTransform that linearly transforms points from boxin to boxout.

get_matrix()
Get the underlying transformation matrix as a numpy array.

class BboxTransformTo(boxout)
Bases: matplotlib.transforms.Affine2DBase

BboxTransformTo is a transformation that linearly transforms points from the unit bounding box to a
given Bbox.

Create a new BboxTransformTo that linearly transforms points from the unit bounding box to boxout.

get_matrix()
Get the underlying transformation matrix as a numpy array.

class BboxTransformFrom(boxin)
Bases: matplotlib.transforms.Affine2DBase

BboxTransform linearly transforms points from a given Bbox to the unit bounding box.

get_matrix()
Get the underlying transformation matrix as a numpy array.

class ScaledTranslation(xt, yt, scale_trans)
Bases: matplotlib.transforms.Affine2DBase

A transformation that translates by xt and yt, after xt and yt have been transformaed by the given
transform scale_trans.

132

Matplotlib, Release 0.98

get_matrix()
Get the underlying transformation matrix as a numpy array.

class TransformedPath(path, transform)
Bases: matplotlib.transforms.TransformNode

A TransformedPath caches a non-affine transformed copy of the path. This cached copy is automati-
cally updated when the non-affine part of the transform changes.

Create a new TransformedPath from the given path and transform.

get_fully_transformed_path()
Return a fully-transformed copy of the child path.

get_transformed_path_and_affine()
Return a copy of the child path, with the non-affine part of the transform already applied, along
with the affine part of the path necessary to complete the transformation.

get_transformed_points_and_affine()
Return a copy of the child path, with the non-affine part of the transform already applied,
along with the affine part of the path necessary to complete the transformation. Unlike
get_transformed_path_and_affine, no interpolation will be performed.

nonsingular(vmin, vmax, expander=0.001, tiny=1.0000000000000001e-15, increasing=True)
Ensure the endpoints of a range are not too close together.

“too close” means the interval is smaller than ‘tiny’ times the maximum absolute value.

If they are too close, each will be moved by the ‘expander’. If ‘increasing’ is True and vmin > vmax,
they will be swapped, regardless of whether they are too close.

16.2 matplotlib.path

Contains a class for managing paths (polylines).

class Path(vertices, codes=None)
Bases: object

Path represents a series of possibly disconnected, possibly closed, line and curve segments.

The underlying storage is made up of two parallel numpy arrays: • vertices: an Nx2 float ar-
ray of vertices
• codes: an N-length uint8 array of vertex types

These two arrays always have the same length in the first dimension. For example, to represent a
cubic curve, you must provide three vertices as well as three codes CURVE3.

The code types are:

•STOP [1 vertex (ignored)] A marker for the end of the entire path (currently not required and
ignored)

•MOVETO [1 vertex] Pick up the pen and move to the given vertex.

•LINETO [1 vertex] Draw a line from the current position to the given vertex.

•CURVE3 [1 control point, 1 endpoint] Draw a quadratic Bezier curve from the current position,
with the given control point, to the given end point.

133

Matplotlib, Release 0.98

•CURVE4 [2 control points, 1 endpoint] Draw a cubic Bezier curve from the current position, with
the given control points, to the given end point.

•CLOSEPOLY [1 vertex (ignored)] Draw a line segment to the start point of the current polyline.

Users of Path objects should not access the vertices and codes arrays directly. Instead, they should use
iter_segments() to get the vertex/code pairs. This is important, since many Path objects, as an op-
timization, do not store a codes at all, but have a default one provided for them by iter_segments().

Create a new path with the given vertices and codes.

vertices is an Nx2 numpy float array, masked array or Python sequence.

codes is an N-length numpy array or Python sequence of type matplotlib.path.Path.code_type.

These two arrays must have the same length in the first dimension.

If codes is None, vertices will be treated as a series of line segments. If vertices contains masked
values, the resulting path will be compressed, with MOVETO codes inserted in the correct places to
jump over the masked regions.

arc
(staticmethod) Returns an arc on the unit circle from angle theta1 to angle theta2 (in degrees).
If n is provided, it is the number of spline segments to make. If n is not provided, the number of
spline segments is determined based on the delta between theta1 and theta2.

Masionobe, L. 2003. Drawing an elliptical arc using polylines, quadratic or cubic
Bezier curves.

contains_path(path, transform=None)
Returns True if this path completely contains the given path.
If transform is not None, the path will be transformed before performing the test.

contains_point(point, transform=None)
Returns True if the path contains the given point.
If transform is not None, the path will be transformed before performing the test.

get_extents(transform=None)
Returns the extents (xmin, ymin, xmax, ymax) of the path.
Unlike computing the extents on the vertices alone, this algorithm will take into account the
curves and deal with control points appropriately.

interpolated(steps)
Returns a new path resampled to length N x steps. Does not currently handle interpolating
curves.

intersects_bbox(bbox)
Returns True if this path intersects a given Bbox.

intersects_path(other)
Returns True if this path intersects another given path.

iter_segments()
Iterates over all of the curve segments in the path. Each iteration returns a 2-tuple (vertices,
code), where vertices is a sequence of 1 - 3 coordinate pairs, and code is one of the Path codes.

make_compound_path
(staticmethod) Make a compound path from a list of Path objects. Only polygons (not curves)
are supported.

134

http://www.spaceroots.org/documents/ellipse/index.html
http://www.spaceroots.org/documents/ellipse/index.html

Matplotlib, Release 0.98

to_polygons(transform=None, width=0, height=0)
Convert this path to a list of polygons. Each polygon is an Nx2 array of vertices. In other words,
each polygon has no MOVETO instructions or curves. This is useful for displaying in backends
that do not support compound paths or Bezier curves, such as GDK.
If width and height are both non-zero then the lines will be simplified so that vertices outside of
(0, 0), (width, height) will be clipped.

transformed(transform)
Return a transformed copy of the path.
See matplotlib.transforms.TransformedPath for a path that will cache the transformed
result and automatically update when the transform changes.

unit_circle
(staticmethod) Returns a Path of the unit circle. The circle is approximated using cubic Bezier
curves. This uses 8 splines around the circle using the approach presented here:

Lancaster, Don. Approximating a Circle or an Ellipse Using Four Bezier Cubic
Splines.

unit_rectangle
(staticmethod) Returns a Path of the unit rectangle from (0, 0) to (1, 1).

unit_regular_asterisk
(staticmethod) Returns a Path for a unit regular asterisk with the given numVertices and radius
of 1.0, centered at (0, 0).

unit_regular_polygon
(staticmethod) Returns a Path for a unit regular polygon with the given numVertices and radius
of 1.0, centered at (0, 0).

unit_regular_star
(staticmethod) Returns a Path for a unit regular star with the given numVertices and radius of
1.0, centered at (0, 0).

wedge
(staticmethod) Returns a wedge of the unit circle from angle theta1 to angle theta2 (in degrees).
If n is provided, it is the number of spline segments to make. If n is not provided, the number of
spline segments is determined based on the delta between theta1 and theta2.

get_path_collection_extents(*args)
Given a sequence of Path objects, returns the bounding box that encapsulates all of them.

135

http://www.tinaja.com/glib/ellipse4.pdf
http://www.tinaja.com/glib/ellipse4.pdf

136

CHAPTER

SEVENTEEN

Adding new scales and projections to
matplotlib

Matplotlib supports the addition of custom procedures that transform the data before it is displayed.

There is an important distinction between two kinds of transformations. Separable transformations, working
on a single dimension, are called “scales”, and non-separable transformations, that handle data in two or
more dimensions at a time, are called “projections”.

From the user’s perspective, the scale of a plot can be set with set_xscale() and set_xscale(). Pro-
jections can be chosen using the projection keyword argument to the plot() or subplot() functions,
e.g.:

plot(x, y, projection="custom")

This document is intended for developers and advanced users who need to create new scales and projections
for matplotlib. The necessary code for scales and projections can be included anywhere: directly within a
plot script, in third-party code, or in the matplotlib source tree itself.

17.1 Creating a new scale

Adding a new scale consists of defining a subclass of matplotlib.scale.ScaleBase, that includes the
following elements:

• A transformation from data coordinates into display coordinates.

• An inverse of that transformation. This is used, for example, to convert mouse positions from screen
space back into data space.

• A function to limit the range of the axis to acceptable values (limit_range_for_scale()). A log
scale, for instance, would prevent the range from including values less than or equal to zero.

• Locators (major and minor) that determine where to place ticks in the plot, and optionally, how to
adjust the limits of the plot to some “good” values. Unlike limit_range_for_scale(), which is
always enforced, the range setting here is only used when automatically setting the range of the plot.

• Formatters (major and minor) that specify how the tick labels should be drawn.

137

Matplotlib, Release 0.98

Once the class is defined, it must be registered with matplotlib so that the user can select it.

A full-fledged and heavily annotated example is in examples/api/custom_scale_example.py. There
are also some classes in matplotlib.scale that may be used as starting points.

17.2 Creating a new projection

Adding a new projection consists of defining a subclass of matplotlib.axes.Axes, that includes the
following elements:

• A transformation from data coordinates into display coordinates.

• An inverse of that transformation. This is used, for example, to convert mouse positions from screen
space back into data space.

• Transformations for the gridlines, ticks and ticklabels. Custom projections will often need to place
these elements in special locations, and matplotlib has a facility to help with doing so.

• Setting up default values (overriding cla()), since the defaults for a rectilinear axes may not be
appropriate.

• Defining the shape of the axes, for example, an elliptical axes, that will be used to draw the background
of the plot and for clipping any data elements.

• Defining custom locators and formatters for the projection. For example, in a geographic projection,
it may be more convenient to display the grid in degrees, even if the data is in radians.

• Set up interactive panning and zooming. This is left as an “advanced” feature left to the reader, but
there is an example of this for polar plots in matplotlib.projections.polar.

• Any additional methods for additional convenience or features.

Once the class is defined, it must be registered with matplotlib so that the user can select it.

A full-fledged and heavily annotated example is in examples/api/custom_projection_example.py.
The polar plot functionality in matplotlib.projections.polar may also be of interest.

138

CHAPTER

EIGHTEEN

Docs outline

Proposed chapters for the docs, who has responsibility for them, and who reviews them. The “unit” doesn’t
have to be a full chapter (though in some cases it will be), it may be a chapter or a section in a chapter.

139

Matplotlib, Release 0.98

User’s guide unit Author Status Reviewer
plotting 2-D arrays Eric has author Perry ? Darren
colormapping Eric has author ?
quiver plots Eric has author ?
histograms Manuel ? no author Erik Tollerud ?
bar / errorbar ? no author ?
x-y plots ? no author Darren
time series plots ? no author ?
date plots John has author ?
working with data John has author Darren
custom ticking ? no author ?
masked data Eric has author ?
patches ? no author ?
legends ? no author ?
animation John has author ?
collections ? no author ?
text - mathtext Michael accepted John
text - usetex Darren accepted John
text - annotations John submitted ?
fonts et al Michael ? no author Darren
pyplot tut John submitted Eric
configuration Darren submitted ?
win32 install Charlie ? no author Darren
os x install Charlie ? no author ?
linux install Darren has author ?
artist api John submitted ?
event handling John submitted ?
navigation John submitted ?
interactive usage ? no author ?
widgets ? no author ?
ui - gtk ? no author ?
ui - wx ? no author ?
ui - tk ? no author ?
ui - qt Darren has author ?
backend - pdf Jouni ? no author ?
backend - ps Darren has author ?
backend - svg ? no author ?
backend - agg ? no author ?
backend - cairo ? no author ?

Here is the ouline for the dev guide, much less fleshed out

140

Matplotlib, Release 0.98

Developer’s guide unit Author Status Reviewer
the renderer John has author Michael ?
the canvas John has author ?
the artist John has author ?
transforms Michael submitted John
documenting mpl Darren submitted John, Eric, Mike?
coding guide John complete Eric
and_much_more ? ? ?

We also have some work to do converting docstrings to ReST for the API Reference. Please be sure to
follow the few guidelines described in Formatting. Once it is converted, please include the module in the
API documentation and update the status in the table to “converted”. Once docstring conversion is complete
and all the modules are available in the docs, we can figure out how best to organize the API Reference and
continue from there.

141

Matplotlib, Release 0.98

Module Author Status
backend_agg needs conversion
backend_cairo needs conversion
backend_cocoa needs conversion
backend_emf needs conversion
backend_fltkagg needs conversion
backend_gdk needs conversion
backend_gtk needs conversion
backend_gtkagg needs conversion
backend_gtkcairo needs conversion
backend_mixed needs conversion
backend_pdf needs conversion
backend_ps Darren needs conversion
backend_qt Darren needs conversion
backend_qtagg Darren needs conversion
backend_qt4 Darren needs conversion
backend_qt4agg Darren needs conversion
backend_svg needs conversion
backend_template needs conversion
backend_tkagg needs conversion
backend_wx needs conversion
backend_wxagg needs conversion
backends/tkagg needs conversion
config/checkdep Darren needs conversion
config/cutils Darren needs conversion
config/mplconfig Darren needs conversion
config/mpltraits Darren needs conversion
config/rcparams Darren needs conversion
config/rcsetup Darren needs conversion
config/tconfig Darren needs conversion
config/verbose Darren needs conversion
numerix/__init__ needs conversion
projections/__init__ needs conversion
projections/geo needs conversion
projections/polar needs conversion
afm converted
artist converted
axes converted
axis converted
backend_bases converted
cbook converted
cm converted
collections converted
colorbar converted
colors converted
contour needs conversion
dates Darren needs conversion
dviread Darren needs conversion
figure Darren needs conversion
finance Darren needs conversion
font_manager Mike needs conversion
fontconfig_pattern Mike needs conversion
image needs conversion
legend needs conversion
lines needs conversion
mathtext needs conversion
mlab needs conversion
mpl needs conversion
patches needs conversion
path needs conversion
pylab needs conversion
pyplot converted
quiver needs conversion
rcsetup needs conversion
scale needs conversion
table needs conversion
texmanager Darren needs conversion
text Mike needs conversion
ticker Mike needs conversion
transforms needs conversion
type1font needs conversion
units needs conversion
widgets needs conversion

142

Matplotlib, Release 0.98

And we might want to do a similar table for the FAQ, but that may also be overkill...

If you agree to author a unit, remove the question mark by your name (or add your name if there is no
candidate), and change the status to “has author”. Once you have completed draft and checked it in, you can
change the status to “submitted” and try to find a reviewer if you don’t have one. The reviewer should read
your chapter, test it for correctness (eg try your examples) and change the status to “complete” when done.

You are free to lift and convert as much material from the web site or the existing latex user’s guide as you
see fit. The more the better.

The UI chapters should give an example or two of using mpl with your GUI and any relevant info, such as
version, installation, config, etc... The backend chapters should cover backend specific configuration (eg PS
only options), what features are missing, etc...

Please feel free to add units, volunteer to review or author a chapter, etc...

It is probably easiest to be an editor. Once you have signed up to be an editor, if you have an author pester
the author for a submission every so often. If you don’t have an author, find one, and then pester them!
Your only two responsibilities are getting your author to produce and checking their work, so don’t be shy.
You do not need to be an expert in the subject you are editing – you should know something about it and be
willing to read, test, give feedback and pester!

18.1 Reviewer notes

If you want to make notes for the authorwhen you have reviewed a submission, you can put them here. As
the author cleans them up or addresses them, they should be removed.

18.1.1 mathtext user’s guide– reviewed by JDH

This looks good (see Writing mathematical expressions) – there are a few minor things to close the book on
this chapter:

1. The main thing to wrap this up is getting the mathtext module ported over to rest and included in
the API so the links from the user’s guide tutorial work.

• There’s nothing in the mathtext module that I really consider a “public” API (i.e. that would be
useful to people just doing plots). If mathtext.py were to be documented, I would put it in the
developer’s docs. Maybe I should just take the link in the user’s guide out. - MGD

2. This section might also benefit from a little more detail on the customizations that are possible (eg an
example fleshing out the rc options a little bit). Admittedly, this is pretty clear from readin ghte rc file,
but it might be helpful to a newbie.

• The only rcParam that is currently useful is mathtext.fontset, which is documented here. The
others only apply when mathtext.fontset == ‘custom’, which I’d like to declare “unsupported”.
It’s really hard to get a good set of math fonts working that way, though it might be useful in
a bind when someone has to use a specific wacky font for mathtext and only needs basics, like
sub/superscripts. - MGD

3. There is still a TODO in the file to include a complete list of symbols

143

Matplotlib, Release 0.98

• Done. It’s pretty extensive, thanks to STIX... - MGD

144

Part IV

The Matplotlib API

145

CHAPTER

NINETEEN

Matplotlib configuration

19.1 matplotlib

This is an object-orient plotting library.

A procedural interface is provided by the companion pylab module, which may be imported directly, e.g:

from pylab import *

or using ipython:

ipython -pylab

For the most part, direct use of the object-oriented library is encouraged when programming rather than
working interactively. The exceptions are the pylab commands figure(), subplot(), show(), and
savefig(), which can greatly simplify scripting.

Modules include:

matplotlib.axes defines the Axes class. Most pylab commands are wrappers for Axes
methods. The axes module is the highest level of OO access to the library.

matplotlib.figure defines the Figure class.

matplotlib.artist defines the Artist base class for all classes that draw things.

matplotlib.lines defines the Line2D class for drawing lines and markers

:mod‘matplotlib.patches‘ defines classes for drawing polygons

matplotlib.text defines the Text, TextWithDash, and Annotate classes

matplotlib.image defines the AxesImage and FigureImage classes

matplotlib.collections classes for efficient drawing of groups of lines or polygons

matplotlib.colors classes for interpreting color specifications and for making colormaps

matplotlib.cm colormaps and the ScalarMappable mixin class for providing color map-
ping functionality to other classes

matplotlib.ticker classes for calculating tick mark locations and for formatting tick labels

matplotlib.backends a subpackage with modules for various gui libraries and output for-
mats

147

Matplotlib, Release 0.98

The base matplotlib namespace includes:

rcParams a global dictionary of default configuration settings. It is initialized by code which
may be overridded by a matplotlibrc file.

rc() a function for setting groups of rcParams values

use() a function for setting the matplotlib backend. If used, this function must be called
immediately after importing matplotlib for the first time. In particular, it must be called
before importing pylab (if pylab is imported).

matplotlib is written by John D. Hunter (jdh2358 at gmail.com) and a host of others.

rc(group, **kwargs)
Set the current rc params. Group is the grouping for the rc, eg. for lines.linewidth the group
is lines, for axes.facecolor, the group is axes, and so on. Group may also be a list or tuple of
group names, eg. (xtick, ytick). kwargs is a dictionary attribute name/value pairs, eg:

rc(’lines’, linewidth=2, color=’r’)

sets the current rc params and is equivalent to:

rcParams[’lines.linewidth’] = 2
rcParams[’lines.color’] = ’r’

The following aliases are available to save typing for interactive users:

Alias Property
‘lw’ ‘linewidth’
‘ls’ ‘linestyle’
‘c’ ‘color’
‘fc’ ‘facecolor’
‘ec’ ‘edgecolor’
‘mew’ ‘markeredgewidth’
‘aa’ ‘antialiased’

Thus you could abbreviate the above rc command as:

rc(’lines’, lw=2, c=’r’)

Note you can use python’s kwargs dictionary facility to store dictionaries of default parameters. Eg,
you can customize the font rc as follows:

font = {’family’ : ’monospace’,
’weight’ : ’bold’,
’size’ : ’larger’}

rc(’font’, **font) # pass in the font dict as kwargs

This enables you to easily switch between several configurations. Use rcdefaults() to restore the
default rc params after changes.

rcdefaults()
Restore the default rc params - the ones that were created at matplotlib load time.

148

Matplotlib, Release 0.98

use(arg)
IPython wrapper for matplotlib’s backend switcher.

In interactive use, we can not allow switching to a different interactive backend, since thread conflicts
will most likely crash the python interpreter. This routine does a safety check first, and refuses to
perform a dangerous switch. It still allows switching to non-interactive backends.

149

150

CHAPTER

TWENTY

Matplotlib afm

20.1 matplotlib.afm

This is a python interface to Adobe Font Metrics Files. Although a number of other python implementations
exist (and may be more complete than mine) I decided not to go with them because either they were either

1. copyrighted or used a non-BSD compatible license

2. had too many dependencies and I wanted a free standing lib

3. Did more than I needed and it was easier to write my own than figure out how to just get what I needed
from theirs

It is pretty easy to use, and requires only built-in python libs:

>>> from afm import AFM
>>> fh = file(’ptmr8a.afm’)
>>> afm = AFM(fh)
>>> afm.string_width_height(’What the heck?’)
(6220.0, 683)
>>> afm.get_fontname()
’Times-Roman’
>>> afm.get_kern_dist(’A’, ’f’)
0
>>> afm.get_kern_dist(’A’, ’y’)
-92.0
>>> afm.get_bbox_char(’!’)
[130, -9, 238, 676]
>>> afm.get_bbox_font()
[-168, -218, 1000, 898]

AUTHOR: John D. Hunter <jdh2358@gmail.com>

class AFM(fh)
Parse the AFM file in file object fh

get_angle()
Return the fontangle as float

151

mailto:jdh2358@gmail.com

Matplotlib, Release 0.98

get_bbox_char(c, isord=False)

get_capheight()
Return the cap height as float

get_familyname()
Return the font family name, eg, ‘Times’

get_fontname()
Return the font name, eg, ‘Times-Roman’

get_fullname()
Return the font full name, eg, ‘Times-Roman’

get_height_char(c, isord=False)
Get the height of character c from the bounding box. This is the ink height (space is 0)

get_horizontal_stem_width()
Return the standard horizontal stem width as float, or None if not specified in AFM file.

get_kern_dist(c1, c2)
Return the kerning pair distance (possibly 0) for chars c1 and c2

get_kern_dist_from_name(name1, name2)
Return the kerning pair distance (possibly 0) for chars name1 and name2

get_name_char(c, isord=False)
Get the name of the character, ie, ‘;’ is ‘semicolon’

get_str_bbox(s)
Return the string bounding box

get_str_bbox_and_descent(s)
Return the string bounding box

get_underline_thickness()
Return the underline thickness as float

get_vertical_stem_width()
Return the standard vertical stem width as float, or None if not specified in AFM file.

get_weight()
Return the font weight, eg, ‘Bold’ or ‘Roman’

get_width_char(c, isord=False)
Get the width of the character from the character metric WX field

get_width_from_char_name(name)
Get the width of the character from a type1 character name

get_xheight()
Return the xheight as float

string_width_height(s)
Return the string width (including kerning) and string height as a (w, h) tuple.

parse_afm(fh)
Parse the Adobe Font Metics file in file handle fh. Return value is a (dhead, dcmet-
rics, dkernpairs, dcomposite) tuple where dhead is a _parse_header() dict, dcmetrics is a
_parse_composites() dict, dkernpairs is a _parse_kern_pairs() dict (possibly {}), and dcom-
posite is a _parse_composites() dict (possibly {})

152

CHAPTER

TWENTYONE

Matplotlib artists

Could not execute ‘dot’. Are you sure you have ‘graphviz’ installed?

21.1 matplotlib.artist

class Artist()
Bases: object

Abstract base class for someone who renders into a FigureCanvas.

add_callback(func)

contains(mouseevent)
Test whether the artist contains the mouse event.
Returns the truth value and a dictionary of artist specific details of selection, such as which
points are contained in the pick radius. See individual artists for details.

convert_xunits(x)
for artists in an axes, if the xaxis as units support, convert x using xaxis unit type

convert_yunits(y)
for artists in an axes, if the yaxis as units support, convert y using yaxis unit type

draw(renderer, *args, **kwargs)
Derived classes drawing method

findobj(match=None) pyplot signature:
findobj(o=gcf(), match=None)

recursively find all :class:matplotlib.artist.Artist instances contained in self
match can be

•None: return all objects contained in artist (including artist)
•function with signature boolean = match(artist) used to filter matches
•class instance: eg Line2D. Only return artists of class type

153

Matplotlib, Release 0.98

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Model complexity --->

0

5

10

15

20
M

e
ss

a
g
e
 l
e
n
g
th

 -
--

>
Minimum Message Length

Model length
Data length
Total message length

get_alpha()
Return the alpha value used for blending - not supported on all backends

get_animated()
return the artist’s animated state

get_axes()
return the axes instance the artist resides in, or None

get_clip_box()
Return artist clipbox

get_clip_on()
Return whether artist uses clipping

get_clip_path()
Return artist clip path

get_contains()
return the _contains test used by the artist, or None for default.

get_figure()
Return the Figure instance the artist belongs to.

get_label()

get_picker()
return the Pickeration instance used by this artist

get_transform()
Return the Transform instance used by this artist.

154

Matplotlib, Release 0.98

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_visible()
return the artist’s visiblity

get_zorder()

have_units()
return True if units are set on the x or y axes

hitlist(event)
List the children of the artist which contain the mouse event

is_figure_set()

is_transform_set()
Artist has transform explicity let

pchanged()
fire event when property changed

pick(mouseevent)
call signature:

pick(mouseevent)

each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set

pickable()
return True if self is pickable

remove()
Remove the artist from the figure if possible. The effect will not be visible un-
til the figure is redrawn, e.g., with matplotlib.axes.Axes.draw_idle(). Call
matplotlib.axes.Axes.relim() to update the axes limits if desired.
Note: relim() will not see collections even if the collection was added to axes with autolim =

True.
Note: there is no support for removing the artist’s legend entry.

remove_callback(oid)

set(**kwargs)
A tkstyle set command, pass kwargs to set properties

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends
ACCEPTS: float

set_animated(b)
set the artist’s animation state
ACCEPTS: [True | False]

set_axes(axes)
set the axes instance in which the artist resides, if any
ACCEPTS: an axes instance

155

Matplotlib, Release 0.98

set_clip_box(clipbox)
Set the artist’s clip Bbox
ACCEPTS: a matplotlib.transform.Bbox instance

set_clip_on(b)
Set whether artist uses clipping
ACCEPTS: [True | False]

set_clip_path(path, transform=None)
Set the artist’s clip path, which may be:

•a Patch (or subclass) instance
•a Path instance, in which case an optional Transform instance may be provided, which

will be applied to the path before using it for clipping.
•None, to remove the clipping path

For efficiency, if the path happens to be an axis-aligned rectangle, this method will set the clip-
ping box to the corresponding rectangle and set the clipping path to None.
ACCEPTS: a Path instance and a Transform instance, a Patch instance, or None.

set_contains(picker)
Replace the contains test used by this artist. The new picker should be a callable function which
determines whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

If the mouse event is over the artist, return hit=True and props is a dictionary of properties you
want returned with the contains test.

set_figure(fig)
Set the Figure instance the artist belongs to.
ACCEPTS: a matplotlib.figure.Figure instance

set_label(s)
Set the line label to s for auto legend
ACCEPTS: any string

set_lod(on)
Set Level of Detail on or off. If on, the artists may examine things like the pixel width of the
axes and draw a subset of their contents accordingly
ACCEPTS: [True | False]

set_picker(picker)
set the epsilon for picking used by this artist
picker can be one of the following:

•None: picking is disabled for this artist (default)
•A boolean: if True then picking will be enabled and the artist will fire a pick event if the
mouse event is over the artist
•A float: if picker is a number it is interpreted as an epsilon tolerance in points and the artist
will fire off an event if it’s data is within epsilon of the mouse event. For some artists like
lines and patch collections, the artist may provide additional data to the pick event that is
generated, e.g. the indices of the data within epsilon of the pick event

156

Matplotlib, Release 0.98

•A function: if picker is callable, it is a user supplied function which determines whether the
artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True and props is a
dictionary of properties you want added to the PickEvent attributes.

ACCEPTS: [None|float|boolean|callable]

set_transform(t)
Set the Transform instance used by this artist.

set_visible(b)
set the artist’s visiblity
ACCEPTS: [True | False]

set_zorder(level)
Set the zorder for the artist
ACCEPTS: any number

update(props)

update_from(other)
Copy properties from other to self.

class ArtistInspector(o)
A helper class to inspect an Artist and return information about it’s settable properties and their
current values.

Initialize the artist inspector with an Artist or sequence of Artists. If a sequence is used, we
assume it is a homogeneous sequence (all Artists are of the same type) and it is your responsibility
to make sure this is so.

aliased_name(s)
return ‘PROPNAME or alias’ if s has an alias, else return PROPNAME.
E.g. for the line markerfacecolor property, which has an alias, return ‘markerfacecolor or mfc’
and for the transform property, which does not, return ‘transform’

findobj(match=None)
recursively find all :class:matplotlib.artist.Artist instances contained in self
if match is not None, it can be
•function with signature boolean = match(artist)

•class instance: eg Line2D
used to filter matches

get_aliases()
Get a dict mapping fullname -> alias for each alias in the ArtistInspector.
Eg., for lines:

{’markerfacecolor’: ’mfc’,
’linewidth’ : ’lw’,
}

get_setters()
Get the attribute strings with setters for object. Eg., for a line, return [’markerfacecolor’,
’linewidth’,].

157

Matplotlib, Release 0.98

get_valid_values(attr)
Get the legal arguments for the setter associated with attr.
This is done by querying the docstring of the function set_attr for a line that begins with AC-
CEPTS:
Eg., for a line linestyle, return [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘None’]

is_alias(o)
Return True if method object o is an alias for another function.

pprint_getters()
Return the getters and actual values as list of strings.

pprint_setters(prop=None, leadingspace=2)
If prop is None, return a list of strings of all settable properies and their valid values.
If prop is not None, it is a valid property name and that property will be returned as a string of
property : valid values.

get(o, *args, **kwargs)
Return the value of handle property. property is an optional string for the property you want to return

Example usage:

getp(o) # get all the object properties
getp(o, ’linestyle’) # get the linestyle property

o is a Artist instance, eg Line2D or an instance of a Axes or matplotlib.text.Text. If the
property is ‘somename’, this function returns

o.get_somename()

getp can be used to query all the gettable properties with getp(o) Many properties have aliases for
shorter typing, eg ‘lw’ is an alias for ‘linewidth’. In the output, aliases and full property names will
be listed as:

property or alias = value

e.g.:

linewidth or lw = 2

getp(o, property=None)
Return the value of handle property. property is an optional string for the property you want to return

Example usage:

getp(o) # get all the object properties
getp(o, ’linestyle’) # get the linestyle property

o is a Artist instance, eg Line2D or an instance of a Axes or matplotlib.text.Text. If the
property is ‘somename’, this function returns

o.get_somename()

158

Matplotlib, Release 0.98

getp can be used to query all the gettable properties with getp(o) Many properties have aliases for
shorter typing, eg ‘lw’ is an alias for ‘linewidth’. In the output, aliases and full property names will
be listed as:

property or alias = value

e.g.:

linewidth or lw = 2

kwdoc(a)

setp(h, *args, **kwargs)
matplotlib supports the use of setp() (“set property”) and getp() to set and get object properties,
as well as to do introspection on the object. For example, to set the linestyle of a line to be dashed,
you can do:

>>> line, = plot([1,2,3])
>>> setp(line, linestyle=’--’)

If you want to know the valid types of arguments, you can provide the name of the property you want
to set without a value:

>>> setp(line, ’linestyle’)
linestyle: [’-’ | ’--’ | ’-.’ | ’:’ | ’steps’ | ’None’]

If you want to see all the properties that can be set, and their possible values, you can do:

>>> setp(line)
... long output listing omitted

setp() operates on a single instance or a list of instances. If you are in query mode introspecting the
possible values, only the first instance in the sequence is used. When actually setting values, all the
instances will be set. E.g., suppose you have a list of two lines, the following will make both lines
thicker and red:

>>> x = arange(0,1.0,0.01)
>>> y1 = sin(2*pi*x)
>>> y2 = sin(4*pi*x)
>>> lines = plot(x, y1, x, y2)
>>> setp(lines, linewidth=2, color=’r’)

setp() works with the matlab(TM) style string/value pairs or with python kwargs. For example, the
following are equivalent

>>> setp(lines, ’linewidth’, 2, ’color’, r’) # matlab style

>>> setp(lines, linewidth=2, color=’r’) # python style

159

Matplotlib, Release 0.98

21.2 matplotlib.lines

This module contains all the 2D line class which can draw with a variety of line styles, markers and colors

class Line2D(xdata, ydata, linewidth=None, linestyle=None, color=None, marker=None, marker-
size=None, markeredgewidth=None, markeredgecolor=None, markerfacecolor=None,
antialiased=None, dash_capstyle=None, solid_capstyle=None, dash_joinstyle=None,
solid_joinstyle=None, pickradius=5, **kwargs)

Bases: matplotlib.artist.Artist

Create a Line2D instance with x and y data in sequences xdata, ydata.

The kwargs are Line2D properties:

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

160

Matplotlib, Release 0.98

contains(mouseevent)
Test whether the mouse event occurred on the line. The pick radius determines
the precision of the location test (usually within five points of the value). Use
get_pickradius()/set_pickradius() to view or modify it.
Returns True if any values are within the radius along with {’ind’: pointlist}, where
pointlist is the set of points within the radius.
TODO: sort returned indices by distance

draw(renderer)

get_aa()
alias for get_antialiased

get_antialiased()

get_c()
alias for get_color

get_color()

get_dash_capstyle()
Get the cap style for dashed linestyles

get_dash_joinstyle()
Get the join style for dashed linestyles

get_data(orig=True)
Return the xdata, ydata.
If orig is True, return the original data

get_linestyle()

get_linewidth()

get_ls()
alias for get_linestyle

get_lw()
alias for get_linewidth

get_marker()

get_markeredgecolor()

get_markeredgewidth()

get_markerfacecolor()

get_markersize()

get_mec()
alias for get_markeredgecolor

get_mew()
alias for get_markeredgewidth

get_mfc()
alias for get_markerfacecolor

get_ms()
alias for get_markersize

161

Matplotlib, Release 0.98

get_path()
Return the Path object associated with this line.

get_pickradius()
return the pick radius used for containment tests

get_solid_capstyle()
Get the cap style for solid linestyles

get_solid_joinstyle()
Get the join style for solid linestyles

get_window_extent(renderer)

get_xdata(orig=True)
Return the xdata.
If orig is True, return the original data, else the processed data.

get_xydata()
Return the xy data as a Nx2 numpy array.

get_ydata(orig=True)
Return the ydata.
If orig is True, return the original data, else the processed data.

is_dashed()
return True if line is dashstyle

recache()

set_aa(val)
alias for set_antialiased

set_antialiased(b)
True if line should be drawin with antialiased rendering
ACCEPTS: [True | False]

set_axes(ax)

set_c(val)
alias for set_color

set_color(color)
Set the color of the line
ACCEPTS: any matplotlib color

set_dash_capstyle(s)
Set the cap style for dashed linestyles
ACCEPTS: [’butt’ | ‘round’ | ‘projecting’]

set_dash_joinstyle(s)
Set the join style for dashed linestyles ACCEPTS: [’miter’ | ‘round’ | ‘bevel’]

set_dashes(seq)
Set the dash sequence, sequence of dashes with on off ink in points. If seq is empty or if seq =

(None, None), the linestyle will be set to solid.
ACCEPTS: sequence of on/off ink in points

162

Matplotlib, Release 0.98

set_data(*args)
Set the x and y data
ACCEPTS: (np.array xdata, np.array ydata)

set_linestyle(linestyle)
Set the linestyle of the line
‘steps’ is equivalent to ‘steps-pre’ and is maintained for backward-compatibility.
ACCEPTS: [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘ | ‘’]

set_linewidth(w)
Set the line width in points
ACCEPTS: float value in points

set_ls(val)
alias for set_linestyle

set_lw(val)
alias for set_linewidth

set_marker(marker)
Set the line marker
ACCEPTS: [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ ‘<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’

‘h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’
TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT
‘None’ | ’ ’ | ’‘]

set_markeredgecolor(ec)
Set the marker edge color
ACCEPTS: any matplotlib color

set_markeredgewidth(ew)
Set the marker edge width in points
ACCEPTS: float value in points

set_markerfacecolor(fc)
Set the marker face color
ACCEPTS: any matplotlib color

set_markersize(sz)
Set the marker size in points
ACCEPTS: float

set_mec(val)
alias for set_markeredgecolor

set_mew(val)
alias for set_markeredgewidth

set_mfc(val)
alias for set_markerfacecolor

set_ms(val)
alias for set_markersize

set_picker(p)
Sets the event picker details for the line.
Accepts: float distance in points or callable pick function fn(artist,event)

163

Matplotlib, Release 0.98

set_pickradius(d)
Sets the pick radius used for containment tests
Accepts: float distance in points.

set_solid_capstyle(s)
Set the cap style for solid linestyles
ACCEPTS: [’butt’ | ‘round’ | ‘projecting’]

set_solid_joinstyle(s)
Set the join style for solid linestyles ACCEPTS: [’miter’ | ‘round’ | ‘bevel’]

set_transform(t)
set the Transformation instance used by this artist
ACCEPTS: a matplotlib.transforms.Transform instance

set_xdata(x)
Set the data np.array for x
ACCEPTS: np.array

set_ydata(y)
Set the data np.array for y
ACCEPTS: np.array

update_from(other)
copy properties from other to self

class VertexSelector(line)
Manage the callbacks to maintain a list of selected vertices for matplotlib.lines.Line2D. Derived
classes should override process_selected() to do something with the picks.

Here is an example which highlights the selected verts with red circles:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as lines

class HighlightSelected(lines.VertexSelector):
def __init__(self, line, fmt=’ro’, **kwargs):

lines.VertexSelector.__init__(self, line)
self.markers, = self.axes.plot([], [], fmt, **kwargs)

def process_selected(self, ind, xs, ys):
self.markers.set_data(xs, ys)
self.canvas.draw()

fig = plt.figure()
ax = fig.add_subplot(111)
x, y = np.random.rand(2, 30)
line, = ax.plot(x, y, ’bs-’, picker=5)

selector = HighlightSelected(line)
plt.show()

Initialize the class with a matplotlib.lines.Line2D instance. The line should already be added to
some matplotlib.axes.Axes instance and should have the picker property set.

164

Matplotlib, Release 0.98

onpick(event)
When the line is picked, update the set of selected indicies.

process_selected(ind, xs, ys)
Default “do nothing” implementation of the process_selected() method.
ind are the indices of the selected vertices. xs and ys are the coordinates of the selected vertices.

segment_hits(cx, cy, x, y, radius)
Determine if any line segments are within radius of a point. Returns the list of line segments that are
within that radius.

unmasked_index_ranges(mask, compressed=True)

21.3 matplotlib.patches

class Arc(xy, width, height, angle=0.0, theta1=0.0, theta2=360.0, **kwargs)
Bases: matplotlib.patches.Ellipse

An elliptical arc. Because it performs various optimizations, it can not be filled.

The arc must be used in an Axes instance—it cannot be added directly to a Figure—because it is
optimized to only render the segments that are inside the axes bounding box with high resolution.

The following args are supported:

xy center of ellipse

width length of horizontal axis

height length of vertical axis

angle rotation in degrees (anti-clockwise)

theta1 starting angle of the arc in degrees

theta2 ending angle of the arc in degrees

If theta1 and theta2 are not provided, the arc will form a complete ellipse.

Valid kwargs are:

165

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
edgecolor or ec any matplotlib color
facecolor or fc any matplotlib color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linewidth or lw float
lod [True | False]
transform a matplotlib.transform transformation instance
visible [True | False]
zorder any number

draw(renderer)
Ellipses are normally drawn using an approximation that uses eight cubic bezier splines. The
error of this approximation is 1.89818e-6, according to this unverified source:

Lancaster, Don. Approximating a Circle or an Ellipse Using Four Bezier Cubic
Splines.
http://www.tinaja.com/glib/ellipse4.pdf

There is a use case where very large ellipses must be drawn with very high accuracy, and it is
too expensive to render the entire ellipse with enough segments (either splines or line segments).
Therefore, in the case where either radius of the ellipse is large enough that the error of the spline
approximation will be visible (greater than one pixel offset from the ideal), a different technique
is used.
In that case, only the visible parts of the ellipse are drawn, with each visible arc using a fixed
number of spline segments (8). The algorithm proceeds as follows:

1.The points where the ellipse intersects the axes bounding box are located. (This is done
be performing an inverse transformation on the axes bbox such that it is relative to the
unit circle – this makes the intersection calculation much easier than doing rotated ellipse
intersection directly).
This uses the “line intersecting a circle” algorithm from:

Vince, John. Geometry for Computer Graphics: Formulae, Examples & Proofs.
London: Springer-Verlag, 2005.

2.The angles of each of the intersection points are calculated.
3.Proceeding counterclockwise starting in the positive x-direction, each of the visible arc-

segments between the pairs of vertices are drawn using the bezier arc approximation tech-
nique implemented in matplotlib.path.Path.arc().

class Arrow(x, y, dx, dy, width=1.0, **kwargs)
Bases: matplotlib.patches.Patch

An arrow patch.

Draws an arrow, starting at (x, y), direction and length given by (dx, dy) the width of the arrow is
scaled by width.

166

http://www.tinaja.com/glib/ellipse4.pdf

Matplotlib, Release 0.98

Valid kwargs are:

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
edgecolor or ec any matplotlib color
facecolor or fc any matplotlib color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linewidth or lw float
lod [True | False]
transform a matplotlib.transform transformation instance
visible [True | False]
zorder any number

get_patch_transform()

get_path()

class Circle(xy, radius=5, **kwargs)
Bases: matplotlib.patches.Ellipse

A circle patch.

Create true circle at center xy = (x, y) with given radius. Unlike CirclePolygon which is a polygonal
approximation, this uses Bézier splines and is much closer to a scale-free circle.

Valid kwargs are:

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
edgecolor or ec any matplotlib color
facecolor or fc any matplotlib color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linewidth or lw float
lod [True | False]
transform a matplotlib.transform transformation instance
visible [True | False]
zorder any number

167

Matplotlib, Release 0.98

class CirclePolygon(xy, radius=5, resolution=20, **kwargs)
Bases: matplotlib.patches.RegularPolygon

A polygon-approximation of a circle patch.

Create a circle at xy = (x, y) with given radius. This circle is approximated by a regular polygon with
resolution sides. For a smoother circle drawn with splines, see Circle.

Valid kwargs are:

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
edgecolor or ec any matplotlib color
facecolor or fc any matplotlib color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linewidth or lw float
lod [True | False]
transform a matplotlib.transform transformation instance
visible [True | False]
zorder any number

class Ellipse(xy, width, height, angle=0.0, **kwargs)
Bases: matplotlib.patches.Patch

A scale-free ellipse.

xy center of ellipse

width length of horizontal axis

height length of vertical axis

angle rotation in degrees (anti-clockwise)

Valid kwargs are:

168

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
edgecolor or ec any matplotlib color
facecolor or fc any matplotlib color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linewidth or lw float
lod [True | False]
transform a matplotlib.transform transformation instance
visible [True | False]
zorder any number

contains(ev)

get_patch_transform()

get_path()
Return the vertices of the rectangle

class FancyArrow(x, y, dx, dy, width=0.001, length_includes_head=False, head_width=None,
head_length=None, shape=’full’, overhang=0, head_starts_at_zero=False, **kwargs)

Bases: matplotlib.patches.Polygon

Like Arrow, but lets you set head width and head height independently.

Constructor arguments

length_includes_head: True if head is counted in calculating the length.
shape: [’full’, ‘left’, ‘right’]

overhang: distance that the arrow is swept back (0 overhang means triangular shape).
head_starts_at_zero: If True, the head starts being drawn at coordinate 0 instead of ending

at coordinate 0.

Valid kwargs are:

169

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
edgecolor or ec any matplotlib color
facecolor or fc any matplotlib color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linewidth or lw float
lod [True | False]
transform a matplotlib.transform transformation instance
visible [True | False]
zorder any number

class Patch(edgecolor=None, facecolor=None, linewidth=None, linestyle=None, antialiased=None,
hatch=None, fill=True, **kwargs)

Bases: matplotlib.artist.Artist

A patch is a 2D thingy with a face color and an edge color.

If any of edgecolor, facecolor, linewidth, or antialiased are None, they default to their rc params
setting.

The following kwarg properties are supported

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
edgecolor or ec any matplotlib color
facecolor or fc any matplotlib color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linewidth or lw float
lod [True | False]
transform a matplotlib.transform transformation instance
visible [True | False]
zorder any number

contains(mouseevent)
Test whether the mouse event occurred in the patch.
Returns T/F, {}

draw(renderer)

170

Matplotlib, Release 0.98

get_aa()

get_antialiased()

get_data_transform()

get_ec()

get_edgecolor()

get_extents()

get_facecolor()

get_fc()

get_fill()
return whether fill is set

get_hatch()
return the current hatching pattern

get_linestyle()

get_linewidth()

get_ls()

get_lw()

get_patch_transform()

get_path()
Return the path of this patch

get_transform()

get_verts()
Return a copy of the vertices used in this patch
If the patch contains Bézier curves, the curves will be interpolated by line segments. To access
the curves as curves, use get_path().

get_window_extent(renderer=None)

set_aa(aa)
Set whether to use antialiased rendering
ACCEPTS: [True | False] or None for default

set_antialiased(aa)
Set whether to use antialiased rendering
ACCEPTS: [True | False] or None for default

set_ec(color)
Set the patch edge color
ACCEPTS: mpl color spec, or None for default, or ‘none’ for no color

set_edgecolor(color)
Set the patch edge color
ACCEPTS: mpl color spec, or None for default, or ‘none’ for no color

set_facecolor(color)
Set the patch face color
ACCEPTS: mpl color spec, or None for default, or ‘none’ for no color

171

Matplotlib, Release 0.98

set_fc(color)
Set the patch face color
ACCEPTS: mpl color spec, or None for default, or ‘none’ for no color

set_fill(b)
Set whether to fill the patch
ACCEPTS: [True | False]

set_hatch(h)
Set the hatching pattern
hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
- crossed
x - crossed diagonal

Letters can be combined, in which case all the specified hatchings are done. If same letter
repeats, it increases the density of hatching in that direction.
CURRENT LIMITATIONS:

1.Hatching is supported in the PostScript backend only.
2.Hatching is done with solid black lines of width 0.

set_linestyle(ls)
Set the patch linestyle
ACCEPTS: [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

set_linewidth(w)
Set the patch linewidth in points
ACCEPTS: float or None for default

set_ls(ls)
Set the patch linestyle
ACCEPTS: [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

set_lw(w)
Set the patch linewidth in points
ACCEPTS: float or None for default

update_from(other)

class PathPatch(path, **kwargs)
Bases: matplotlib.patches.Patch

A general polycurve path patch.

path is a matplotlib.path.Path object.

Valid kwargs are:

172

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
edgecolor or ec any matplotlib color
facecolor or fc any matplotlib color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linewidth or lw float
lod [True | False]
transform a matplotlib.transform transformation instance
visible [True | False]
zorder any number

See Patch documentation for additional kwargs

get_path()

class Polygon(xy, closed=True, **kwargs)
Bases: matplotlib.patches.Patch

A general polygon patch.

xy is a numpy array with shape Nx2.

If closed is True, the polygon will be closed so the starting and ending points are the same.

Valid kwargs are:

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
edgecolor or ec any matplotlib color
facecolor or fc any matplotlib color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linewidth or lw float
lod [True | False]
transform a matplotlib.transform transformation instance
visible [True | False]
zorder any number

See Patch documentation for additional kwargs

get_closed()

173

Matplotlib, Release 0.98

get_path()

get_xy()

set_closed(closed)

set_xy(vertices)

xy
Set/get the vertices of the polygon. This property is provided for backward compatibility with
matplotlib 0.91.x only. New code should use get_xy() and set_xy() instead.

class Rectangle(xy, width, height, **kwargs)
Bases: matplotlib.patches.Patch

Draw a rectangle with lower left at xy*=(*x, y) with specified width and height

fill is a boolean indicating whether to fill the rectangle

Valid kwargs are:

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
edgecolor or ec any matplotlib color
facecolor or fc any matplotlib color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linewidth or lw float
lod [True | False]
transform a matplotlib.transform transformation instance
visible [True | False]
zorder any number

contains(mouseevent)

get_bbox()

get_height()
Return the height of the rectangle

get_patch_transform()

get_path()
Return the vertices of the rectangle

get_width()
Return the width of the rectangle

get_x()
Return the left coord of the rectangle

get_y()
Return the bottom coord of the rectangle

174

Matplotlib, Release 0.98

set_bounds(*args)
Set the bounds of the rectangle: l,b,w,h
ACCEPTS: (left, bottom, width, height)

set_height(h)
Set the width rectangle
ACCEPTS: float

set_width(w)
Set the width rectangle
ACCEPTS: float

set_x(x)
Set the left coord of the rectangle
ACCEPTS: float

set_y(y)
Set the bottom coord of the rectangle
ACCEPTS: float

class RegularPolygon(xy, numVertices, radius=5, orientation=0, **kwargs)
Bases: matplotlib.patches.Patch

A regular polygon patch.

Constructor arguments:

xy A length 2 tuple (x, y) of the center.

numVertices the number of vertices.

radius The distance from the center to each of the vertices.

orientation rotates the polygon (in radians).

Valid kwargs are:

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
edgecolor or ec any matplotlib color
facecolor or fc any matplotlib color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linewidth or lw float
lod [True | False]
transform a matplotlib.transform transformation instance
visible [True | False]
zorder any number

get_patch_transform()

175

Matplotlib, Release 0.98

get_path()

numvertices

orientation

radius

xy

class Shadow(patch, ox, oy, props=None, **kwargs)
Bases: matplotlib.patches.Patch

Create a shadow of the given patch offset by ox, oy. props, if not None, is a patch property update
dictionary. If None, the shadow will have have the same color as the face, but darkened.

kwargs are

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
edgecolor or ec any matplotlib color
facecolor or fc any matplotlib color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linewidth or lw float
lod [True | False]
transform a matplotlib.transform transformation instance
visible [True | False]
zorder any number

get_patch_transform()

get_path()

class Wedge(center, r, theta1, theta2, **kwargs)
Bases: matplotlib.patches.Patch

Draw a wedge centered at x, y center with radius r that sweeps theta1 to theta2 (in degrees).

Valid kwargs are:

176

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
edgecolor or ec any matplotlib color
facecolor or fc any matplotlib color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linewidth or lw float
lod [True | False]
transform a matplotlib.transform transformation instance
visible [True | False]
zorder any number

get_patch_transform()

get_path()

class YAArrow(figure, xytip, xybase, width=4, frac=0.10000000000000001, headwidth=12, **kwargs)
Bases: matplotlib.patches.Patch

Yet another arrow class.

This is an arrow that is defined in display space and has a tip at x1, y1 and a base at x2, y2.

Constructor arguments:

xytip (x, y) location of arrow tip

xybase (x, y) location the arrow base mid point

figure The Figure instance (fig.dpi)

width The width of the arrow in points

frac The fraction of the arrow length occupied by the head

headwidth The width of the base of the arrow head in points

Valid kwargs are:

177

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
edgecolor or ec any matplotlib color
facecolor or fc any matplotlib color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linewidth or lw float
lod [True | False]
transform a matplotlib.transform transformation instance
visible [True | False]
zorder any number

get_patch_transform()

get_path()

getpoints(x1, y1, x2, y2, k)
For line segment defined by (x1, y1) and (x2, y2) return the points on the line that is perpendicular
to the line and intersects (x2, y2) and the distance from (x2, y2) of the returned points is k.

bbox_artist(artist, renderer, props=None, fill=True)
This is a debug function to draw a rectangle around the bounding box returned by
get_window_extent() of an artist, to test whether the artist is returning the correct bbox.

props is a dict of rectangle props with the additional property ‘pad’ that sets the padding around the
bbox in points.

draw_bbox(bbox, renderer, color=’k’, trans=None)
This is a debug function to draw a rectangle around the bounding box returned by
get_window_extent() of an artist, to test whether the artist is returning the correct bbox.

21.4 matplotlib.text

Figure and Axes text

class Annotation(s, xy, xytext=None, xycoords=’data’, textcoords=None, arrowprops=None, **kwargs)
Bases: matplotlib.text.Text

A Text class to make annotating things in the figure, such as Figure, Axes, Rectangle, etc., easier.

Annotate the x, y point xy with text s at x, y location xytext. (If xytext = None, defaults to xy, and if
textcoords = None, defaults to xycoords).

arrowprops, if not None, is a dictionary of line properties (see matplotlib.lines.Line2D) for the
arrow that connects annotation to the point. Valid keys are

178

Matplotlib, Release 0.98

Key Description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
head-
width

the width of the base of the arrow head in points

shrink oftentimes it is convenient to have the arrowtip and base a bit away from the text and point
being annotated. If d is the distance between the text and annotated point, shrink will shorten
the arrow so the tip and base are shink percent of the distance d away from the endpoints. ie,
shrink=0.05 is 5%

? any key for matplotlib.patches.polygon

xycoords and textcoords are strings that indicate the coordinates of xy and xytext.

Prop-
erty

Description

‘figure
points’

points from the lower left corner of the figure

‘figure
pixels’

pixels from the lower left corner of the figure

‘figure
fraction’

0,0 is lower left of figure and 1,1 is upper, right

‘axes
points’

points from lower left corner of axes

‘axes
pixels’

pixels from lower left corner of axes

‘axes
fraction’

0,1 is lower left of axes and 1,1 is upper right

‘data’ use the coordinate system of the object being annotated (default)
‘offset
points’

Specify an offset (in points) from the xy value

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you are using
a polar axes, you do not need to specify polar for the coordinate system since that is the
native “data” coordinate system.

If a ‘points’ or ‘pixels’ option is specified, values will be added to the bottom-left and if negative,
values will be subtracted from the top-right. Eg:

10 points to the right of the left border of the axes and
5 points below the top border
xy=(10,-5), xycoords=’axes points’

Additional kwargs are Text properties:

179

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color any matplotlib color
contains unknown
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion
transform unknown
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

contains(event)

draw(renderer)

set_clip_box(clipbox)
Set the artist’s clip Bbox
ACCEPTS: a matplotlib.transform.Bbox instance

set_figure(fig)

update_positions(renderer)

class Text(x=0, y=0, text=”, color=None, verticalalignment=’bottom’, horizontalalignment=’left’, multi-
alignment=None, fontproperties=None, rotation=None, linespacing=None, **kwargs)

Bases: matplotlib.artist.Artist

Handle storing and drawing of text in window or data coordinates

Create a Text instance at x, y with string text.

180

Matplotlib, Release 0.98

Valid kwargs are

alpha float
animated [True | False]
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
color any matplotlib color
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string
transform a matplotlib.transform transformation instance
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

contains(mouseevent)
Test whether the mouse event occurred in the patch.
Returns T/F, {}

draw(renderer)

get_color()
Return the color of the text

get_font_properties()
Return the font object

get_fontname()
alias for get_name

get_fontsize()
alias for get_size

get_fontstyle()
alias for get_style

get_fontweight()
alias for get_weight

181

Matplotlib, Release 0.98

get_ha()
alias for get_horizontalalignment

get_horizontalalignment()
Return the horizontal alignment as string

get_name()
Return the font name as string

get_position()
Return x, y as tuple

get_prop_tup()
Return a hashable tuple of properties
Not intended to be human readable, but useful for backends who want to cache derived informa-
tion about text (eg layouts) and need to know if the text has changed

get_rotation()
return the text angle as float

get_size()
Return the font size as integer

get_style()
Return the font style as string

get_text()
Get the text as string

get_va()
alias for getverticalalignment

get_verticalalignment()
Return the vertical alignment as string

get_weight()
Get the font weight as string

get_window_extent(renderer=None)

is_math_text(s)

set_backgroundcolor(color)
Set the background color of the text by updating the bbox (see set_bbox for more info)
ACCEPTS: any matplotlib color

set_bbox(rectprops)
Draw a bounding box around self. rect props are any settable properties for a rectangle, eg
facecolor=’red’, alpha=0.5.

t.set_bbox(dict(facecolor=’red’, alpha=0.5))

ACCEPTS: rectangle prop dict plus key ‘pad’ which is a pad in points

set_color(color)
Set the foreground color of the text
ACCEPTS: any matplotlib color

set_family(fontname)
Set the font family
ACCEPTS: [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]

182

Matplotlib, Release 0.98

set_fontname(fontname)
alias for set_name

set_fontproperties(fp)
Set the font properties that control the text
ACCEPTS: a matplotlib.font_manager.FontProperties instance

set_fontsize(fontsize)
alias for set_size

set_fontstyle(fontstyle)
alias for set_style

set_fontweight(weight)
alias for set_weight

set_ha(align)
alias for set_horizontalalignment

set_horizontalalignment(align)
Set the horizontal alignment to one of
ACCEPTS: [‘center’ | ‘right’ | ‘left’]

set_linespacing(spacing)
Set the line spacing as a multiple of the font size. Default is 1.2.
ACCEPTS: float

set_ma(align)
alias for set_verticalalignment

set_multialignment(align)
Set the alignment for multiple lines layout. The layout of the bounding box of all the lines is
determined bu the horizontalalignment and verticalalignment properties, but the multiline text
within that box can be
ACCEPTS: [’left’ | ‘right’ | ‘center’]

set_name(fontname)
Set the font name,
ACCEPTS: string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]

set_position(xy)
Set the xy position of the text
ACCEPTS: (x,y)

set_rotation(s)
Set the rotation of the text
ACCEPTS: [angle in degrees ‘vertical’ | ‘horizontal’

set_size(fontsize)
Set the font size, eg, 8, 10, 12, 14...
ACCEPTS: [size in points | relative size eg ‘smaller’, ‘x-large’]

set_style(fontstyle)
Set the font style
ACCEPTS: [‘normal’ | ‘italic’ | ‘oblique’]

183

Matplotlib, Release 0.98

set_text(s)
Set the text string s
ACCEPTS: string or anything printable with ‘%s’ conversion

set_va(align)
alias for set_verticalalignment

set_variant(variant)
Set the font variant, eg,
ACCEPTS: [‘normal’ | ‘small-caps’]

set_verticalalignment(align)
Set the vertical alignment
ACCEPTS: [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]

set_weight(weight)
Set the font weight
ACCEPTS: [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]

set_x(x)
Set the x position of the text
ACCEPTS: float

set_y(y)
Set the y position of the text
ACCEPTS: float

update_from(other)
Copy properties from other to self

class TextWithDash(x=0, y=0, text=”, color=None, verticalalignment=’center’, horizontalalign-
ment=’center’, multialignment=None, fontproperties=None, rotation=None, lines-
pacing=None, dashlength=0.0, dashdirection=0, dashrotation=None, dashpad=3,
dashpush=0, xaxis=True)

Bases: matplotlib.text.Text

This is basically a Text with a dash (drawn with a Line2D) before/after it. It is intended to be a
drop-in replacement for Text, and should behave identically to it when dashlength = 0.0.

The dash always comes between the point specified by set_position() and the text. When a dash
exists, the text alignment arguments (horizontalalignment, verticalalignment) are ignored.

dashlength is the length of the dash in canvas units. (default = 0.0).

dashdirection is one of 0 or 1, where 0 draws the dash after the text and 1 before. (default = 0).

dashrotation specifies the rotation of the dash, and should generally stay None. In this case
get_dashrotation() returns get_rotation(). (I.e., the dash takes its rotation from the text’s
rotation). Because the text center is projected onto the dash, major deviations in the rotation cause
what may be considered visually unappealing results. (default = None)

dashpad is a padding length to add (or subtract) space between the text and the dash, in canvas units.
(default = 3)

dashpush “pushes” the dash and text away from the point specified by set_position() by the
amount in canvas units. (default = 0)

184

Matplotlib, Release 0.98

NOTE: The alignment of the two objects is based on the bounding box of the Text, as obtained
by get_window_extent(). This, in turn, appears to depend on the font metrics as given by the
rendering backend. Hence the quality of the “centering” of the label text with respect to the dash
varies depending on the backend used.

NOTE 2: I’m not sure that I got the get_window_extent() right, or whether that’s sufficient for
providing the object bounding box.

draw(renderer)

get_dashdirection()

get_dashlength()

get_dashpad()

get_dashpush()

get_dashrotation()

get_figure()
return the figure instance

get_position()
Return x, y as tuple

get_prop_tup()
Return a hashable tuple of properties.
Not intended to be human readable, but useful for backends who want to cache derived informa-
tion about text (eg layouts) and need to know if the text has changed.

get_window_extent(renderer=None)

set_dashdirection(dd)
Set the direction of the dash following the text. 1 is before the text and 0 is after. The default is
0, which is what you’d want for the typical case of ticks below and on the left of the figure.
ACCEPTS: int

set_dashlength(dl)
Set the length of the dash.
ACCEPTS: float

set_dashpad(dp)
Set the “pad” of the TextWithDash, which is the extra spacing between the dash and the text, in
canvas units.
ACCEPTS: float

set_dashpush(dp)
Set the “push” of the TextWithDash, which is the extra spacing between the beginning of the
dash and the specified position.
ACCEPTS: float

set_dashrotation(dr)
Set the rotation of the dash.
ACCEPTS: float

set_figure(fig)
Set the figure instance the artist belong to.
ACCEPTS: a matplotlib.figure.Figure instance

185

Matplotlib, Release 0.98

set_position(xy)
Set the xy position of the TextWithDash.
ACCEPTS: (x,y)

set_transform(t)
Set the Transformation instance used by this artist.
ACCEPTS: a matplotlib.transform transformation instance

set_x(x)
Set the x position of the TextWithDash.
ACCEPTS: float

set_y(y)
Set the y position of the TextWithDash.
ACCEPTS: float

update_coords(renderer)
Computes the actual x,y coordinates for text based on the input x,y and the dashlength. Since
the rotation is with respect to the actual canvas’s coordinates we need to map back and forth.

get_rotation(rotation)
return the text angle as float

186

CHAPTER

TWENTYTWO

Matplotlib figure

22.1 matplotlib.figure

The figure module provides the top-level Artist, the Figure, which contains all the plot elements. The
following classes are defined

SubplotParams control the default spacing of the subplots

Figure top level container for all plot elements

class Figure(figsize=None, dpi=None, facecolor=None, edgecolor=None, linewidth=1.0, frameon=True,
subplotpars=None)

Bases: matplotlib.artist.Artist

The Figure instance supports callbacks through a callbacks attribute which is a
matplotlib.cbook.CallbackRegistry instance. The events you can connect to are
‘dpi_changed’, and the callback will be called with func(fig) where fig is the Figure instance.

The figure patch is drawn by a the attribute

patch a matplotlib.patches.Rectangle instance

suppressComposite for multiple figure images, the figure will make composite images depending on
the renderer option_image_nocomposite function. If suppressComposite is True|False, this will
override the renderer

figsize w,h tuple in inches

dpi dots per inch

facecolor the figure patch facecolor; defaults to rc figure.facecolor

edgecolor the figure patch edge color; defaults to rc figure.edgecolor

linewidth the figure patch edge linewidth; the default linewidth of the frame

frameon if False, suppress drawing the figure frame

subplotpars a SubplotParams instance, defaults to rc

add_axes(*args, **kwargs)
Add an a axes with axes rect [left, bottom, width, height] where all quantities are in fractions of
figure width and height. kwargs are legal Axes kwargs plus projection which sets the projection
type of the axes. (For backward compatibility, polar=True may also be provided, which is
equivalent to projection=’polar’). Valid values for projection are: aitoff, hammer, lambert,

187

Matplotlib, Release 0.98

polar, rectilinear. Some of these projections support additional kwargs, which may be provided
to add_axes():

rect = l,b,w,h
fig.add_axes(rect)
fig.add_axes(rect, frameon=False, axisbg=’g’)
fig.add_axes(rect, polar=True)
fig.add_axes(rect, projection=’polar’)
fig.add_axes(ax) # add an Axes instance

If the figure already has an axes with the same parameters, then it will simply make that axes
current and return it. If you do not want this behavior, eg. you want to force the creation of
a new axes, you must use a unique set of args and kwargs. The axes label attribute has been
exposed for this purpose. Eg., if you want two axes that are otherwise identical to be added to
the figure, make sure you give them unique labels:

fig.add_axes(rect, label=’axes1’)
fig.add_axes(rect, label=’axes2’)

The Axes instance will be returned.
The following kwargs are supported:

188

Matplotlib, Release 0.98

Property Description
adjustable [‘box’ | ‘datalim’]
alpha float
anchor unknown
animated [True | False]
aspect unknown
autoscale_on unknown
axes an axes instance
axis_bgcolor any matplotlib color - see
axis_off unknown
axis_on unknown
axisbelow [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color_cycle unknown
contains unknown
cursor_props a (float, color) tuple
figure unknown
frame_on [True | False]
label any string
lod [True | False]
navigate [True | False]
navigate_mode unknown
picker [None|float|boolean|callable]
position unknown
title unknown
transform unknown
visible [True | False]
xbound unknown
xlabel unknown
xlim len(2) sequence of floats
xscale [’linear’ | ‘log’ | ‘symlog’]
xticklabels unknown
xticks sequence of floats
ybound unknown
ylabel unknown
ylim len(2) sequence of floats
yscale [’linear’ | ‘log’ | ‘symlog’]
yticklabels unknown
yticks sequence of floats
zorder any number

add_axobserver(func)
whenever the axes state change, func(self) will be called

add_subplot(*args, **kwargs)

autofmt_xdate(bottom=0.20000000000000001, rotation=30, ha=’right’)
Date ticklabels often overlap, so it is useful to rotate them and right align them. Also, a common

189

Matplotlib, Release 0.98

use case is a number of subplots with shared xaxes where the x-axis is date data. The ticklabels
are often long, and it helps to rotate them on the bottom subplot and turn them off on other
subplots, as well as turn off xlabels.

bottom the bottom of the subplots for subplots_adjust()
rotation the rotation of the xtick labels
ha the horizontal alignment of the xticklabels

clear()
Clear the figure

clf()
Clear the figure

colorbar(mappable, cax=None, ax=None, **kw)
Create a colorbar for a ScalarMappable instance.
Documentation for the pylab thin wrapper:

Add a colorbar to a plot.
Function signatures for the pyplot interface; all but the first are also method signatures for the
matplotlib.Figure.colorbar() method:

colorbar(**kwargs)
colorbar(mappable, **kwargs)
colorbar(mappable, cax=cax, **kwargs)
colorbar(mappable, ax=ax, **kwargs)

arguments:

mappable the image, ContourSet, etc. to which the colorbar applies; this argument
is mandatory for the matplotlib.Figure.colorbar() method but optional for
the matplotlib.pyplot.colorbar() function, which sets the default to the cur-
rent image.

keyword arguments:

cax None | axes object into which the colorbar will be drawn
ax None | parent axes object from which space for a new colorbar axes will be stolen

Additional keyword arguments are of two kinds:

axes properties:
Property Description

fraction 0.15; fraction of original axes to use for colorbar
pad 0.05 if vertical, 0.15 if horizontal; fraction of original axes between colorbar and new

image axes
shrink 1.0; fraction by which to shrink the colorbar
aspect 20; ratio of long to short dimensions

colorbar properties:

190

Matplotlib, Release 0.98

Prop-
erty

Description

ex-
tend

[‘neither’ | ‘both’ | ‘min’ | ‘max’] If not ‘neither’, make pointed end(s) for out-of- range
values. These are set for a given colormap using the colormap set_under and set_over methods.

spac-
ing

[‘uniform’ | ‘proportional’] Uniform spacing gives each discrete color the same space;
proportional makes the space proportional to the data interval.

ticks [None | list of ticks | Locator object] If None, ticks are determined automatically from the
input.

for-
mat

[None | format string | Formatter object] If None, the ScalarFormatter is used. If a format
string is given, e.g. ‘%.3f’, that is used. An alternative Formatter object may be given
instead.

drawedges[False | True] If true, draw lines at color boundaries.
The following will probably be useful only in the context of indexed colors
(that is, when the mappable has norm=NoNorm()), or other unusual circum-
stances.

Prop-
erty

Description

bound-
aries

None or a sequence

values None or a sequence which must be of length 1 less than the sequence of boundaries. For each
region delimited by adjacent entries in boundaries, the color mapped to the corresponding
value in values will be used.

If mappable is a ContourSet, its extend kwarg is included automatically.
Note that the shrink kwarg provides a simple way to keep a vertical colorbar, for example, from
being taller than the axes of the mappable to which the colorbar is attached; but it is a manual
method requiring some trial and error. If the colorbar is too tall (or a horizontal colorbar is too
wide) use a smaller value of shrink.
For more precise control, you can manually specify the positions of the axes objects in which the
mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs.

contains(mouseevent)
Test whether the mouse event occurred on the figure.
Returns True,{}

delaxes(a)
remove a from the figure and update the current axes

dpi

draw(renderer)
Render the figure using matplotlib.backend_bases.RendererBase instance renderer

draw_artist(a)
draw matplotlib.artist.Artist instance a only – this is available only after the figure is
drawn

figimage(X, xo=0, yo=0, alpha=1.0, norm=None, cmap=None, vmin=None, vmax=None, origin=None)
call signatures:

figimage(X, **kwargs)

adds a non-resampled array X to the figure.

191

Matplotlib, Release 0.98

figimage(X, xo, yo)

with pixel offsets xo, yo,
X must be a float array:

•If X is MxN, assume luminance (grayscale)
•If X is MxNx3, assume RGB
•If X is MxNx4, assume RGBA

Optional keyword arguments:

Key-
word

Description

xo or
yo

An integer, the x and y image offset in pixels

cmap a matplotlib.cm.ColorMap instance, eg cm.jet. If None, default to the rc image.cmap
value

norm a matplotlib.colors.Normalize instance. The default is normalization(). This scales
luminance -> 0-1

vmin|vmaxare used to scale a luminance image to 0-1. If either is None, the min and max of the
luminance values will be used. Note if you pass a norm instance, the settings for vmin and
vmax will be ignored.

alpha the alpha blending value, default is 1.0
origin [‘upper’ | ‘lower’] Indicates where the [0,0] index of the array is in the upper left or lower left

corner of the axes. Defaults to the rc image.origin value

figimage complements the axes image (imshow()) which will be resampled to fit the current
axes. If you want a resampled image to fill the entire figure, you can define an Axes with size
[0,1,0,1].
An matplotlib.image.FigureImage instance is returned.

192

Matplotlib, Release 0.98

gca(**kwargs)
Return the current axes, creating one if necessary
The following kwargs are supported

193

Matplotlib, Release 0.98

Property Description
adjustable [‘box’ | ‘datalim’]
alpha float
anchor unknown
animated [True | False]
aspect unknown
autoscale_on unknown
axes an axes instance
axis_bgcolor any matplotlib color - see
axis_off unknown
axis_on unknown
axisbelow [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color_cycle unknown
contains unknown
cursor_props a (float, color) tuple
figure unknown
frame_on [True | False]
label any string
lod [True | False]
navigate [True | False]
navigate_mode unknown
picker [None|float|boolean|callable]
position unknown
title unknown
transform unknown
visible [True | False]
xbound unknown
xlabel unknown
xlim len(2) sequence of floats
xscale [’linear’ | ‘log’ | ‘symlog’]
xticklabels unknown
xticks sequence of floats
ybound unknown
ylabel unknown
ylim len(2) sequence of floats
yscale [’linear’ | ‘log’ | ‘symlog’]
yticklabels unknown
yticks sequence of floats
zorder any number

get_axes()

get_children()
get a list of artists contained in the figure

get_dpi()
Return the dpi as a float

194

Matplotlib, Release 0.98

get_edgecolor()
Get the edge color of the Figure rectangle

get_facecolor()
Get the face color of the Figure rectangle

get_figheight()
Return the figheight as a float

get_figwidth()
Return the figwidth as a float

get_frameon()
get the boolean indicating frameon

get_size_inches()

get_window_extent(*args, **kwargs)
get the figure bounding box in display space; kwargs are void

ginput(n=1, timeout=30, show_clicks=True)
call signature:

ginput(self, n=1, timeout=30, show_clicks=True)

Blocking call to interact with the figure.
This will wait for n clicks from the user and return a list of the coordinates of each click.
If timeout is negative, does not timeout.
If n is negative, accumulate clicks until a middle click terminates the input.
Right clicking cancels last input.

hold(b=None)
Set the hold state. If hold is None (default), toggle the hold state. Else set the hold state to
boolean value b.
Eg:

hold() # toggle hold
hold(True) # hold is on
hold(False) # hold is off

legend(handles, labels, *args, **kwargs)
Place a legend in the figure. Labels are a sequence of strings, handles is a sequence of Line2D
or Patch instances, and loc can be a string or an integer specifying the legend location
USAGE:

legend((line1, line2, line3),
(’label1’, ’label2’, ’label3’),
’upper right’)

The loc location codes are:

’best’ : 0, (currently not supported for figure legends)
’upper right’ : 1,
’upper left’ : 2,
’lower left’ : 3,
’lower right’ : 4,

195

Matplotlib, Release 0.98

’right’ : 5,
’center left’ : 6,
’center right’ : 7,
’lower center’ : 8,
’upper center’ : 9,
’center’ : 10,

loc can also be an (x,y) tuple in figure coords, which specifies the lower left of the legend box.
figure coords are (0,0) is the left, bottom of the figure and 1,1 is the right, top.
The legend instance is returned. The following kwargs are supported

loc the location of the legend
numpoints the number of points in the legend line
prop a matplotlib.font_manager.FontProperties instance
pad the fractional whitespace inside the legend border
markerscale the relative size of legend markers vs. original
shadow if True, draw a shadow behind legend
labelsep the vertical space between the legend entries
handlelen the length of the legend lines
handletextsep the space between the legend line and legend text
axespad the border between the axes and legend edge

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

Line 1
Line 2

Line 3
Line 4

savefig(*args, **kwargs)
call signature:

196

Matplotlib, Release 0.98

savefig(fname, dpi=None, facecolor=’w’, edgecolor=’w’,
orientation=’portrait’, papertype=None, format=None,
transparent=False):

Save the current figure.
The output formats available depend on the backend being used.
Arguments:

fname: A string containing a path to a filename, or a Python file-like object.
If format is None and fname is a string, the output format is deduced from the
extension of the filename.

Keyword arguments:

dpi: [None | scalar > 0] The resolution in dots per inch. If None it will default to the
value savefig.dpi in the matplotlibrc file.

facecolor, edgecolor: the colors of the figure rectangle
orientation: [‘landscape’ | ‘portrait’] not supported on all backends; currently only

on postscript output
papertype: One of ‘letter’, ‘legal’, ‘executive’, ‘ledger’, ‘a0’ through ‘a10’, ‘b0’

through ‘b10’. Only supported for postscript output.
format: One of the file extensions supported by the active backend. Most backends

support png, pdf, ps, eps and svg.
transparent: If True, the figure patch and axes patches will all be transparent. This is

useful, for example, for displaying a plot on top of a colored background on a web
page. The transparency of these patches will be restored to their original values
upon exit of this function.

sca(a)
Set the current axes to be a and return a

set_canvas(canvas)
Set the canvas the contains the figure
ACCEPTS: a FigureCanvas instance

set_dpi(val)
Set the dots-per-inch of the figure
ACCEPTS: float

set_edgecolor(color)
Set the edge color of the Figure rectangle
ACCEPTS: any matplotlib color - see help(colors)

set_facecolor(color)
Set the face color of the Figure rectangle
ACCEPTS: any matplotlib color - see help(colors)

set_figheight(val)
Set the height of the figure in inches
ACCEPTS: float

set_figsize_inches(*args, **kwargs)

197

Matplotlib, Release 0.98

set_figwidth(val)
Set the width of the figure in inches
ACCEPTS: float

set_frameon(b)
Set whether the figure frame (background) is displayed or invisible
ACCEPTS: boolean

set_size_inches(*args, **kwargs)
set_size_inches(w,h, forward=False)
Set the figure size in inches
Usage:

fig.set_size_inches(w,h) # OR
fig.set_size_inches((w,h))

optional kwarg forward=True will cause the canvas size to be automatically updated; eg you can
resize the figure window from the shell
WARNING: forward=True is broken on all backends except GTK* and WX*
ACCEPTS: a w,h tuple with w,h in inches

subplots_adjust(*args, **kwargs)
fig.subplots_adjust(left=None, bottom=None, right=None, wspace=None, hspace=None)
Update the SubplotParams with kwargs (defaulting to rc where None) and update the subplot
locations

suptitle(t, **kwargs)
Add a centered title to the figure.
kwargs are matplotlib.text.Text properties. Using figure coordinates, the defaults are:

x = 0.5
the x location of text in figure coords

y = 0.98
the y location of the text in figure coords

horizontalalignment = ’center’
the horizontal alignment of the text

verticalalignment = ’top’
the vertical alignment of the text

A matplotlib.text.Text instance is returned.
Example:

fig.subtitle(’this is the figure title’, fontsize=12)

text(x, y, s, *args, **kwargs)
Call signature:

figtext(x, y, s, fontdict=None, **kwargs)

Add text to figure at location x, y (relative 0-1 coords). See text() for the meaning of the other
arguments.
kwargs control the Text properties:

198

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color any matplotlib color
contains unknown
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion
transform unknown
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

waitforbuttonpress(timeout=-1)
call signature:

waitforbuttonpress(self, timeout=-1)

Blocking call to interact with the figure.
This will return True is a key was pressed, False if a mouse button was pressed and None if
timeout was reached without either being pressed.
If timeout is negative, does not timeout.

class SubplotParams(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
A class to hold the parameters for a subplot

All dimensions are fraction of the figure width or height. All values default to their rc params

The following attributes are available

199

Matplotlib, Release 0.98

left = 0.125 the left side of the subplots of the figure

right = 0.9 the right side of the subplots of the figure

bottom = 0.1 the bottom of the subplots of the figure

top = 0.9 the top of the subplots of the figure

wspace = 0.2 the amount of width reserved for blank space between subplots

hspace = 0.2 the amount of height reserved for white space between subplots

validate make sure the params are in a legal state (left*<*right, etc)

update(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
Update the current values. If any kwarg is None, default to the current value, if set, otherwise to
rc

figaspect(arg)
Create a figure with specified aspect ratio. If arg is a number, use that aspect ratio. If arg is an array,
figaspect will determine the width and height for a figure that would fit array preserving aspect ratio.
The figure width, height in inches are returned. Be sure to create an axes with equal with and height,
eg

Example usage:

make a figure twice as tall as it is wide
w, h = figaspect(2.)
fig = Figure(figsize=(w,h))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.imshow(A, **kwargs)

make a figure with the proper aspect for an array
A = rand(5,3)
w, h = figaspect(A)
fig = Figure(figsize=(w,h))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.imshow(A, **kwargs)

Thanks to Fernando Perez for this function

200

CHAPTER

TWENTYTHREE

Matplotlib axes

23.1 matplotlib.axes

class Axes(fig, rect, axisbg=None, frameon=True, sharex=None, sharey=None, label=”, **kwargs)
Bases: matplotlib.artist.Artist

The Axes contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets
the coordinate system.

The Axes instance supports callbacks through a callbacks attribute which is a CallbackRegistry
instance. The events you can connect to are xlim_changed() and ylim_changed() and the callback
will be called with func(ax() where *ax is the Axes instance.

acorr(x, **kwargs)
call signature:

acorr(x, normed=False, detrend=mlab.detrend_none, usevlines=False,
maxlags=None, **kwargs)

Plot the autocorrelation of x. If normed = True, normalize the data but the autocorrelation at
0-th lag. x is detrended by the detrend callable (default no normalization).
Data are plotted as plot(lags, c, **kwargs)

Return value is a tuple (lags, c, line) where:

•lags are a length 2*maxlags+1 lag vector
•c is the 2*maxlags+1 auto correlation vector
•line is a Line2D instance returned by plot()

The default linestyle is None and the default marker is ’o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy.correlate() with mode = 2.
If usevlines is True, vlines() rather than plot() is used to draw vertical lines from the origin
to the acorr. Otherwise, the plot style is determined by the kwargs, which are Line2D properties.
The return value is a tuple (lags, c, linecol, b) where

•linecol is the LineCollection
•b is the x-axis.

maxlags is a positive integer detailing the number of lags to show. The default value of None
will return all (2*len(x)-1) lags.
See the respective plot() or vlines() functions for documentation on valid kwargs.
Example:

201

Matplotlib, Release 0.98

xcorr() above, and acorr() below.
Example:

60 40 20 0 20 40 60
0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

60 40 20 0 20 40 60
0.2

0.0

0.2

0.4

0.6

0.8

1.0

add_artist(a)
Add any Artist to the axes

add_collection(collection, autolim=True)
add a Collection instance to the axes

add_line(line)
Add a Line2D to the list of plot lines

add_patch(p)
Add a Patch p to the list of axes patches; the clipbox will be set to the Axes clipping box. If the
transform is not set, it will be set to transData.

add_table(tab)
Add a Table instance to the list of axes tables

annotate(*args, **kwargs)
call signature:

annotate(s, xy, xytext=None, xycoords=’data’,
textcoords=’data’, arrowprops=None, **kwargs)

Keyword arguments:
Annotate the x, y point xy with text s at x, y location xytext. (If xytext = None, defaults to xy, and
if textcoords = None, defaults to xycoords).
arrowprops, if not None, is a dictionary of line properties (see matplotlib.lines.Line2D)
for the arrow that connects annotation to the point. Valid keys are

202

Matplotlib, Release 0.98

Key Description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
head-
width

the width of the base of the arrow head in points

shrink oftentimes it is convenient to have the arrowtip and base a bit away from the text and point
being annotated. If d is the distance between the text and annotated point, shrink will shorten
the arrow so the tip and base are shink percent of the distance d away from the endpoints. ie,
shrink=0.05 is 5%

? any key for matplotlib.patches.polygon
xycoords and textcoords are strings that indicate the coordinates of xy and xytext.

Prop-
erty

Description

‘figure
points’

points from the lower left corner of the figure

‘figure
pixels’

pixels from the lower left corner of the figure

‘figure
fraction’

0,0 is lower left of figure and 1,1 is upper, right

‘axes
points’

points from lower left corner of axes

‘axes
pixels’

pixels from lower left corner of axes

‘axes
fraction’

0,1 is lower left of axes and 1,1 is upper right

‘data’ use the coordinate system of the object being annotated (default)
‘offset
points’

Specify an offset (in points) from the xy value

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you are using
a polar axes, you do not need to specify polar for the coordinate system since that is the
native “data” coordinate system.

If a ‘points’ or ‘pixels’ option is specified, values will be added to the bottom-left and if negative,
values will be subtracted from the top-right. Eg:

10 points to the right of the left border of the axes and
5 points below the top border
xy=(10,-5), xycoords=’axes points’

Additional kwargs are Text properties:

203

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color any matplotlib color
contains unknown
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion
transform unknown
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

apply_aspect(position=None)
Use _aspect() and _adjustable() to modify the axes box or the view limits.

arrow(x, y, dx, dy, **kwargs)
call signature:

arrow(x, y, dx, dy, **kwargs)

Draws arrow on specified axis from (x, y) to (x + dx, y + dy).
Optional kwargs control the arrow properties:

204

Matplotlib, Release 0.98

Property Description
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
ec mpl color spec, or None for default, or ‘none’ for no color
edgecolor mpl color spec, or None for default, or ‘none’ for no color
facecolor mpl color spec, or None for default, or ‘none’ for no color
fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linestyle [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth float or None for default
lod [True | False]
ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

Example:

205

Matplotlib, Release 0.98

A3 T3

G3 C3

r
AC

r
GT

r
AG

r
CA

r
CG

r
GC

r
AT

r
GA

r
TG r

CT
r

TC

r
TA

autoscale_view(tight=False, scalex=True, scaley=True)
autoscale the view limits using the data limits. You can selectively autoscale only a single axis,
eg, the xaxis by setting scaley to False. The autoscaling preserves any axis direction reversal
that has already been done.

axhline(y=0, xmin=0, xmax=1, **kwargs)
call signature:

axhline(y=0, xmin=0, xmax=1, **kwargs)

Axis Horizontal Line
Draw a horizontal line at y from xmin to xmax. With the default values of xmin = 0 and xmax
= 1, this line will always span the horizontal extent of the axes, regardless of the xlim settings,
even if you change them, eg. with the set_xlim() command. That is, the horizontal extent is
in axes coords: 0=left, 0.5=middle, 1.0=right but the y location is in data coordinates.
Return value is the Line2D instance. kwargs are the same as kwargs to plot, and can be used to
control the line properties. Eg.,

•draw a thick red hline at y = 0 that spans the xrange

>>> axhline(linewidth=4, color=’r’)

•draw a default hline at y = 1 that spans the xrange

>>> axhline(y=1)

•draw a default hline at y = .5 that spans the the middle half of the xrange

>>> axhline(y=.5, xmin=0.25, xmax=0.75)

Valid kwargs are Line2D properties:

206

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

See axhspan() for example plot and source code

axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)
call signature:

axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)

Axis Horizontal Span.
y coords are in data units and x coords are in axes (relative 0-1) units.
Draw a horizontal span (rectangle) from ymin to ymax. With the default values of xmin = 0 and
xmax = 1, this always span the xrange, regardless of the xlim settings, even if you change them,
eg. with the set_xlim() command. That is, the horizontal extent is in axes coords: 0=left,
0.5=middle, 1.0=right but the y location is in data coordinates.

207

Matplotlib, Release 0.98

Return value is a matplotlib.patches.Polygon instance.
Examples:

•draw a gray rectangle from y = 0.25-0.75 that spans the horizontal extent of the axes

>>> axhspan(0.25, 0.75, facecolor=’0.5’, alpha=0.5)

Valid kwargs are Polygon properties:

Property Description
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
ec mpl color spec, or None for default, or ‘none’ for no color
edgecolor mpl color spec, or None for default, or ‘none’ for no color
facecolor mpl color spec, or None for default, or ‘none’ for no color
fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linestyle [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth float or None for default
lod [True | False]
ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

Example:

208

Matplotlib, Release 0.98

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

axis(*v, **kwargs)
Convenience method for manipulating the x and y view limits and the aspect ratio of the plot.
kwargs are passed on to set_xlim() and set_ylim()

axvline(x=0, ymin=0, ymax=1, **kwargs)
call signature:

axvline(x=0, ymin=0, ymax=1, **kwargs)

Axis Vertical Line
Draw a vertical line at x from ymin to ymax. With the default values of ymin = 0 and ymax =

1, this line will always span the vertical extent of the axes, regardless of the xlim settings, even
if you change them, eg. with the set_xlim() command. That is, the vertical extent is in axes
coords: 0=bottom, 0.5=middle, 1.0=top but the x location is in data coordinates.
Return value is the Line2D instance. kwargs are the same as kwargs to plot, and can be used to
control the line properties. Eg.,

•draw a thick red vline at x = 0 that spans the yrange

>>> axvline(linewidth=4, color=’r’)

•draw a default vline at x = 1 that spans the yrange

>>> axvline(x=1)

•draw a default vline at x = .5 that spans the the middle half of the yrange

209

Matplotlib, Release 0.98

>>> axvline(x=.5, ymin=0.25, ymax=0.75)

Valid kwargs are Line2D properties:

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

See axhspan() for example plot and source code

axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)
call signature:

axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)

Axis Vertical Span.
x coords are in data units and y coords are in axes (relative 0-1) units.

210

Matplotlib, Release 0.98

Draw a vertical span (rectangle) from xmin to xmax. With the default values of ymin = 0 and
ymax = 1, this always span the yrange, regardless of the ylim settings, even if you change them,
eg. with the set_ylim() command. That is, the vertical extent is in axes coords: 0=bottom,
0.5=middle, 1.0=top but the y location is in data coordinates.
Return value is the matplotlib.patches.Polygon instance.
Examples:

•draw a vertical green translucent rectangle from x=1.25 to 1.55 that spans the yrange of the
axes

>>> axvspan(1.25, 1.55, facecolor=’g’, alpha=0.5)

Valid kwargs are Polygon properties:

Property Description
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
ec mpl color spec, or None for default, or ‘none’ for no color
edgecolor mpl color spec, or None for default, or ‘none’ for no color
facecolor mpl color spec, or None for default, or ‘none’ for no color
fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linestyle [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth float or None for default
lod [True | False]
ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

See axhspan() for example plot and source code

bar(left, height, width=0.80000000000000004, bottom=None, color=None, edgecolor=None,
linewidth=None, yerr=None, xerr=None, ecolor=None, capsize=3, align=’edge’, orienta-
tion=’vertical’, log=False, **kwargs)
call signature:

bar(left, height, width=0.8, bottom=0,
color=None, edgecolor=None, linewidth=None,

211

Matplotlib, Release 0.98

yerr=None, xerr=None, ecolor=None, capsize=3,
align=’edge’, orientation=’vertical’, log=False)

Make a bar plot with rectangles bounded by:

left, left + width, bottom, bottom + height (left, right, bottom and top edges)

left, height, width, and bottom can be either scalars or sequences
Return value is a list of matplotlib.patches.Rectangle instances.
Required arguments:

Argument Description
left the x coordinates of the left sides of the bars
height the heights of the bars

Optional keyword arguments:

Keyword Description
width the widths of the bars
bottom the y coordinates of the bottom edges of the bars
color the colors of the bars
edgecolor the colors of the bar edges
linewidth width of bar edges; None means use default linewidth; 0 means don’t draw edges.
xerr if not None, will be used to generate errorbars on the bar chart
yerr if not None, will be used to generate errorbars on the bar chart
ecolor specifies the color of any errorbar
capsize (default 3) determines the length in points of the error bar caps
align ‘edge’ (default) | ‘center’
orientation ‘vertical’ | ‘horizontal’
log [False|True] False (default) leaves the orientation axis as-is; True sets it to log scale

For vertical bars, align = ‘edge’ aligns bars by their left edges in left, while align = ‘center’
interprets these values as the x coordinates of the bar centers. For horizontal bars, align = ‘edge’
aligns bars by their bottom edges in bottom, while align = ‘center’ interprets these values as the
y coordinates of the bar centers.
The optional arguments color, edgecolor, linewidth, xerr, and yerr can be either scalars or se-
quences of length equal to the number of bars. This enables you to use bar as the basis for
stacked bar charts, or candlestick plots.
Other optional kwargs:

212

Matplotlib, Release 0.98

Property Description
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
ec mpl color spec, or None for default, or ‘none’ for no color
edgecolor mpl color spec, or None for default, or ‘none’ for no color
facecolor mpl color spec, or None for default, or ‘none’ for no color
fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linestyle [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth float or None for default
lod [True | False]
ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

Example: A stacked bar chart.

213

Matplotlib, Release 0.98

G1 G2 G3 G4 G5
0

10

20

30

40

50

60

70

80
S
co

re
s

Scores by group and gender

Men
Women

barbs(*args, **kw)
Plot a 2-D field of barbs.
call signatures:

barb(U, V, **kw)
barb(U, V, C, **kw)
barb(X, Y, U, V, **kw)
barb(X, Y, U, V, C, **kw)

Arguments:

X, Y: The x and y coordinates of the barb locations (default is head of barb; see pivot
kwarg)

U, V: give the x and y components of the barb shaft
C: an optional array used to map colors to the barbs

All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be
generated as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X)
and len(Y) match the column and row dimensions of U, then X and Y will be expanded with
numpy.meshgrid().
U, V, C may be masked arrays, but masked X, Y are not supported at present.
Keyword arguments:

length: Length of the barb in points; the other parts of the barb are scaled against this.
Default is 9

pivot: [‘tip’ | ‘middle’] The part of the arrow that is at the grid point; the arrow ro-
tates about this point, hence the name pivot. Default is ‘tip’

214

Matplotlib, Release 0.98

barbcolor: [color | color sequence] Specifies the color all parts of the barb except
any flags. This parameter is analagous to the edgecolor parameter for polygons,
which can be used instead. However this parameter will override facecolor.

flagcolor: [color | color sequence] Specifies the color of any flags on the barb. This
parameter is analagous to the facecolor parameter for polygons, which can be used
instead. However this parameter will override facecolor. If this is not set (and C
has not either) then flagcolor will be set to match barbcolor so that the barb has a
uniform color. If C has been set, flagcolor has no effect.

sizes: A dictionary of coefficients specifying the ratio of a given feature to the length
of the barb. Only those values one wishes to override need to be included. These
features include:
Unexpected indentation.

‘spacing’ - space between features (flags, full/half barbs) ‘height’ - height
(distance from shaft to top) of a flag or full barb ‘width’ - width of a flag,
twice the width of a full barb ‘emptybarb’ - radius of the circle used for low
magnitudes

fill_empty: A flag on whether the empty barbs (circles) that are drawn should be filled
with the flag color. If they are not filled, they will be drawn such that no color is
applied to the center. Default is False

rounding: A flag to indicate whether the vector magnitude should be rounded when
allocating barb components. If True, the magnitude is rounded to the nearest mul-
tiple of the half-barb increment. If False, the magnitude is simply truncated to the
next lowest multiple. Default is True

barb_increments: A dictionary of increments specifying values to associate with dif-
ferent parts of the barb. Only those values one wishes to override need to be
included.
Unexpected indentation.

‘half’ - half barbs (Default is 5) ‘full’ - full barbs (Default is 10) ‘flag’ - flags
(default is 50)

flip_barb: Either a single boolean flag or an array of booleans. Single boolean indi-
cates whether the lines and flags should point opposite to normal for all barbs. An
array (which should be the same size as the other data arrays) indicates whether to
flip for each individual barb. Normal behavior is for the barbs and lines to point
right (comes from wind barbs having these features point towards low pressure in
the Northern Hemisphere.) Default is False

Barbs are traditionally used in meteorology as a way to plot the speed and direction of wind ob-
servations, but can technically be used to plot any two dimensional vector quantity. As opposed
to arrows, which give vector magnitude by the length of the arrow, the barbs give more quanti-
tative information about the vector magnitude by putting slanted lines or a triangle for various
increments in magnitude, as show schematically below:

/ / / / ——————————

The largest increment is given by a triangle (or “flag”). After those come full lines (barbs).
The smallest increment is a half line. There is only, of course, ever at most 1 half line. If the
magnitude is small and only needs a single half-line and no full lines or triangles, the half-line
is offset from the end of the barb so that it can be easily distinguished from barbs with a single

215

Matplotlib, Release 0.98

full line. The magnitude for the barb shown above would nominally be 65, using the standard
increments of 50, 10, and 5.
linewidths and edgecolors can be used to customize the barb. Additional PolyCollection
keyword arguments:

Property Description
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
label any string
linestyle [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linestyles [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number

barh(bottom, width, height=0.80000000000000004, left=None, **kwargs)
call signature:

barh(bottom, width, height=0.8, left=0, **kwargs)

Make a horizontal bar plot with rectangles bounded by:
left, left + width, bottom, bottom + height (left, right, bottom and top edges)

bottom, width, height, and left can be either scalars or sequences
Return value is a list of matplotlib.patches.Rectangle instances.

216

Matplotlib, Release 0.98

Required arguments:

Argument Description
bottom the vertical positions of the bottom edges of the bars
width the lengths of the bars

Optional keyword arguments:

Keyword Description
height the heights (thicknesses) of the bars
left the x coordinates of the left edges of the bars
color the colors of the bars
edgecolor the colors of the bar edges
linewidth width of bar edges; None means use default linewidth; 0 means don’t draw edges.
xerr if not None, will be used to generate errorbars on the bar chart
yerr if not None, will be used to generate errorbars on the bar chart
ecolor specifies the color of any errorbar
capsize (default 3) determines the length in points of the error bar caps
align ‘edge’ (default) | ‘center’
log [False|True] False (default) leaves the horizontal axis as-is; True sets it to log scale

Setting align = ‘edge’ aligns bars by their bottom edges in bottom, while align = ‘center’ inter-
prets these values as the y coordinates of the bar centers.
The optional arguments color, edgecolor, linewidth, xerr, and yerr can be either scalars or se-
quences of length equal to the number of bars. This enables you to use barh as the basis for
stacked bar charts, or candlestick plots.
other optional kwargs:

217

Matplotlib, Release 0.98

Property Description
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
ec mpl color spec, or None for default, or ‘none’ for no color
edgecolor mpl color spec, or None for default, or ‘none’ for no color
facecolor mpl color spec, or None for default, or ‘none’ for no color
fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linestyle [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth float or None for default
lod [True | False]
ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

boxplot(x, notch=0, sym=’b+’, vert=1, whis=1.5, positions=None, widths=None)
call signature:

boxplot(x, notch=0, sym=’+’, vert=1, whis=1.5,
positions=None, widths=None)

Make a box and whisker plot for each column of x or each vector in sequence x. The box
extends from the lower to upper quartile values of the data, with a line at the median. The
whiskers extend from the box to show the range of the data. Flier points are those past the end
of the whiskers.

•notch = 0 (default) produces a rectangular box plot.
•notch = 1 will produce a notched box plot

sym (default ‘b+’) is the default symbol for flier points. Enter an empty string (‘’) if you don’t
want to show fliers.

•vert = 1 (default) makes the boxes vertical.
•vert = 0 makes horizontal boxes. This seems goofy, but that’s how Matlab did it.

whis (default 1.5) defines the length of the whiskers as a function of the inner quartile range.
They extend to the most extreme data point within (whis*(75%-25%)) data range.
positions (default 1,2,...,n) sets the horizontal positions of the boxes. The ticks and limits are
automatically set to match the positions.

218

Matplotlib, Release 0.98

widths is either a scalar or a vector and sets the width of each box. The default is 0.5, or
0.15*(distance between extreme positions) if that is smaller.
x is an array or a sequence of vectors.
Returns a list of the matplotlib.lines.Line2D instances added.
Example:

1 2 3
100

50

0

50

100

150

200

broken_barh(xranges, yrange, **kwargs)
call signature:

broken_barh(self, xranges, yrange, **kwargs)

A collection of horizontal bars spanning yrange with a sequence of xranges.
Required arguments:

Argument Description
xranges sequence of (xmin, xwidth)
yrange sequence of (ymin, ywidth)

kwargs are matplotlib.collections.BrokenBarHCollection properties:

219

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
label any string
linestyle [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linestyles [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number

these can either be a single argument, ie:

facecolors = ’black’

or a sequence of arguments for the various bars, ie:

facecolors = (’black’, ’red’, ’green’)

Example:

220

Matplotlib, Release 0.98

0 50 100 150 200
seconds since start

Bill

Jim

race interrupted

can_zoom()
Return True if this axes support the zoom box

cla()
Clear the current axes

clabel(CS, *args, **kwargs)
call signature:

clabel(cs, **kwargs)

adds labels to line contours in cs, where cs is a ContourSet object returned by contour.

clabel(cs, v, **kwargs)

only labels contours listed in v.
Optional keyword arguments:

fontsize: See http://matplotlib.sf.net/fonts.html

clear()
clear the axes

cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x89e2e2c>, win-
dow=<function window_hanning at 0x89d5684>, noverlap=0, **kwargs)

call signature:

cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none,
window = mlab.window_hanning, noverlap=0, **kwargs)

221

http://matplotlib.sf.net/fonts.html

Matplotlib, Release 0.98

cohere the coherence between x and y. Coherence is the normalized cross spectral density:

Cxy =
|Pxy|

2

Pxx ∗ Pyy
(23.1)

The return value is a tuple (Cxy, f), where f are the frequencies of the coherence vector.
See the psd() for a description of the optional parameters.
kwargs are applied to the lines.
References:

•Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley &
Sons (1986)

kwargs control the Line2D properties of the coherence plot:
Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

222

Matplotlib, Release 0.98

Example:

0 1 2 3 4 5
time

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

s1
 a

n
d
 s

2

0 10 20 30 40 50
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

co
h
e
re

n
ce

connect(s, func)
Register observers to be notified when certain events occur. Register with callback functions
with the following signatures. The function has the following signature:

func(ax) # where ax is the instance making the callback.

The following events can be connected to:

‘xlim_changed’,’ylim_changed’

The connection id is is returned - you can use this with disconnect to disconnect from the axes
event

contains(mouseevent)
Test whether the mouse event occured in the axes.
Returns T/F, {}

contour(*args, **kwargs)
contour() and contourf() draw contour lines and filled contours, respectively. Except as
noted, function signatures and return values are the same for both versions.
contourf() differs from the Matlab (TM) version in that it does not draw the polygon edges,
because the contouring engine yields simply connected regions with branch cuts. To draw the
edges, add line contours with calls to contour().
call signatures:

contour(Z)

make a contour plot of an array Z. The level values are chosen automatically.

223

Matplotlib, Release 0.98

contour(X,Y,Z)

X, Y specify the (x, y) coordinates of the surface

contour(Z,N)
contour(X,Y,Z,N)

contour N automatically-chosen levels.

contour(Z,V)
contour(X,Y,Z,V)

draw contour lines at the values specified in sequence V

contourf(..., V)

fill the (len(V)-1) regions between the values in V

contour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.
X, Y, and Z must be arrays with the same dimensions.
Z may be a masked array, but filled contouring may not handle internal masked regions correctly.
C = contour(...) returns a ContourSet object.
Optional keyword arguments:

colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will
be used.
If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.
If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be
plotted in different colors in the order specified.

alpha: float The alpha blending value
cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and

colors is None, a default Colormap is used.
norm: [None | Normalize] A matplotlib.colors.Normalize instance for scal-

ing data values to colors. If norm is None and colors is None, the default linear
scaling is used.

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will cor-
respond to the lower left corner, location (0,0). If ‘image’, the rc value for
image.origin will be used.
This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]
If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries.
In this case, the position of Z[0,0] is the center of the pixel, not a corner.
If origin is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the
position of Z[-1,-1].
This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default
MaxNLocator is used. The locator is used to determine the contour levels
if they are not given explicitly via the V argument.

224

Matplotlib, Release 0.98

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the
special colormap values which default to the ends of the colormap
range, but can be set via matplotlib.cm.Colormap.set_under() and
matplotlib.cm.Colormap.set_over() methods.

contour-only keyword arguments:

linewidths: [None | number | tuple of numbers] If linewidths is None, the default
width in lines.linewidth in matplotlibrc is used
If a number, all levels will be plotted with this linewidth.
If a tuple, different levels will be plotted with different linewidths in the order
specified

contourf-only keyword arguments:

antialiased: [True | False] enable antialiasing
nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer

to divide the domain into subdomains of roughly nchunk by nchunk points. This
may never actually be advantageous, so this option may be removed. Chunking
introduces artifacts at the chunk boundaries unless antialiased is False.

Example:

2 1 0 1 2

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.0

-0.6

-0
.2

0.2
0.2

0.6 1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6

contourf(*args, **kwargs)
contour() and contourf() draw contour lines and filled contours, respectively. Except as
noted, function signatures and return values are the same for both versions.

225

Matplotlib, Release 0.98

contourf() differs from the Matlab (TM) version in that it does not draw the polygon edges,
because the contouring engine yields simply connected regions with branch cuts. To draw the
edges, add line contours with calls to contour().
call signatures:

contour(Z)

make a contour plot of an array Z. The level values are chosen automatically.

contour(X,Y,Z)

X, Y specify the (x, y) coordinates of the surface

contour(Z,N)
contour(X,Y,Z,N)

contour N automatically-chosen levels.

contour(Z,V)
contour(X,Y,Z,V)

draw contour lines at the values specified in sequence V

contourf(..., V)

fill the (len(V)-1) regions between the values in V

contour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.
X, Y, and Z must be arrays with the same dimensions.
Z may be a masked array, but filled contouring may not handle internal masked regions correctly.
C = contour(...) returns a ContourSet object.
Optional keyword arguments:

colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will
be used.
If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.
If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be
plotted in different colors in the order specified.

alpha: float The alpha blending value
cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and

colors is None, a default Colormap is used.
norm: [None | Normalize] A matplotlib.colors.Normalize instance for scal-

ing data values to colors. If norm is None and colors is None, the default linear
scaling is used.

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will cor-
respond to the lower left corner, location (0,0). If ‘image’, the rc value for
image.origin will be used.
This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]
If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries.

226

Matplotlib, Release 0.98

In this case, the position of Z[0,0] is the center of the pixel, not a corner.
If origin is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the
position of Z[-1,-1].
This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default
MaxNLocator is used. The locator is used to determine the contour levels
if they are not given explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the
special colormap values which default to the ends of the colormap
range, but can be set via matplotlib.cm.Colormap.set_under() and
matplotlib.cm.Colormap.set_over() methods.

contour-only keyword arguments:

linewidths: [None | number | tuple of numbers] If linewidths is None, the default
width in lines.linewidth in matplotlibrc is used
If a number, all levels will be plotted with this linewidth.
If a tuple, different levels will be plotted with different linewidths in the order
specified

contourf-only keyword arguments:

antialiased: [True | False] enable antialiasing
nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer

to divide the domain into subdomains of roughly nchunk by nchunk points. This
may never actually be advantageous, so this option may be removed. Chunking
introduces artifacts at the chunk boundaries unless antialiased is False.

Example:

227

Matplotlib, Release 0.98

2 1 0 1 2

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.0

-0.6

-0
.2

0.2
0.2

0.6 1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6

csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x89e2e2c>, window=<function
window_hanning at 0x89d5684>, noverlap=0, **kwargs)
call signature:

csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=window_hanning, noverlap=0, **kwargs)

The cross spectral density Pxy by Welches average periodogram method. The vectors x and y
are divided into NFFT length segments. Each segment is detrended by function detrend and
windowed by function window. The product of the direct FFTs of x and y are averaged over
each segment to compute Pxy, with a scaling to correct for power loss due to windowing.
See psd() for a description of the optional parameters.
Returns the tuple (Pxy, freqs). P is the cross spectrum (complex valued), and 10 log10 |Pxy| is
plotted.

References: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John
Wiley & Sons (1986)

kwargs control the Line2D properties:

228

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

Example:

229

Matplotlib, Release 0.98

0 1 2 3 4 5
time

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

s1
 a

n
d
 s

2

0 10 20 30 40 50
Frequency

80

70

60

50

40

30

20

C
S
D

 (
d
b
)

disconnect(cid)
disconnect from the Axes event.

drag_pan(button, key, x, y)
Called when the mouse moves during a pan operation.
button is the mouse button number:

•1: LEFT
•2: MIDDLE
•3: RIGHT

key is a “shift” key
x, y are the mouse coordinates in display coords.
Note: Intended to be overridden by new projection types.

draw(renderer=None, inframe=False)
Draw everything (plot lines, axes, labels)

draw_artist(a)
This method can only be used after an initial draw which caches the renderer. It is used to
efficiently update Axes data (axis ticks, labels, etc are not updated)

end_pan()
Called when a pan operation completes (when the mouse button is up.)
Note: Intended to be overridden by new projection types.

errorbar(x, y, yerr=None, xerr=None, fmt=’-’, ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, **kwargs)

call signature:

230

Matplotlib, Release 0.98

errorbar(x, y, yerr=None, xerr=None,
fmt=’-’, ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False)

Plot x versus y with error deltas in yerr and xerr. Vertical errorbars are plotted if yerr is not
None. Horizontal errorbars are plotted if xerr is not None.
x, y, xerr, and yerr can all be scalars, which plots a single error bar at x, y.
Optional keyword arguments:

xerr/yerr: [scalar | N, Nx1, Nx2 array-like] If a scalar number, len(N) array-like
object, or an Nx1 array-like object, errorbars are drawn +/- value.
If a rank-1, Nx2 Numpy array, errorbars are drawn at -column1 and +column2

fmt: ‘-‘ The plot format symbol for y. If fmt is None, just plot the errorbars with no
line symbols. This can be useful for creating a bar plot with errorbars.

ecolor: [None | mpl color] a matplotlib color arg which gives the color the errorbar
lines; if None, use the marker color.

elinewidth: scalar the linewidth of the errorbar lines. If None, use the linewidth.
capsize: scalar the size of the error bar caps in points
barsabove: [True | False] if True, will plot the errorbars above the plot symbols. De-

fault is below.
lolims/uplims/xlolims/xuplims: [False | True] These arguments can be used to indi-

cate that a value gives only upper/lower limits. In that case a caret symbol is used
to indicate this. lims-arguments may be of the same type as xerr and yerr.

All other keyword arguments are passed on to the plot command for the markers, so you can add
additional key=value pairs to control the errorbar markers. For example, this code makes big
red squares with thick green edges:

x,y,yerr = rand(3,10)
errorbar(x, y, yerr, marker=’s’,

mfc=’red’, mec=’green’, ms=20, mew=4)

where mfc, mec, ms and mew are aliases for the longer property names, markerfacecolor, mark-
eredgecolor, markersize and markeredgewith.
valid kwargs for the marker properties are

231

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

Return value is a length 3 tuple. The first element is the Line2D instance for the y symbol lines.
The second element is a list of error bar cap lines, the third element is a list of LineCollection
instances for the horizontal and vertical error ranges.
Example:

232

Matplotlib, Release 0.98

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

fill(*args, **kwargs)
call signature:

fill(*args, **kwargs)

Plot filled polygons. args is a variable length argument, allowing for multiple x, y pairs with an
optional color format string; see plot() for details on the argument parsing. For example, to
plot a polygon with vertices at x, y in blue.:

ax.fill(x,y, ’b’)

An arbitrary number of x, y, color groups can be specified:

ax.fill(x1, y1, ’g’, x2, y2, ’r’)

Return value is a list of Patch instances that were added.
The same color strings that plot() supports are supported by the fill format string.
If you would like to fill below a curve, eg. shade a region between 0 and y along x, use
poly_between(), eg.:

xs, ys = poly_between(x, 0, y)
axes.fill(xs, ys, facecolor=’red’, alpha=0.5)

See examples/pylab_examples/fill_between.py for more examples.
The closed kwarg will close the polygon when True (default).
kwargs control the Polygon properties:

233

Matplotlib, Release 0.98

Property Description
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
ec mpl color spec, or None for default, or ‘none’ for no color
edgecolor mpl color spec, or None for default, or ‘none’ for no color
facecolor mpl color spec, or None for default, or ‘none’ for no color
fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linestyle [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth float or None for default
lod [True | False]
ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

Example:

234

Matplotlib, Release 0.98

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

format_coord(x, y)
return a format string formatting the x, y coord

format_xdata(x)
Return x string formatted. This function will use the attribute self.fmt_xdata if it is callable, else
will fall back on the xaxis major formatter

format_ydata(y)
Return y string formatted. This function will use the fmt_ydata attribute if it is callable, else
will fall back on the yaxis major formatter

get_adjustable()

get_anchor()

get_aspect()

get_autoscale_on()
Get whether autoscaling is applied on plot commands

get_axis_bgcolor()
Return the axis background color

get_axisbelow()
Get whether axis below is true or not

get_child_artists()
Return a list of artists the axes contains. Deprecated since release 0.98.

get_children()
return a list of child artists

235

Matplotlib, Release 0.98

get_cursor_props()
return the cursor propertiess as a (linewidth, color) tuple, where linewidth is a float and color is
an RGBA tuple

get_data_ratio()
Returns the aspect ratio of the raw data.
This method is intended to be overridden by new projection types.

get_frame()
Return the axes Rectangle frame

get_frame_on()
Get whether the axes rectangle patch is drawn

get_images()
return a list of Axes images contained by the Axes

get_legend()
Return the legend.Legend instance, or None if no legend is defined

get_lines()
Return a list of lines contained by the Axes

get_navigate()
Get whether the axes responds to navigation commands

get_navigate_mode()
Get the navigation toolbar button status: ‘PAN’, ‘ZOOM’, or None

get_position(original=False)
Return the a copy of the axes rectangle as a Bbox

get_renderer_cache()

get_shared_x_axes()
Return a copy of the shared axes Grouper object for x axes

get_shared_y_axes()
Return a copy of the shared axes Grouper object for y axes

get_title()
Get the title text string.

get_window_extent(*args, **kwargs)
get the axes bounding box in display space; args and kwargs are empty

get_xaxis()
Return the XAxis instance

get_xaxis_text1_transform(pad_points)
Get the transformation used for drawing x-axis labels, which will add the given amount of
padding (in points) between the axes and the label. The x-direction is in data coordinates and
the y-direction is in axis coordinates. Returns a 3-tuple of the form:

(transform, valign, halign)

where valign and halign are requested alignments for the text.
Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

236

Matplotlib, Release 0.98

get_xaxis_text2_transform(pad_points)
Get the transformation used for drawing the secondary x-axis labels, which will add the given
amount of padding (in points) between the axes and the label. The x-direction is in data coordi-
nates and the y-direction is in axis coordinates. Returns a 3-tuple of the form:

(transform, valign, halign)

where valign and halign are requested alignments for the text.
Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

get_xaxis_transform()
Get the transformation used for drawing x-axis labels, ticks and gridlines. The x-direction is in
data coordinates and the y-direction is in axis coordinates.
Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

get_xbound()
Returns the x-axis numerical bounds where:

lowerBound < upperBound

get_xgridlines()
Get the x grid lines as a list of Line2D instances

get_xlabel()
Get the xlabel text string.

get_xlim()
Get the x-axis range [xmin, xmax]

get_xmajorticklabels()
Get the xtick labels as a list of Text instances

get_xminorticklabels()
Get the xtick labels as a list of Text instances

get_xscale()

get_xticklabels(minor=False)
Get the xtick labels as a list of Text instances

get_xticklines()
Get the xtick lines as a list of Line2D instances

get_xticks(minor=False)
Return the x ticks as a list of locations

get_yaxis()
Return the YAxis instance

get_yaxis_text1_transform(pad_points)
Get the transformation used for drawing y-axis labels, which will add the given amount of
padding (in points) between the axes and the label. The x-direction is in axis coordinates and
the y-direction is in data coordinates. Returns a 3-tuple of the form:

237

Matplotlib, Release 0.98

(transform, valign, halign)

where valign and halign are requested alignments for the text.
Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

get_yaxis_text2_transform(pad_points)
Get the transformation used for drawing the secondary y-axis labels, which will add the given
amount of padding (in points) between the axes and the label. The x-direction is in axis coordi-
nates and the y-direction is in data coordinates. Returns a 3-tuple of the form:

(transform, valign, halign)

where valign and halign are requested alignments for the text.
Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

get_yaxis_transform()
Get the transformation used for drawing y-axis labels, ticks and gridlines. The x-direction is in
axis coordinates and the y-direction is in data coordinates.
Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

get_ybound()
Returns the y-axis numerical bounds in the form of lowerBound < upperBound

get_ygridlines()
Get the y grid lines as a list of Line2D instances

get_ylabel()
Get the ylabel text string.

get_ylim()
Get the y-axis range [ymin, ymax]

get_ymajorticklabels()
Get the xtick labels as a list of Text instances

get_yminorticklabels()
Get the xtick labels as a list of Text instances

get_yscale()

get_yticklabels(minor=False)
Get the xtick labels as a list of Text instances

get_yticklines()
Get the ytick lines as a list of Line2D instances

get_yticks(minor=False)
Return the y ticks as a list of locations

grid(b=None, **kwargs)
call signature:

grid(self, b=None, **kwargs)

238

Matplotlib, Release 0.98

Set the axes grids on or off; b is a boolean
If b is None and len(kwargs)==0, toggle the grid state. If kwargs are supplied, it is assumed
that you want a grid and b is thus set to True
kawrgs are used to set the grid line properties, eg:

ax.grid(color=’r’, linestyle=’-’, linewidth=2)

Valid Line2D kwargs are

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

has_data()
Return True if any artists have been added to axes.
This should not be used to determine whether the dataLim need to be updated, and may not
actually be useful for anything.

239

Matplotlib, Release 0.98

hexbin(x, y, C=None, gridsize=100, bins=None, xscale=’linear’, yscale=’linear’, cmap=None,
norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, edgecolors=’none’, re-
duce_C_function=<function mean at 0x875f3ac>, **kwargs)

call signature:

hexbin(x, y, C = None, gridsize = 100, bins = None,
xscale = ’linear’, yscale = ’linear’,
cmap=None, norm=None, vmin=None, vmax=None,
alpha=1.0, linewidths=None, edgecolors=’none’
reduce_C_function = np.mean,
**kwargs)

Make a hexagonal binning plot of x versus y, where x, y are 1-D sequences of the same length,
N. If C is None (the default), this is a histogram of the number of occurences of the observations
at (x[i],y[i]).
If C is specified, it specifies values at the coordinate (x[i],y[i]). These values are accumulated
for each hexagonal bin and then reduced according to reduce_C_function, which defaults to
numpy’s mean function (np.mean). (If C is specified, it must also be a 1-D sequence of the same
length as x and y.)
x, y and/or C may be masked arrays, in which case only unmasked points will be plotted.
Optional keyword arguments:

gridsize: [100 | integer] The number of hexagons in the x-direction, default is 100.
The corresponding number of hexagons in the y-direction is chosen such that the
hexagons are approximately regular. Alternatively, gridsize can be a tuple with two
elements specifying the number of hexagons in the x-direction and the y-direction.

bins: [None | ‘log’ | integer | sequence] If None, no binning is applied; the color of
each hexagon directly corresponds to its count value.
If ‘log’, use a logarithmic scale for the color map. Internally, log10(i + 1) is used
to determine the hexagon color.
If an integer, divide the counts in the specified number of bins, and color the
hexagons accordingly.
If a sequence of values, the values of the lower bound of the bins to be used.

xscale: [‘linear’ | ‘log’] Use a linear or log10 scale on the horizontal axis.
scale: [‘linear’ | ‘log’] Use a linear or log10 scale on the vertical axis.

Other keyword arguments controlling color mapping and normalization arguments:

cmap: [None | Colormap] a matplotlib.cm.Colormap instance. If None, de-
faults to rc image.cmap.

norm: [None | Normalize] matplotlib.colors.Normalize instance is used to
scale luminance data to 0,1.

vmin/vmax: scalar vmin and vmax are used in conjunction with norm to normalize
luminance data. If either are None, the min and max of the color array C is used.
Note if you pass a norm instance, your settings for vmin and vmax will be ignored.

alpha: scalar the alpha value for the patches
linewidths: [None | scalar] If None, defaults to rc lines.linewidth. Note that this is

a tuple, and if you set the linewidths argument you must set it as a sequence of
floats, as required by RegularPolyCollection.

Other keyword arguments controlling the Collection properties:

240

Matplotlib, Release 0.98

edgecolors: [None | mpl color | color sequence] If ‘none’, draws the edges in the
same color as the fill color. This is the default, as it avoids unsightly unpainted
pixels between the hexagons.
If None, draws the outlines in the default color.
If a matplotlib color arg or sequence of rgba tuples, draws the outlines in the spec-
ified color.

Here are the standard descriptions of all the Collection kwargs:

Property Description
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
label any string
linestyle [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linestyles [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number

The return value is a PolyCollection instance; use get_array() on this PolyCollection
to get the counts in each hexagon.
Example:

241

Matplotlib, Release 0.98

4 3 2 1 0 1 2 3 4

15

10

5

0

5

10

15

20

Hexagon binning

0

20

40

60

80

100

120

140

co
u
n
ts

4 3 2 1 0 1 2 3 4

15

10

5

0

5

10

15

20

With a log color scale

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

lo
g
1
0
(N

)

hist(x, bins=10, range=None, normed=False, cumulative=False, bottom=None, histtype=’bar’,
align=’mid’, orientation=’vertical’, rwidth=None, log=False, **kwargs)

call signature:

hist(x, bins=10, range=None, normed=False, cumulative=False,
bottom=None, histtype=’bar’, align=’mid’,
orientation=’vertical’, rwidth=None, log=False, **kwargs)

Compute the histogram of x. The return value is a tuple (n, bins, patches) or ([n0, n1, ...], bins,
[patches0, patches1,...]) if the input contains multiple data.
Keyword arguments:

bins: either an integer number of bins or a sequence giving the bins. x are the data
to be binned. x can be an array or a 2D array with multiple data in its columns.
Note, if bins is an integer input argument=numbins, bins + 1 bin edges will be
returned, compatible with the semantics of numpy.histogram() with the new =

True argument. Unequally spaced bins are supported if bins is a sequence.
range: The lower and upper range of the bins. Lower and upper outliers are ignored. If

not provided, range is (x.min(), x.max()). Range has no effect if bins is a sequence.
normed: If True, the first element of the return tuple will be the counts normalized

to form a probability density, i.e., n/(len(x)*dbin). In a probability density,
the integral of the histogram should be 1; you can verify that with a trapezoidal
integration of the probability density function:

pdf, bins, patches = ax.hist(...)
print np.sum(pdf * np.diff(bins))

242

Matplotlib, Release 0.98

cumulative: If True, then a histogram is computed where each bin gives the counts
in that bin plus all bins for smaller values. The last bin gives the total number of
datapoints. If normed is also True then the histogram is normalized such that the
last bin equals one. If cumulative evaluates to less than 0 (e.g. -1), the direction of
accumulation is reversed. In this case, if normed is also True, then the histogram
is normalized such that the first bin equals 1.

histtype: [‘bar’ | ‘barstacked’ | ‘step’ | ‘stepfilled’] The type of histogram to draw.
• ‘bar’ is a traditional bar-type histogram
• ‘barstacked’ is a bar-type histogram where multiple data are stacked on top

of each other.
• ‘step’ generates a lineplot that is by default unfilled
• ‘stepfilled’ generates a lineplot that this by default filled.

align: [’left’ | ‘mid’ | ‘right’] Controls how the histogram is plotted.
• ‘left’: bars are centered on the left bin edges
• ‘mid’: bars are centered between the bin edges
• ‘right’: bars are centered on the right bin edges.

orientation: [‘horizontal’ | ‘vertical’] If ‘horizontal’, barh() will be used for bar-
type histograms and the bottom kwarg will be the left edges.

rwidth: the relative width of the bars as a fraction of the bin width. If None, automati-
cally compute the width. Ignored if histtype = ‘step’.

log: If True, the histogram axis will be set to a log scale. If log is True and x is a 1D
array, empty bins will be filtered out and only the non-empty (n, bins, patches) will
be returned.

kwargs are used to update the properties of the hist Rectangle instances:

243

Matplotlib, Release 0.98

Property Description
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
ec mpl color spec, or None for default, or ‘none’ for no color
edgecolor mpl color spec, or None for default, or ‘none’ for no color
facecolor mpl color spec, or None for default, or ‘none’ for no color
fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linestyle [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth float or None for default
lod [True | False]
ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

You can use labels for your histogram, and only the first Rectangle gets the label (the others
get the magic string ‘_nolegend_’. This will make the histograms work in the intuitive way for
bar charts:

ax.hist(10+2*np.random.randn(1000), label=’men’)
ax.hist(12+3*np.random.randn(1000), label=’women’, alpha=0.5)
ax.legend()

Example:

244

Matplotlib, Release 0.98

40 60 80 100 120 140 160
Smarts

0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
ro

b
a
b
ili

ty
Histogram of IQ : µ=100, σ=15

hlines(y, xmin, xmax, colors=’k’, linestyles=’solid’, label=”, **kwargs)
call signature:

hlines(y, xmin, xmax, colors=’k’, linestyle=’solid’, **kwargs)

Plot horizontal lines at each y from xmin to xmax.
Returns the LineCollection that was added.
Required arguments:

y: a 1-D numpy array or iterable.
xmin and xmax: can be scalars or len(x) numpy arrays. If they are scalars, then the

respective values are constant, else the widths of the lines are determined by xmin
and xmax.

Optional keyword arguments:

colors: a line collections color argument, either a single color or a len(y) list of colors
linestyle: [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

Example:

245

Matplotlib, Release 0.98

0.0 0.2 0.4 0.6 0.8 1.0 1.2
time (s)

1

0

1

2

3

4

5
Comparison of model with data

hold(b=None)
call signature:

hold(b=None)

Set the hold state. If hold is None (default), toggle the hold state. Else set the hold state to
boolean value b.
Examples:

•toggle hold: >>> hold()
•turn hold on: >>> hold(True)
•turn hold off >>> hold(False)

When hold is True, subsequent plot commands will be added to the current axes. When hold is
False, the current axes and figure will be cleared on the next plot command

imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=1.0, vmin=None,
vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None,
resample=None, **kwargs)

call signature:

imshow(X, cmap=None, norm=None, aspect=None, interpolation=None,
alpha=1.0, vmin=None, vmax=None, origin=None, extent=None,
**kwargs)

Display the image in X to current axes. X may be a float array, a uint8 array or a PIL image. If
X is an array, X can have the following shapes:

•MxN – luminance (grayscale, float array only)

246

Matplotlib, Release 0.98

•MxNx3 – RGB (float or uint8 array)
•MxNx4 – RGBA (float or uint8 array)

The value for each component of MxNx3 and MxNx4 float arrays should be in the range 0.0 to
1.0; MxN float arrays may be normalised.
An matplotlib.image.AxesImage instance is returned.
Keyword arguments:

cmap: [None | Colormap] A matplotlib.cm.Colormap instance, eg. cm.jet. If
None, default to rc image.cmap value.
cmap is ignored when X has RGB(A) information

aspect: [None | ‘auto’ | ‘equal’ | scalar] If ‘auto’, changes the image aspect ratio to
match that of the axes
If ‘equal’, and extent is None, changes the axes aspect ratio to match that of the
image. If extent is not None, the axes aspect ratio is changed to match that of the
extent.
If None, default to rc image.aspect value.

interpolation: Acceptable values are None, ‘nearest’, ‘bilinear’, ‘bicubic’, ‘spline16’,
‘spline36’, ‘hanning’, ‘hamming’, ‘hermite’, ‘kaiser’, ‘quadric’, ‘catrom’, ‘gaus-
sian’, ‘bessel’, ‘mitchell’, ‘sinc’, ‘lanczos’, ‘blackman’
If interpolation is None, default to rc image.interpolation. See also the filter-
norm and filterrad parameters

norm: [None | Normalize] An matplotlib.colors.Normalize instance; if
None, default is normalization(). This scales luminance -> 0-1
norm is only used for an MxN float array.

vmin/vmax: [None | scalar] Used to scale a luminance image to 0-1. If either is
None, the min and max of the luminance values will be used. Note if norm is not
None, the settings for vmin and vmax will be ignored.

alpha: scalar The alpha blending value, between 0 (transparent) and 1 (opaque)
origin: [None | ‘upper’ | ‘lower’] Place the [0,0] index of the array in the upper left

or lower left corner of the axes. If None, default to rc image.origin.
extent: [None | scalars (left, right, bottom, top)] Eata values of the axes. The de-

fault assigns zero-based row, column indices to the x, y centers of the pixels.
shape: [None | scalars (columns, rows)] For raw buffer images
filternorm: A parameter for the antigrain image resize filter. From the antigrain doc-

umentation, if filternorm = 1, the filter normalizes integer values and corrects the
rounding errors. It doesn’t do anything with the source floating point values, it
corrects only integers according to the rule of 1.0 which means that any sum of
pixel weights must be equal to 1.0. So, the filter function must produce a graph of
the proper shape.

filterrad: The filter radius for filters that have a radius parameter, i.e. when interpola-
tion is one of: ‘sinc’, ‘lanczos’ or ‘blackman’

Additional kwargs are Artist properties:

247

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
figure a matplotlib.figure.Figure instance
label any string
lod [True | False]
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

Example:

3 2 1 0 1 2 3
3

2

1

0

1

2

3

in_axes(mouseevent)
return True if the given mouseevent (in display coords) is in the Axes

invert_xaxis()
Invert the x-axis.

invert_yaxis()
Invert the y-axis.

ishold()

248

Matplotlib, Release 0.98

return the HOLD status of the axes

legend(*args, **kwargs)
call signature:

legend(*args, **kwargs)

Place a legend on the current axes at location loc. Labels are a sequence of strings and loc can
be a string or an integer specifying the legend location.
To make a legend with existing lines:

legend()

legend() by itself will try and build a legend using the label property of the
lines/patches/collections. You can set the label of a line by doing:

plot(x, y, label=’my data’)

or:

line.set_label(’my data’).

If label is set to ‘_nolegend_’, the item will not be shown in legend.
To automatically generate the legend from labels:

legend((’label1’, ’label2’, ’label3’))

To make a legend for a list of lines and labels:

legend((line1, line2, line3), (’label1’, ’label2’, ’label3’))

To make a legend at a given location, using a location argument:

legend((’label1’, ’label2’, ’label3’), loc=’upper left’)

or:

legend((line1, line2, line3), (’label1’, ’label2’, ’label3’), loc=2)

The location codes are
Location String Location Code
‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

If none of these are locations are suitable, loc can be a 2-tuple giving x,y in axes coords, ie:

loc = 0, 1 # left top
loc = 0.5, 0.5 # center

249

Matplotlib, Release 0.98

Keyword arguments:

isaxes: [True | False] Indicates that this is an axes legend
numpoints: integer The number of points in the legend line, default is 4
prop: [None | FontProperties] A matplotlib.font_manager.FontProperties

instance, or None to use rc settings.
pad: [None | scalar] The fractional whitespace inside the legend border, between 0

and 1. If None, use rc settings.
markerscale: [None | scalar] The relative size of legend markers vs. original. If

None, use rc settings.
shadow: [None | False | True] If True, draw a shadow behind legend. If None, use

rc settings.
labelsep: [None | scalar] The vertical space between the legend entries. If None, use

rc settings.
handlelen: [None | scalar] The length of the legend lines. If None, use rc settings.
handletextsep: [None | scalar] The space between the legend line and legend text. If

None, use rc settings.
axespad: [None | scalar] The border between the axes and legend edge. If None, use

rc settings.

Example:

Model complexity --->

M
e
ss

a
g
e
 l
e
n
g
th

 -
--

>

Minimum Message Length

Model length

Data length

Total message length

loglog(*args, **kwargs)
call signature:

250

Matplotlib, Release 0.98

loglog(*args, **kwargs)

Make a plot with log scaling on the x and y axis.
loglog() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_xscale()/matplotlib.axes.Axes.set_yscale().
Notable keyword arguments:

basex/basey: scalar > 1 base of the x/y logarithm
subsx/subsy: [None | sequence] the location of the minor x/y ticks; None de-

faults to autosubs, which depend on the number of decades in the plot; see
matplotlib.axes.Axes.set_xscale()/matplotlib.axes.Axes.set_yscale()
for details

The remaining valid kwargs are Line2D properties:

251

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

Example:

252

Matplotlib, Release 0.98

0 5 10 15 20
10-2

10-1

100
se

m
ilo

g
y

10-2 10-1 100 101 102
1.0

0.5

0.0

0.5

1.0

se
m

ilo
g
x

4-4 4-3 4-2 4-1 40 41 42 43100

101

102

lo
g
lo

g
 b

a
se

 4
 o

n
 x

matshow(Z, **kwargs)
Plot a matrix or array as an image.
The matrix will be shown the way it would be printed, with the first row at the top. Row and
column numbering is zero-based.
Argument: Z anything that can be interpreted as a 2-D array
kwargs all are passed to imshow(). matshow() sets defaults for extent, origin, interpolation,
and aspect; use care in overriding the extent and origin kwargs, because they interact. (Also, if
you want to change them, you probably should be using imshow directly in your own version of
matshow.)
Returns: an matplotlib.image.AxesImage instance.

pcolor(*args, **kwargs)
call signatures:

pcolor(C, **kwargs)
pcolor(X, Y, C, **kwargs)

Create a pseudocolor plot of a 2-D array.
C is the array of color values.
X and Y, if given, specify the (x, y) coordinates of the colored quadrilaterals; the quadrilateral
for C[i,j] has corners at:

(X[i, j], Y[i, j]),
(X[i, j+1], Y[i, j+1]),
(X[i+1, j], Y[i+1, j]),
(X[i+1, j+1], Y[i+1, j+1]).

253

Matplotlib, Release 0.98

Ideally the dimensions of X and Y should be one greater than those of C; if the dimensions are
the same, then the last row and column of C will be ignored.
Note that the the column index corresponds to the x-coordinate, and the row index corresponds
to y; for details, see the Grid Orientation section below.
If either or both of X and Y are 1-D arrays or column vectors, they will be expanded as needed
into the appropriate 2-D arrays, making a rectangular grid.
X, Y and C may be masked arrays. If either C[i, j], or one of the vertices surrounding C[i,j] (X
or Y at [i, j], [i+1, j], [i, j+1],[i+1, j+1]) is masked, nothing is plotted.
Keyword arguments:

cmap: [None | Colormap] A matplotlib.cm.Colormap instance. If None, use rc
settings.

norm: [None | Normalize] An matplotlib.colors.Normalize instance is used
to scale luminance data to 0,1. If None, defaults to normalize().

vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to
normalize luminance data. If either are None, the min and max of the color array
C is used. If you pass a norm instance, vmin and vmax will be ignored.

shading: [‘flat’ | ‘faceted’] If ‘faceted’, a black grid is drawn around each rectangle;
if ‘flat’, edges are not drawn. Default is ‘flat’, contrary to Matlab(TM).
This kwarg is deprecated; please use ‘edgecolors’ instead: • shading=’flat’ –

edgecolors=’None’
• shading=’faceted – edgecolors=’k’

edgecolors: [None | ‘None’ | color | color sequence] If None, the rc setting is used
by default.
If ‘None’, edges will not be visible.
An mpl color or sequence of colors will set the edge color

alpha: 0 <= scalar <= 1 the alpha blending value

Return value is a matplotlib.collection.Collection instance. The grid orientation fol-
lows the Matlab(TM) convention: an array C with shape (nrows, ncolumns) is plotted with the
column number as X and the row number as Y, increasing up; hence it is plotted the way the
array would be printed, except that the Y axis is reversed. That is, C is taken as C*(*y, x).
Similarly for meshgrid():

x = np.arange(5)
y = np.arange(3)
X, Y = meshgrid(x,y)

is equivalent to:

X = array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]])
Y = array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2]])

so if you have:

C = rand(len(x), len(y))

then you need:

pcolor(X, Y, C.T)

or:

254

Matplotlib, Release 0.98

pcolor(C.T)

Matlab pcolor() always discards the last row and column of C, but matplotlib displays the last
row and column if X and Y are not specified, or if X and Y have one more row and column than
C.
kwargs can be used to control the PolyCollection properties:

Property Description
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
label any string
linestyle [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linestyles [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number

pcolorfast(*args, **kwargs)
pseudocolor plot of a 2-D array
Experimental; this is a version of pcolor that does not draw lines, that provides the fastest possi-
ble rendering with the Agg backend, and that can handle any quadrilateral grid.
Call signatures:

255

Matplotlib, Release 0.98

pcolor(C, **kwargs)
pcolor(xr, yr, C, **kwargs)
pcolor(x, y, C, **kwargs)
pcolor(X, Y, C, **kwargs)

C is the 2D array of color values corresponding to quadrilateral cells. Let (nr, nc) be its shape.
C may be a masked array.
pcolor(C, **kwargs) is equivalent to pcolor([0,nc], [0,nr], C, **kwargs)

xr, yr specify the ranges of x and y corresponding to the rectangular region bounding C. If:

xr = [x0, x1]

and:

yr = [y0,y1]

then x goes from x0 to x1 as the second index of C goes from 0 to nc, etc. (x0, y0) is the
outermost corner of cell (0,0), and (x1, y1) is the outermost corner of cell (nr-1, nc-1). All cells
are rectangles of the same size. This is the fastest version.
x, y are 1D arrays of length nc +1 and nr +1, respectively, giving the x and y boundaries of the
cells. Hence the cells are rectangular but the grid may be nonuniform. The speed is intermediate.
(The grid is checked, and if found to be uniform the fast version is used.)
X and Y are 2D arrays with shape (nr +1, nc +1) that specify the (x,y) coordinates of the
corners of the colored quadrilaterals; the quadrilateral for C[i,j] has corners at (X[i,j],Y[i,j]),
(X[i,j+1],Y[i,j+1]), (X[i+1,j],Y[i+1,j]), (X[i+1,j+1],Y[i+1,j+1]). The cells need not be rect-
angular. This is the most general, but the slowest to render. It may produce faster and more
compact output using ps, pdf, and svg backends, however.
Note that the the column index corresponds to the x-coordinate, and the row index corresponds
to y; for details, see the “Grid Orientation” section below.
Optional keyword arguments:

cmap: [None | Colormap] A cm Colormap instance from cm. If None, use rc set-
tings.

norm: [None | Normalize] An mcolors.Normalize instance is used to scale lumi-
nance data to 0,1. If None, defaults to normalize()

vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to
normalize luminance data. If either are None, the min and max of the color array
C is used. If you pass a norm instance, vmin and vmax will be None.

alpha: 0 <= scalar <= 1 the alpha blending value
Return value is an image if a regular or rectangular grid is specified, and a QuadMesh collection
in the general quadrilateral case.

pcolormesh(*args, **kwargs)
call signatures:

pcolormesh(C)
pcolormesh(X, Y, C)
pcolormesh(C, **kwargs)

C may be a masked array, but X and Y may not. Masked array support is implemented via cmap
and norm; in contrast, pcolor() simply does not draw quadrilaterals with masked colors or
vertices.

256

Matplotlib, Release 0.98

Keyword arguments:

cmap: [None | Colormap] A matplotlib.cm.Colormap instance. If None, use rc
settings.

norm: [None | Normalize] A matplotlib.colors.Normalize instance is used to
scale luminance data to 0,1. If None, defaults to normalize().

vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to
normalize luminance data. If either are None, the min and max of the color array
C is used. If you pass a norm instance, vmin and vmax will be ignored.

shading: [‘flat’ | ‘faceted’] If ‘faceted’, a black grid is drawn around each rectangle;
if ‘flat’, edges are not drawn. Default is ‘flat’, contrary to Matlab(TM).
This kwarg is deprecated; please use ‘edgecolors’ instead: • shading=’flat’ –

edgecolors=’None’
• shading=’faceted – edgecolors=’k’

edgecolors: [None | ‘None’ | color | color sequence] If None, the rc setting is used
by default.
If ‘None’, edges will not be visible.
An mpl color or sequence of colors will set the edge color

alpha: 0 <= scalar <= 1 the alpha blending value

Return value is a matplotlib.collection.QuadMesh object.
See pcolor() for an explanation of the grid orientation and the expansion of 1-D X and/or Y to
2-D arrays.
kwargs can be used to control the matplotlib.collections.QuadMesh properties:

257

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
label any string
linestyle [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linestyles [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number

pick(*args)
call signature:

pick(mouseevent)

each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set

pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.59999999999999998,
shadow=False, labeldistance=1.1000000000000001)
call signature:

pie(x, explode=None, labels=None,
colors=(’b’, ’g’, ’r’, ’c’, ’m’, ’y’, ’k’, ’w’),
autopct=None, pctdistance=0.6, labeldistance=1.1, shadow=False)

Make a pie chart of array x. The fractional area of each wedge is given by x/sum(x). If sum(x)

258

Matplotlib, Release 0.98

<= 1, then the values of x give the fractional area directly and the array will not be normalized.
Keyword arguments:

explode: [None | len(x) sequence] If not None, is a len(x) array which specifies the
fraction of the radius with which to offset each wedge.

colors: [None | color sequence] A sequence of matplotlib color args through which
the pie chart will cycle.

labels: [None | len(x) sequence of strings] A sequence of strings providing the la-
bels for each wedge

autopct: [None | format string | format function] If not None, is a string or func-
tion used to label the wedges with their numeric value. The label will be placed
inside the wedge. If it is a format string, the label will be fmt%pct. If it is a
function, it will be called.

pctdistance: scalar The ratio between the center of each pie slice and the start of the
text generated by autopct. Ignored if autopct is None; default is 0.6.

labeldistance: scalar The radial distance at which the pie labels are drawn
shadow: [False | True] Draw a shadow beneath the pie.

The pie chart will probably look best if the figure and axes are square. Eg.:

figure(figsize=(8,8))
ax = axes([0.1, 0.1, 0.8, 0.8])

Return value: If autopct is None, return the tuple (patches, texts):
• patches is a sequence of matplotlib.patches.Wedge instances
• texts is a list of the label matplotlib.text.Text instances.

If autopct is not None, return the tuple (patches, texts, autotexts), where patches and texts
are as above, and autotexts is a list of Text instances for the numeric labels.

plot(*args, **kwargs)
Plot lines and/or markers to the Axes. args is a variable length argument, allowing for multiple
x, y pairs with an optional format string. For example, each of the following is legal:

plot(x, y) # plot x and y using the default line style and color
plot(x, y, ’bo’) # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, ’r+’) # ditto, but with red plusses

If x and/or y is 2-dimensional, then the corresponding columns will be plotted.
An arbitrary number of x, y, fmt groups can be specified, as in:

a.plot(x1, y1, ’g^’, x2, y2, ’g-’)

Return value is a list of lines that were added.
The following line styles are supported:

- # solid line
-- # dashed line
-. # dash-dot line
: # dotted line
. # points
, # pixels

259

Matplotlib, Release 0.98

o # circle symbols
^ # triangle up symbols
v # triangle down symbols
< # triangle left symbols
> # triangle right symbols
s # square symbols
+ # plus symbols
x # cross symbols
D # diamond symbols
d # thin diamond symbols
1 # tripod down symbols
2 # tripod up symbols
3 # tripod left symbols
4 # tripod right symbols
h # hexagon symbols
H # rotated hexagon symbols
p # pentagon symbols
| # vertical line symbols
_ # horizontal line symbols
steps # use gnuplot style ’steps’ # kwarg only

The following color abbreviations are supported:

b # blue
g # green
r # red
c # cyan
m # magenta
y # yellow
k # black
w # white

In addition, you can specify colors in many weird and wonderful ways, including full names
(’green’), hex strings (’#008000’), RGB or RGBA tuples ((0,1,0,1)) or grayscale intensi-
ties as a string (’0.8’). Of these, the string specifications can be used in place of a fmt group,
but the tuple forms can be used only as kwargs.
Line styles and colors are combined in a single format string, as in ’bo’ for blue circles.
The kwargs can be used to set line properties (any property that has a set_* method). You can
use this to set a line label (for auto legends), linewidth, anitialising, marker face color, etc. Here
is an example:

plot([1,2,3], [1,2,3], ’go-’, label=’line 1’, linewidth=2)
plot([1,2,3], [1,4,9], ’rs’, label=’line 2’)
axis([0, 4, 0, 10])
legend()

If you make multiple lines with one plot command, the kwargs apply to all those lines, e.g.:

plot(x1, y1, x2, y2, antialised=False)

Neither line will be antialiased.
The kwargs are Line2D properties:

260

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

kwargs scalex and scaley, if defined, are passed on to autoscale_view() to determine whether
the x and y axes are autoscaled; the default is True.

plot_date(x, y, fmt=’bo’, tz=None, xdate=True, ydate=False, **kwargs)
call signature:

plot_date(x, y, fmt=’bo’, tz=None, xdate=True, ydate=False, **kwargs)

Similar to the plot() command, except the x or y (or both) data is considered to be dates, and
the axis is labeled accordingly.
x and/or y can be a sequence of dates represented as float days since 0001-01-01 UTC.
See dates for helper functions date2num(), num2date() and drange() for help on creating
the required floating point dates.

261

Matplotlib, Release 0.98

Keyword arguments:

fmt: string The plot format string.
tz: [None | timezone string] The time zone to use in labeling dates. If None, defaults

to rc value.
xdate: [True | False] If True, the x-axis will be labeled with dates.
ydate: [False | True] If True, the y-axis will be labeled with dates.

Note if you are using custom date tickers and formatters, it may be necessary to set
the formatters/locators after the call to plot_date() since plot_date() will set the de-
fault tick locator to matplotlib.ticker.AutoDateLocator (if the tick locator is not al-
ready set to a matplotlib.ticker.DateLocator instance) and the default tick formatter
to matplotlib.ticker.AutoDateFormatter (if the tick formatter is not already set to a
matplotlib.ticker.DateFormatter instance).
Valid kwargs are Line2D properties:

262

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

psd(x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x89e2e2c>, window=<function win-
dow_hanning at 0x89d5684>, noverlap=0, **kwargs)
call signature:

psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, **kwargs)

The power spectral density by Welches average periodogram method. The vector x is divided
into NFFT length segments. Each segment is detrended by function detrend and windowed by
function window. noperlap gives the length of the overlap between segments. The |fft(i)|2 of
each segment i are averaged to compute Pxx, with a scaling to correct for power loss due to
windowing. Fs is the sampling frequency.
Keyword arguments:

263

Matplotlib, Release 0.98

NFFT: integer The length of the fft segment, must be a power of 2
Fs: integer The sampling frequency.
Fc: integer The center frequency of x (defaults to 0), which offsets the yextents of

the image to reflect the frequency range used when a signal is acquired and then
filtered and downsampled to baseband.

detrend: The function applied to each segment before fft-ing, designed to remove the
mean or linear trend. Unlike in matlab, where the detrend parameter is a vec-
tor, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function
as well.

window: The function used to window the segments. window is a function, un-
like in matlab where it is a vector. pylab defines window_none(), and
window_hanning(), but you can use a custom function as well.

noverlap: integer Gives the length of the overlap between segments.

Returns the tuple (Pxx, freqs).
For plotting, the power is plotted as 10 log10(Pxx) for decibels, though Pxx itself is returned.

References: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John
Wiley & Sons (1986)

kwargs control the Line2D properties:

264

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

quiver(*args, **kw)
Plot a 2-D field of arrows.
call signatures:

quiver(U, V, **kw)
quiver(U, V, C, **kw)
quiver(X, Y, U, V, **kw)
quiver(X, Y, U, V, C, **kw)

Arguments:

X, Y: The x and y coordinates of the arrow locations (default is tail of arrow; see pivot
kwarg)

265

Matplotlib, Release 0.98

U, V: give the x and y components of the arrow vectors
C: an optional array used to map colors to the arrows

All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be
generated as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X)
and len(Y) match the column and row dimensions of U, then X and Y will be expanded with
numpy.meshgrid().
U, V, C may be masked arrays, but masked X, ** are not supported at present.
Keyword arguments:

units: [’width’ | ‘height’ | ‘dots’ | ‘inches’ | ‘x’ | ‘y’] arrow units; the arrow dimen-
sions except for length are in multiples of this unit.
• ‘width’ or ‘height’: the width or height of the axes
• ‘dots’ or ‘inches’: pixels or inches, based on the figure dpi
• ‘x’ or ‘y’: X or Y data units
In all cases the arrow aspect ratio is 1, so that if U*==*V the angle of the arrow
on the plot is 45 degrees CCW from the x-axis.
The arrows scale differently depending on the units, however. For ‘x’ or ‘y’, the
arrows get larger as one zooms in; for other units, the arrow size is independent
of the zoom state. For ‘width or ‘height’, the arrow size increases with the width
and height of the axes, respectively, when the the window is resized; for ‘dots’ or
‘inches’, resizing does not change the arrows.

scale: [None | float] data units per arrow unit, e.g. m/s per plot width; a smaller scale
parameter makes the arrow longer. If None, a simple autoscaling algorithm is used,
based on the average vector length and the number of vectors.

width: shaft width in arrow units; default depends on choice of units, above, and num-
ber of vectors; a typical starting value is about 0.005 times the width of the plot.

headwidth: scalar head width as multiple of shaft width, default is 3
headlength: scalar head length as multiple of shaft width, default is 5
headaxislength: scalar head length at shaft intersection, default is 4.5
minshaft: scalar length below which arrow scales, in units of head length. Do not set

this to less than 1, or small arrows will look terrible! Default is 1
minlength: scalar minimum length as a multiple of shaft width; if an arrow length is

less than this, plot a dot (hexagon) of this diameter instead. Default is 1.
pivot: [‘tail’ | ‘middle’ | ‘tip’] The part of the arrow that is at the grid point; the

arrow rotates about this point, hence the name pivot.
color: [color | color sequence] This is a synonym for the PolyCollection face-

color kwarg. If C has been set, color has no effect.

The defaults give a slightly swept-back arrow; to make the head a triangle, make headax-
islength the same as headlength. To make the arrow more pointed, reduce headwidth or increase
headlength and headaxislength. To make the head smaller relative to the shaft, scale down all
the head parameters. You will probably do best to leave minshaft alone.
linewidths and edgecolors can be used to customize the arrow outlines. Additional
PolyCollection keyword arguments:

266

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
label any string
linestyle [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linestyles [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number

quiverkey(*args, **kw)
Add a key to a quiver plot.
call signature:

quiverkey(Q, X, Y, U, label, **kw)

Arguments:

Q: The Quiver instance returned by a call to quiver.
X, Y: The location of the key; additional explanation follows.
U: The length of the key
label: a string with the length and units of the key

Keyword arguments:

267

Matplotlib, Release 0.98

coordinates = [‘axes’ | ‘figure’ | ‘data’ | ‘inches’] Coordinate system and units for
X, Y: ‘axes’ and ‘figure’ are normalized coordinate systems with 0,0 in the lower
left and 1,1 in the upper right; ‘data’ are the axes data coordinates (used for the
locations of the vectors in the quiver plot itself); ‘inches’ is position in the figure
in inches, with 0,0 at the lower left corner.

color: overrides face and edge colors from Q.
labelpos = [‘N’ | ‘S’ | ‘E’ | ‘W’] Position the label above, below, to the right, to the

left of the arrow, respectively.
labelsep: Distance in inches between the arrow and the label. Default is 0.1
labelcolor: defaults to default Text color.
fontproperties: A dictionary with keyword arguments accepted by the

FontProperties initializer: family, style, variant, size, weight

Any additional keyword arguments are used to override vector properties taken from Q.
The positioning of the key depends on X, Y, coordinates, and labelpos. If labelpos is ‘N’ or ‘S’,
X, Y give the position of the middle of the key arrow. If labelpos is ‘E’, X, Y positions the head,
and if labelpos is ‘W’, X, Y positions the tail; in either of these two cases, X, Y is somewhere in
the middle of the arrow+label key object.

redraw_in_frame()
This method can only be used after an initial draw which caches the renderer. It is used to
efficiently update Axes data (axis ticks, labels, etc are not updated)

relim()
recompute the data limits based on current artists

scatter(x, y, s=20, c=’b’, marker=’o’, cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0,
linewidths=None, faceted=True, verts=None, **kwargs)

call signatures:

scatter(x, y, s=20, c=’b’, marker=’o’, cmap=None, norm=None,
vmin=None, vmax=None, alpha=1.0, linewidths=None,
verts=None, **kwargs)

Make a scatter plot of x versus y, where x, y are 1-D sequences of the same length, N.
Keyword arguments:

s: size in points^2. It is a scalar or an array of the same length as x and y.
c: a color. c can be a single color format string, or a sequence of color specifications of

length N, or a sequence of N numbers to be mapped to colors using the cmap and
norm specified via kwargs (see below). Note that c should not be a single numeric
RGB or RGBA sequence because that is indistinguishable from an array of values
to be colormapped. c can be a 2-D array in which the rows are RGB or RGBA,
however.

marker: can be one of:

268

Matplotlib, Release 0.98

Value Description
‘s’ square
‘o’ circle
‘^’ triangle up
‘>’ triangle right
‘v’ triangle down
‘<’ triangle left
‘d’ diamond
‘p’ pentagram
‘h’ hexagon
‘8’ octagon
‘+’ plus
‘x’ cross

The marker can also be a tuple (numsides, style, angle), which will create a custom,
regular symbol.

numsides: the number of sides
style: the style of the regular symbol:

Value Description
0 a regular polygon
1 a star-like symbol
2 an asterisk
3 a circle (numsides and angle is ignored)

angle: the angle of rotation of the symbol
Finally, marker can be (verts, 0): verts is a sequence of (x, y) vertices for a custom
scatter symbol. Alternatively, use the kwarg combination marker = None, verts =

verts.

Any or all of x, y, s, and c may be masked arrays, in which case all masks will be combined and
only unmasked points will be plotted.
Other keyword arguments: the color mapping and normalization arguments will be used only if
c is an array of floats.

cmap: [None | Colormap] A matplotlib.colors.Colormap instance. If None,
defaults to rc image.cmap. cmap is only used if c is an array of floats.

norm: [None | Normalize] A matplotlib.colors.Normalize instance is used to
scale luminance data to 0, 1. If None, use the default normalize(). norm is only
used if c is an array of floats.

vmin/vmax: vmin and vmax are used in conjunction with norm to normalize luminance
data. If either are None, the min and max of the color array C is used. Note if you
pass a norm instance, your settings for vmin and vmax will be ignored.

alpha: 0 <= scalar <= 1 The alpha value for the patches
linewidths: [None | scalar | sequence] If None, defaults to (lines.linewidth,). Note

that this is a tuple, and if you set the linewidths argument you must set it as a
sequence of floats, as required by RegularPolyCollection.

Optional kwargs control the Collection properties; in particular:

edgecolors: ‘none’ to plot faces with no outlines
facecolors: ‘none’ to plot unfilled outlines

269

Matplotlib, Release 0.98

Here are the standard descriptions of all the Collection kwargs:

Property Description
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
label any string
linestyle [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linestyles [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number

A Collection instance is returned.

semilogx(*args, **kwargs)
call signature:

semilogx(*args, **kwargs)

Make a plot with log scaling on the x axis.
semilogx() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_xscale().
Notable keyword arguments:

basex: scalar > 1 base of the x logarithm

270

Matplotlib, Release 0.98

subsx: [None | sequence] The location of the minor xticks; None defaults to auto-
subs, which depend on the number of decades in the plot; see set_xscale() for
details.

The remaining valid kwargs are Line2D properties:

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

See loglog() for example code and figure

semilogy(*args, **kwargs)
call signature:

semilogy(*args, **kwargs)

Make a plot with log scaling on the y axis.

271

Matplotlib, Release 0.98

semilogy() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_yscale().
Notable keyword arguments:

basey: scalar > 1 Base of the y logarithm
subsy: [None | sequence] The location of the minor yticks; None defaults to auto-

subs, which depend on the number of decades in the plot; see set_yscale() for
details.

The remaining valid kwargs are Line2D properties:
Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

See loglog() for example code and figure

set_adjustable(adjustable)
ACCEPTS: [‘box’ | ‘datalim’]

272

Matplotlib, Release 0.98

set_anchor(anchor)
anchor

value description
‘C’ Center
‘SW’ bottom left
‘S’ bottom
‘SE’ bottom right
‘E’ right
‘NE’ top right
‘N’ top
‘NW’ top left
‘W’ left

set_aspect(aspect, adjustable=None, anchor=None)
aspect

value description
‘auto’ automatic; fill position rectangle with data
‘nor-
mal’

same as ‘auto’; deprecated

‘equal’ same scaling from data to plot units for x and y
num a circle will be stretched such that the height is num times the width. aspect=1 is the same as

aspect=’equal’.
adjustable

value description
‘box’ change physical size of axes
‘datalim’ change xlim or ylim

anchor
value description
‘C’ centered
‘SW’ lower left corner
‘S’ middle of bottom edge
‘SE’ lower right corner
etc.

set_autoscale_on(b)
Set whether autoscaling is applied on plot commands
accepts: [True | False]

set_axis_bgcolor(color)
set the axes background color
ACCEPTS: any matplotlib color - see colors()

set_axis_off()
turn off the axis

set_axis_on()
turn on the axis

set_axisbelow(b)
Set whether the axis ticks and gridlines are above or below most artists
ACCEPTS: [True | False]

273

Matplotlib, Release 0.98

set_color_cycle(clist)
Set the color cycle for any future plot commands on this Axes.
clist is a list of mpl color specifiers.

set_cursor_props(*args)
Set the cursor property as:

ax.set_cursor_props(linewidth, color)

or:

ax.set_cursor_props((linewidth, color))

ACCEPTS: a (float, color) tuple

set_figure(fig)
Set the class:~matplotlib.axes.Axes figure
accepts a class:~matplotlib.figure.Figure instance

set_frame_on(b)
Set whether the axes rectangle patch is drawn
ACCEPTS: [True | False]

set_navigate(b)
Set whether the axes responds to navigation toolbar commands
ACCEPTS: [True | False]

set_navigate_mode(b)
Set the navigation toolbar button status;

Warning: this is not a user-API function.

set_position(pos, which=’both’)
Set the axes position with:

pos = [left, bottom, width, height]

in relative 0,1 coords, or pos can be a Bbox
There are two position variables: one which is ultimately used, but which may be modified by
apply_aspect(), and a second which is the starting point for apply_aspect().

Optional keyword arguments: which
value description

‘active’ to change the first
‘original’ to change the second
‘both’ to change both

set_title(label, fontdict=None, **kwargs)
call signature:

set_title(label, fontdict=None, **kwargs):

Set the title for the axes. See the text() for information of how override and the optional args
work
kwargs are Text properties:

274

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color any matplotlib color
contains unknown
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion
transform unknown
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

ACCEPTS: str

set_xbound(lower=None, upper=None)
Set the lower and upper numerical bounds of the x-axis. This method will honor axes inversion
regardless of parameter order.

set_xlabel(xlabel, fontdict=None, **kwargs)
call signature:

set_xlabel(xlabel, fontdict=None, **kwargs)

Set the label for the xaxis. See the text() docstring for information of how override and the
optional args work.
Valid kwargs are Text properties:

275

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color any matplotlib color
contains unknown
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion
transform unknown
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

ACCEPTS: str

set_xlim(xmin=None, xmax=None, emit=True, **kwargs)
call signature:

set_xlim(self, *args, **kwargs)

Set the limits for the xaxis
Returns the current xlimits as a length 2 tuple: [xmin, xmax]
Examples:

set_xlim((valmin, valmax))
set_xlim(valmin, valmax)
set_xlim(xmin=1) # xmax unchanged
set_xlim(xmax=1) # xmin unchanged

276

Matplotlib, Release 0.98

Keyword arguments:

ymin: scalar the min of the ylim
ymax: scalar the max of the ylim
emit: [True | False] notify observers of lim change

ACCEPTS: len(2) sequence of floats

set_xscale(value, **kwargs)
call signature:

set_xscale(value)

Set the scaling of the x-axis: ‘linear’ | ‘log’ | ‘symlog’
ACCEPTS: [’linear’ | ‘log’ | ‘symlog’]
Different kwargs are accepted, depending on the scale: ‘linear’

‘log’
basex/basey: The base of the logarithm
subsx/subsy: Where to place the subticks between each major tick. Should be

a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]
will place 10 logarithmically spaced minor ticks between each major tick.

‘symlog’
basex/basey: The base of the logarithm
linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to

avoid having the plot go to infinity around zero).
subsx/subsy: Where to place the subticks between each major tick. Should be

a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]
will place 10 logarithmically spaced minor ticks between each major tick.

set_xticklabels(labels, fontdict=None, minor=False, **kwargs)
call signature:

set_xticklabels(labels, fontdict=None, minor=False, **kwargs)

Set the xtick labels with list of strings labels. Return a list of axis text instances.
kwargs set the Text properties. Valid properties are

277

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color any matplotlib color
contains unknown
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion
transform unknown
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

ACCEPTS: sequence of strings

set_xticks(ticks, minor=False)
Set the x ticks with list of ticks
ACCEPTS: sequence of floats

set_ybound(lower=None, upper=None)
Set the lower and upper numerical bounds of the y-axis. This method will honor axes inversion
regardless of parameter order.

set_ylabel(ylabel, fontdict=None, **kwargs)
call signature:

set_ylabel(ylabel, fontdict=None, **kwargs)

Set the label for the yaxis

278

Matplotlib, Release 0.98

See the text() doctstring for information of how override and the optional args work
Valid kwargs are Text properties:

Property Description
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color any matplotlib color
contains unknown
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion
transform unknown
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

ACCEPTS: str

set_ylim(ymin=None, ymax=None, emit=True, **kwargs)
call signature:

set_ylim(self, *args, **kwargs):

Set the limits for the yaxis; v = [ymin, ymax]:

set_ylim((valmin, valmax))
set_ylim(valmin, valmax)
set_ylim(ymin=1) # ymax unchanged
set_ylim(ymax=1) # ymin unchanged

279

Matplotlib, Release 0.98

Keyword arguments:

ymin: scalar the min of the ylim
ymax: scalar the max of the ylim
emit: [True | False] notify observers of lim change

Returns the current ylimits as a length 2 tuple
ACCEPTS: len(2) sequence of floats

set_yscale(value, **kwargs)
call signature:

set_yscale(value)

Set the scaling of the y-axis: ‘linear’ | ‘log’ | ‘symlog’
ACCEPTS: [’linear’ | ‘log’ | ‘symlog’]
Different kwargs are accepted, depending on the scale: ‘linear’

‘log’
basex/basey: The base of the logarithm
subsx/subsy: Where to place the subticks between each major tick. Should be

a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]
will place 10 logarithmically spaced minor ticks between each major tick.

‘symlog’
basex/basey: The base of the logarithm
linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to

avoid having the plot go to infinity around zero).
subsx/subsy: Where to place the subticks between each major tick. Should be

a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]
will place 10 logarithmically spaced minor ticks between each major tick.

set_yticklabels(labels, fontdict=None, minor=False, **kwargs)
call signature:

set_yticklabels(labels, fontdict=None, minor=False, **kwargs)

Set the ytick labels with list of strings labels. Return a list of Text instances.
kwargs set Text properties for the labels. Valid properties are

280

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color any matplotlib color
contains unknown
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion
transform unknown
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

ACCEPTS: sequence of strings

set_yticks(ticks, minor=False)
Set the y ticks with list of ticks
ACCEPTS: sequence of floats
Keyword arguments:

minor: [False | True] Sets the minor ticks if True

specgram(x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x89e2e2c>, win-
dow=<function window_hanning at 0x89d5684>, noverlap=128, cmap=None, xextent=None)

call signature:

specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window = mlab.window_hanning, noverlap=128,
cmap=None, xextent=None)

281

Matplotlib, Release 0.98

Compute a spectrogram of data in x. Data are split into NFFT length segments and the PSD of
each section is computed. The windowing function window is applied to each segment, and the
amount of overlap of each segment is specified with noverlap.
Keyword arguments:

cmap: A matplotlib.cm.Colormap instance; if None use default determined by rc
xextent: The image extent in the xaxes xextent=xmin, xmax default 0, max(bins), 0,

max(freqs) where bins is the return value from mlab.specgram

See psd() for information on the other keyword arguments.
Return value is (Pxx, freqs, bins, im):

•bins are the time points the spectrogram is calculated over
•freqs is an array of frequencies
•Pxx is a len(times) x len(freqs) array of power
•im is a matplotlib.image.AxesImage instance

Note: If x is real (i.e. non-complex), only the positive spectrum is shown. If x is complex, both
positive and negative parts of the spectrum are shown.

spy(Z, precision=None, marker=None, markersize=None, aspect=’equal’, **kwargs)
call signature:

spy(Z, precision=None, marker=None, markersize=None,
aspect=’equal’, **kwargs)

spy(Z) plots the sparsity pattern of the 2-D array Z.
If precision is None, any non-zero value will be plotted; else, values of |Z| > precision will be
plotted.
The array will be plotted as it would be printed, with the first index (row) increasing down and
the second index (column) increasing to the right.
By default aspect is ‘equal’, so that each array element occupies a square space; set the aspect
kwarg to ‘auto’ to allow the plot to fill the plot box, or to any scalar number to specify the aspect
ratio of an array element directly.
Two plotting styles are available: image or marker. Both are available for full arrays, but only
the marker style works for scipy.sparse.spmatrix instances.
If marker and markersize are None, an image will be returned and any remaining kwargs are
passed to imshow(); else, a Line2D object will be returned with the value of marker determining
the marker type, and any remaining kwargs passed to the plot() method.
If marker and markersize are None, useful kwargs include:

•cmap
•alpha

See documentation for imshow() for details.
For controlling colors, e.g. cyan background and red marks, use:

cmap = mcolors.ListedColormap([’c’,’r’])

If marker or markersize is not None, useful kwargs include:

•marker
•markersize

282

Matplotlib, Release 0.98

•color

See documentation for plot() for details.
Useful values for marker include:

•‘s’ square (default)
•‘o’ circle
•‘.’ point
•‘,’ pixel

start_pan(x, y, button)
Called when a pan operation has started.
x, y are the mouse coordinates in display coords. button is the mouse button number:

•1: LEFT
•2: MIDDLE
•3: RIGHT

Note: Intended to be overridden by new projection types.

stem(x, y, linefmt=’b-’, markerfmt=’bo’, basefmt=’r-’)
call signature:

stem(x, y, linefmt=’b-’, markerfmt=’bo’, basefmt=’r-’)

A stem plot plots vertical lines (using linefmt) at each x location from the baseline to y, and
places a marker there using markerfmt. A horizontal line at 0 is is plotted using basefmt.
Return value is a tuple (markerline, stemlines, baseline).
See this document for details and examples/pylab_examples/stem_plot.py for a demo.

step(x, y, *args, **kwargs)
call signature:

step(x, y, *args, **kwargs)

Make a step plot. Additional keyword args to step() are the same as those for plot().
x and y must be 1-D sequences, and it is assumed, but not checked, that x is uniformly increasing.
Keyword arguments:

where: [‘pre’ | ‘post’ | ‘mid’] If ‘pre’, the interval from x[i] to x[i+1] has level y[i]
If ‘post’, that interval has level y[i+1]
If ‘mid’, the jumps in y occur half-way between the x-values.

table(**kwargs)
call signature:

table(cellText=None, cellColours=None,
cellLoc=’right’, colWidths=None,
rowLabels=None, rowColours=None, rowLoc=’left’,
colLabels=None, colColours=None, colLoc=’center’,
loc=’bottom’, bbox=None):

Add a table to the current axes. Returns a matplotlib.table.Table instance. For finer
grained control over tables, use the Table class and add it to the axes with add_table().
Thanks to John Gill for providing the class and table.
kwargs control the Table properties:

283

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/stem.html

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
figure a matplotlib.figure.Figure instance
fontsize a float in points
label any string
lod [True | False]
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

text(x, y, s, fontdict=None, withdash=False, **kwargs)
call signature:

text(x, y, s, fontdict=None, **kwargs)

Add text in string s to axis at location x, y, data coordinates.
Keyword arguments:

fontdict: A dictionary to override the default text properties. If fontdict is None, the
defaults are determined by your rc parameters.

withdash: [False | True] Creates a TextWithDash instance instead of a Text in-
stance.

Individual keyword arguments can be used to override any given parameter:

text(x, y, s, fontsize=12)

The default transform specifies that text is in data coords, alternatively, you can specify text in
axis coords (0,0 is lower-left and 1,1 is upper-right). The example below places text in the center
of the axes:

text(0.5, 0.5,’matplotlib’,
horizontalalignment=’center’,
verticalalignment=’center’,
transform = ax.transAxes)

You can put a rectangular box around the text instance (eg. to set a background color) by using
the keyword bbox. bbox is a dictionary of matplotlib.patches.Rectangle properties. For
example:

text(x, y, s, bbox=dict(facecolor=’red’, alpha=0.5))

Valid kwargs are matplotlib.text.Text properties:

284

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color any matplotlib color
contains unknown
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion
transform unknown
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

ticklabel_format(**kwargs)
Convenience method for manipulating the ScalarFormatter used by default for linear axes.
Optional keyword arguments:

Keyword Description
style [‘sci’ (or ‘scientific’) | ‘plain’] plain turns off scientific notation
axis [‘x’ | ‘y’ | ‘both’]

Only the major ticks are affected. If the method is called when the ScalarFormatter is not the
Formatter being used, an AttributeError will be raised with no additional error message.
Additional capabilities and/or friendlier error checking may be added.

twinx()
call signature:

285

Matplotlib, Release 0.98

ax = twinx()

create a twin of Axes for generating a plot with a sharex x-axis but independent y axis. The
y-axis of self will have ticks on left and the returned axes will have ticks on the right

twiny()
call signature:

ax = twiny()

create a twin of Axes for generating a plot with a shared y-axis but independent x axis. The
x-axis of self will have ticks on bottom and the returned axes will have ticks on the top

update_datalim(xys)
Update the data lim bbox with seq of xy tups or equiv. 2-D array

update_datalim_bounds(bounds)
Update the datalim to include the given Bbox bounds

update_datalim_numerix(x, y)
Update the data lim bbox with seq of xy tups

vlines(x, ymin, ymax, colors=’k’, linestyles=’solid’, label=”, **kwargs)
call signature:

vlines(x, ymin, ymax, color=’k’)

Plot vertical lines at each x from ymin to ymax. ymin or ymax can be scalars or len(x) numpy
arrays. If they are scalars, then the respective values are constant, else the heights of the lines
are determined by ymin and ymax.
colors is a line collections color args, either a single color or a len(x) list of colors
linestyle is one of [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
Returns the matplotlib.collections.LineCollection that was added.
kwargs are LineCollection properties:

286

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
label any string
linestyle [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linestyles [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
segments unknown
transform unknown
verts unknown
visible [True | False]
zorder any number

xaxis_date(tz=None)
Sets up x-axis ticks and labels that treat the x data as dates.
tz is the time zone to use in labeling dates. Defaults to rc value.

xaxis_inverted()
Returns True if the x-axis is inverted.

xcorr(x, y, normed=False, detrend=<function detrend_none at 0x89e2e2c>, usevlines=False,
maxlags=None, **kwargs)

call signature:

287

Matplotlib, Release 0.98

xcorr(x, y, normed=False, detrend=mlab.detrend_none,
usevlines=False, **kwargs):

Plot the cross correlation between x and y. If normed = True, normalize the data but the cross
correlation at 0-th lag. x and y are detrended by the detrend callable (default no normalization).
x and y must be equal length.
Data are plotted as plot(lags, c, **kwargs)

Return value is a tuple (lags, c, line) where:

•lags are a length 2*maxlags+1 lag vector
•c is the 2*maxlags+1 auto correlation vector
•line is a Line2D instance returned by plot().

The default linestyle is None and the default marker is ‘o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy.correlate() with mode = 2.
If usevlines is True:

vlines() rather than plot() is used to draw vertical lines from the origin to the xcorr.
Otherwise the plotstyle is determined by the kwargs, which are Line2D properties.
The return value is a tuple (lags, c, linecol, b) where linecol is the
matplotlib.collections.LineCollection instance and b is the x-axis.

maxlags is a positive integer detailing the number of lags to show. The default value of None
will return all (2*len(x)-1) lags.
Example:
xcorr() above, and acorr() below.
Example:

60 40 20 0 20 40 60
0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

60 40 20 0 20 40 60
0.2

0.0

0.2

0.4

0.6

0.8

1.0

288

Matplotlib, Release 0.98

yaxis_date(tz=None)
Sets up y-axis ticks and labels that treat the y data as dates.
tz is the time zone to use in labeling dates. Defaults to rc value.

yaxis_inverted()
Returns True if the y-axis is inverted.

class Subplot(fig, *args, **kwargs)
Bases: matplotlib.axes.SubplotBase, matplotlib.axes.Axes

fig is a figure instance

args is numRows, numCols, plotNum where the array of subplots in the figure has dimensions num-
Rows, numCols, and where plotNum is the number of the subplot being created. plotNum starts at 1
in the upper right corner and increases to the right.

If numRows<=numCols<=plotNum<10, args can be the decimal integer numRows*100 + num-
Cols*10 + plotNum.

class SubplotBase(fig, *args, **kwargs)
Base class for subplots, which are Axes instances with additional methods to facilitate generating and
manipulating a set of Axes within a figure.

fig is a figure instance

args is numRows, numCols, plotNum where the array of subplots in the figure has dimensions num-
Rows, numCols, and where plotNum is the number of the subplot being created. plotNum starts at 1
in the upper right corner and increases to the right.

If numRows<=numCols<=plotNum<10, args can be the decimal integer numRows*100 + num-
Cols*10 + plotNum.

change_geometry(numrows, numcols, num)
change subplot geometry, eg from 1,1,1 to 2,2,3

get_geometry()
get the subplot geometry, eg 2,2,3

is_first_col()

is_first_row()

is_last_col()

is_last_row()

label_outer()
set the visible property on ticklabels so xticklabels are visible only if the subplot is in the last
row and yticklabels are visible only if the subplot is in the first column

update_params()
update the subplot position from fig.subplotpars

set_default_color_cycle(clist)
Change the default cycle of colors that will be used by the plot command. This must be called before
creating the Axes to which it will apply; it will apply to all future axes.

clist is a sequence of mpl color specifiers

subplot_class_factory(axes_class=None)

289

290

CHAPTER

TWENTYFOUR

Matplotlib axis

24.1 matplotlib.axis

Classes for the ticks and x and y axis

class Axis(axes, pickradius=15)
Bases: matplotlib.artist.Artist

Public attributes

•transData - transform data coords to display coords

•transAxis - transform axis coords to display coords

Init the axis with the parent Axes instance

cla()
clear the current axis

convert_units(x)

draw(renderer, *args, **kwargs)
Draw the axis lines, grid lines, tick lines and labels

get_children()

get_data_interval()
return the Interval instance for this axis data limits

get_gridlines()
Return the grid lines as a list of Line2D instance

get_label()
Return the axis label as a Text instance

get_major_formatter()
Get the formatter of the major ticker

get_major_locator()
Get the locator of the major ticker

get_major_ticks(numticks=None)
get the tick instances; grow as necessary

get_majorticklabels()
Return a list of Text instances for the major ticklabels

291

Matplotlib, Release 0.98

get_majorticklines()
Return the major tick lines as a list of Line2D instances

get_majorticklocs()
Get the major tick locations in data coordinates as a numpy array

get_minor_formatter()
Get the formatter of the minor ticker

get_minor_locator()
Get the locator of the minor ticker

get_minor_ticks(numticks=None)
get the minor tick instances; grow as necessary

get_minorticklabels()
Return a list of Text instances for the minor ticklabels

get_minorticklines()
Return the minor tick lines as a list of Line2D instances

get_minorticklocs()
Get the minor tick locations in data coordinates as a numpy array

get_offset_text()
Return the axis offsetText as a Text instance

get_pickradius()
Return the depth of the axis used by the picker

get_scale()

get_ticklabel_extents(renderer)
Get the extents of the tick labels on either side of the axes.

get_ticklabels(minor=False)
Return a list of Text instances for ticklabels

get_ticklines(minor=False)
Return the tick lines as a list of Line2D instances

get_ticklocs(minor=False)
Get the tick locations in data coordinates as a numpy array

get_transform()

get_units()
return the units for axis

get_view_interval()
return the Interval instance for this axis view limits

grid(b=None, which=’major’, **kwargs)
Set the axis grid on or off; b is a boolean use which = ‘major’ | ‘minor’ to set the grid for major
or minor ticks
if b is None and len(kwargs)==0, toggle the grid state. If kwargs are supplied, it is assumed you
want the grid on and b will be set to True
kwargs are used to set the line properties of the grids, eg,

xax.grid(color=’r’, linestyle=’-‘, linewidth=2)

292

Matplotlib, Release 0.98

have_units()

iter_ticks()
Iterate through all of the major and minor ticks.

limit_range_for_scale(vmin, vmax)

pan(numsteps)
Pan numsteps (can be positive or negative)

set_clip_path(clippath, transform=None)

set_data_interval()
Set the axis data limits

set_label_coords(x, y, transform=None)
Set the coordinates of the label. By default, the x coordinate of the y label is determined by the
tick label bounding boxes, but this can lead to poor alignment of multiple ylabels if there are
multiple axes. Ditto for the y coodinate of the x label.
You can also specify the coordinate system of the label with the transform. If None, the default
coordinate system will be the axes coordinate system (0,0) is (left,bottom), (0.5, 0.5) is middle,
etc

set_major_formatter(formatter)
Set the formatter of the major ticker
ACCEPTS: A Formatter instance

set_major_locator(locator)
Set the locator of the major ticker
ACCEPTS: a Locator instance

set_minor_formatter(formatter)
Set the formatter of the minor ticker
ACCEPTS: A Formatter instance

set_minor_locator(locator)
Set the locator of the minor ticker
ACCEPTS: a Locator instance

set_pickradius(pickradius)
Set the depth of the axis used by the picker
ACCEPTS: a distance in points

set_scale(value, **kwargs)

set_ticklabels(ticklabels, *args, **kwargs)
Set the text values of the tick labels. Return a list of Text instances. Use kwarg minor=True to
select minor ticks.
ACCEPTS: sequence of strings

set_ticks(ticks, minor=False)
Set the locations of the tick marks from sequence ticks
ACCEPTS: sequence of floats

set_units(u)
set the units for axis
ACCEPTS: a units tag

293

Matplotlib, Release 0.98

set_view_interval(vmin, vmax, ignore=False)

update_units(data)
introspect data for units converter and update the axis.converter instance if necessary. Return
True is data is registered for unit conversion

zoom(direction)
Zoom in/out on axis; if direction is >0 zoom in, else zoom out

class Tick(axes, loc, label, size=None, gridOn=None, tick1On=True, tick2On=True, label1On=True, la-
bel2On=False, major=True)

Bases: matplotlib.artist.Artist

Abstract base class for the axis ticks, grid lines and labels

1 refers to the bottom of the plot for xticks and the left for yticks 2 refers to the top of the plot for
xticks and the right for yticks

Publicly accessible attributes:

tick1line a Line2D instance
tick2line a Line2D instance
gridline a Line2D instance
label1 a Text instance
label2 a Text instance
gridOn a boolean which determines whether to draw the tickline
tick1On a boolean which determines whether to draw the 1st tickline
tick2On a boolean which determines whether to draw the 2nd tickline
label1On a boolean which determines whether to draw tick label
label2On a boolean which determines whether to draw tick label

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in relative, axes coords

contains(mouseevent)
Test whether the mouse event occured in the Tick marks.
This function always returns false. It is more useful to test if the axis as a whole contains the
mouse rather than the set of tick marks.

draw(renderer)

get_children()

get_loc()
Return the tick location (data coords) as a scalar

get_pad()
Get the value of the tick label pad in points

get_pad_pixels()

get_view_interval()
return the view Interval instance for the axis this tick is ticking

set_clip_path(clippath, transform=None)
Set the artist’s clip path, which may be:

294

Matplotlib, Release 0.98

•a Patch (or subclass) instance
•a Path instance, in which case an optional Transform instance may be provided, which

will be applied to the path before using it for clipping.
•None, to remove the clipping path

For efficiency, if the path happens to be an axis-aligned rectangle, this method will set the clip-
ping box to the corresponding rectangle and set the clipping path to None.
ACCEPTS: a Path instance and a Transform instance, a Patch instance, or None.

set_label(s)
Set the text of ticklabel
ACCEPTS: str

set_label1(s)
Set the text of ticklabel
ACCEPTS: str

set_label2(s)
Set the text of ticklabel2
ACCEPTS: str

set_pad(val)
Set the tick label pad in points
ACCEPTS: float

set_view_interval(vmin, vmax, ignore=False)

class Ticker()

class XAxis(axes, pickradius=15)
Bases: matplotlib.axis.Axis

Init the axis with the parent Axes instance

contains(mouseevent)
Test whether the mouse event occured in the x axis.

get_data_interval()
return the Interval instance for this axis data limits

get_label_position()
Return the label position (top or bottom)

get_minpos()

get_text_heights(renderer)
Returns the amount of space one should reserve for text above and below the axes. Returns a
tuple (above, below)

get_ticks_position()
Return the ticks position (top, bottom, default or unknown)

get_view_interval()
return the Interval instance for this axis view limits

set_data_interval(vmin, vmax, ignore=False)
return the Interval instance for this axis data limits

295

Matplotlib, Release 0.98

set_label_position(position)
Set the label position (top or bottom)
ACCEPTS: [‘top’ | ‘bottom’]

set_ticks_position(position)
Set the ticks position (top, bottom, both, default or none) both sets the ticks to appear on both
positions, but does not change the tick labels. default resets the tick positions to the default:
ticks on both positions, labels at bottom. none can be used if you don’t want any ticks.
ACCEPTS: [‘top’ | ‘bottom’ | ‘both’ | ‘default’ | ‘none’]

set_view_interval(vmin, vmax, ignore=False)

tick_bottom()
use ticks only on bottom

tick_top()
use ticks only on top

class XTick(axes, loc, label, size=None, gridOn=None, tick1On=True, tick2On=True, label1On=True, la-
bel2On=False, major=True)

Bases: matplotlib.axis.Tick

Contains all the Artists needed to make an x tick - the tick line, the label text and the grid line

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in relative, axes coords

get_data_interval()
return the Interval instance for this axis data limits

get_minpos()

get_view_interval()
return the Interval instance for this axis view limits

set_view_interval(vmin, vmax, ignore=False)

update_position(loc)
Set the location of tick in data coords with scalar loc

class YAxis(axes, pickradius=15)
Bases: matplotlib.axis.Axis

Init the axis with the parent Axes instance

contains(mouseevent)
Test whether the mouse event occurred in the y axis.
Returns True | False

get_data_interval()
return the Interval instance for this axis data limits

get_label_position()
Return the label position (left or right)

get_minpos()

get_text_widths(renderer)

get_ticks_position()
Return the ticks position (left, right, both or unknown)

296

Matplotlib, Release 0.98

get_view_interval()
return the Interval instance for this axis view limits

set_data_interval(vmin, vmax, ignore=False)
return the Interval instance for this axis data limits

set_label_position(position)
Set the label position (left or right)
ACCEPTS: [‘left’ | ‘right’]

set_offset_position(position)

set_ticks_position(position)
Set the ticks position (left, right, both or default) both sets the ticks to appear on both positions,
but does not change the tick labels. default resets the tick positions to the default: ticks on both
positions, labels on the left.
ACCEPTS: [‘left’ | ‘right’ | ‘both’ | ‘default’ | ‘none’]

set_view_interval(vmin, vmax, ignore=False)

tick_left()
use ticks only on left

tick_right()
use ticks only on right

class YTick(axes, loc, label, size=None, gridOn=None, tick1On=True, tick2On=True, label1On=True, la-
bel2On=False, major=True)

Bases: matplotlib.axis.Tick

Contains all the Artists needed to make a Y tick - the tick line, the label text and the grid line

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in relative, axes coords

get_data_interval()
return the Interval instance for this axis data limits

get_minpos()

get_view_interval()
return the Interval instance for this axis view limits

set_view_interval(vmin, vmax)

update_position(loc)
Set the location of tick in data coords with scalar loc

297

298

CHAPTER

TWENTYFIVE

Matplotlib cbook

25.1 matplotlib.cbook

error while formatting signature for matplotlib.cbook.Xlator: arg is not a Python function

A collection of utility functions and classes. Many (but not all) from the Python Cookbook – hence the name
cbook

class Bunch(**kwds)
Often we want to just collect a bunch of stuff together, naming each item of the bunch; a dictionary’s
OK for that, but a small do- nothing class is even handier, and prettier to use. Whenever you want to
group a few variables:

>>> point = Bunch(datum=2, squared=4, coord=12)
>>> point.datum

By: Alex Martelli From: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52308

class CallbackRegistry(signals)
Handle registering and disconnecting for a set of signals and callbacks:

signals = ’eat’, ’drink’, ’be merry’

def oneat(x):
print ’eat’, x

def ondrink(x):
print ’drink’, x

callbacks = CallbackRegistry(signals)

ideat = callbacks.connect(’eat’, oneat)
iddrink = callbacks.connect(’drink’, ondrink)

#tmp = callbacks.connect(’drunk’, ondrink) # this will raise a ValueError

callbacks.process(’drink’, 123) # will call oneat
callbacks.process(’eat’, 456) # will call ondrink
callbacks.process(’be merry’, 456) # nothing will be called
callbacks.disconnect(ideat) # disconnect oneat

299

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52308

Matplotlib, Release 0.98

callbacks.process(’eat’, 456) # nothing will be called

signals is a sequence of valid signals

connect(s, func)
register func to be called when a signal s is generated func will be called

disconnect(cid)
disconnect the callback registered with callback id cid

process(s, *args, **kwargs)
process signal s. All of the functions registered to receive callbacks on s will be called with
*args and **kwargs

class GetRealpathAndStat()

class Grouper(init=, [])
Bases: object

This class provides a lightweight way to group arbitrary objects together into disjoint sets when a
full-blown graph data structure would be overkill.

Objects can be joined using join(), tested for connectedness using joined(), and all disjoint sets
can be retreived by using the object as an iterator.

The objects being joined must be hashable.

For example:

>>> g = grouper.Grouper()
>>> g.join(’a’, ’b’)
>>> g.join(’b’, ’c’)
>>> g.join(’d’, ’e’)
>>> list(g)
[[’a’, ’b’, ’c’], [’d’, ’e’]]
>>> g.joined(’a’, ’b’)
True
>>> g.joined(’a’, ’c’)
True
>>> g.joined(’a’, ’d’)
False

clean()
Clean dead weak references from the dictionary

get_siblings(a)
Returns all of the items joined with a, including itself.

join(a, *args)
Join given arguments into the same set. Accepts one or more arguments.

joined(a, b)
Returns True if a and b are members of the same set.

class Idle(func)
Bases: matplotlib.cbook.Scheduler

Schedule callbacks when scheduler is idle

300

Matplotlib, Release 0.98

run()

class MemoryMonitor(nmax=20000)

clear()

plot(i0=0, isub=1, fig=None)

report(segments=4)

xy(i0=0, isub=1)

class Null(*args, **kwargs)
Null objects always and reliably “do nothing.”

class RingBuffer(size_max)
class that implements a not-yet-full buffer

append(x)
append an element at the end of the buffer

get()
Return a list of elements from the oldest to the newest.

class Scheduler()
Bases: threading.Thread

Base class for timeout and idle scheduling

stop()

class Sorter()
Sort by attribute or item

Example usage:

sort = Sorter()

list = [(1, 2), (4, 8), (0, 3)]
dict = [{’a’: 3, ’b’: 4}, {’a’: 5, ’b’: 2}, {’a’: 0, ’b’: 0},

{’a’: 9, ’b’: 9}]

sort(list) # default sort
sort(list, 1) # sort by index 1
sort(dict, ’a’) # sort a list of dicts by key ’a’

byAttribute(data, attributename, inplace=1)

byItem(data, itemindex=None, inplace=1)

sort(data, itemindex=None, inplace=1)

class Stack(default=None)
Implement a stack where elements can be pushed on and you can move back and forth. But no pop.
Should mimic home / back / forward in a browser

back()
move the position back and return the current element

301

Matplotlib, Release 0.98

bubble(o)
raise o to the top of the stack and return o. o must be in the stack

clear()
empty the stack

empty()

forward()
move the position forward and return the current element

home()
push the first element onto the top of the stack

push(o)
push object onto stack at current position - all elements occurring later than the current position
are discarded

remove(o)
remove element o from the stack

class Timeout(wait, func)
Bases: matplotlib.cbook.Scheduler

Schedule recurring events with a wait time in seconds

run()

class Xlator()
Bases: dict

All-in-one multiple-string-substitution class

Example usage:

text = "Larry Wall is the creator of Perl"
adict = {
"Larry Wall" : "Guido van Rossum",
"creator" : "Benevolent Dictator for Life",
"Perl" : "Python",
}

print multiple_replace(adict, text)

xlat = Xlator(adict)
print xlat.xlat(text)

xlat(text)
Translate text, returns the modified text.

allequal(seq)
Return True if all elements of seq compare equal. If seq is 0 or 1 length, return True

allpairs(x)
return all possible pairs in sequence x

Condensed by Alex Martelli from this thread on c.l.python

alltrue(seq)
Return True if all elements of seq evaluate to True. If seq is empty, return False.

302

http://groups.google.com/groups?q=all+pairs+group:*python*\&hl=en\&lr=\&ie=UTF-8\&selm=mailman.4028.1096403649.5135.python-list%40python.org\&rnum=1

Matplotlib, Release 0.98

class converter(missing=’Null’, missingval=None)
Base class for handling string -> python type with support for missing values

is_missing(s)

dedent(s)
Remove excess indentation from docstring s.

Discards any leading blank lines, then removes up to n whitespace characters from each line, where n
is the number of leading whitespace characters in the first line. It differs from textwrap.dedent in its
deletion of leading blank lines and its use of the first non-blank line to determine the indentation.

It is also faster in most cases.

delete_masked_points(*args)
Find all masked and/or non-finite points in a set of arguments, and return the arguments with only the
unmasked points remaining.

Arguments can be in any of 5 categories:

1.1-D masked arrays

2.1-D ndarrays

3.ndarrays with more than one dimension

4.other non-string iterables

5.anything else

The first argument must be in one of the first four categories; any argument with a length differing from
that of the first argument (and hence anything in category 5) then will be passed through unchanged.

Masks are obtained from all arguments of the correct length in categories 1, 2, and 4; a point is bad if
masked in a masked array or if it is a nan or inf. No attempt is made to extract a mask from categories
2, 3, and 4 if np.isfinite() does not yield a Boolean array.

All input arguments that are not passed unchanged are returned as ndarrays after removing the points
or rows corresponding to masks in any of the arguments.

A vastly simpler version of this function was originally written as a helper for Axes.scatter().

dict_delall(d, keys)
delete all of the keys from the dict d

distances_along_curve(X)
Computes the distance between a set of successive points in N dimensions.

where X is an MxN array or matrix. The distances between successive rows is computed. Distance is
the standard Euclidean distance.

exception_to_str(s=None)

finddir(o, match, case=False)
return all attributes of o which match string in match. if case is True require an exact case match.

flatten(seq, scalarp=<function is_scalar at 0x88646bc>)
this generator flattens nested containers such as

>>> l=((’John’, ’Hunter’), (1,23), [[[[42,(5,23)]]]])

303

Matplotlib, Release 0.98

so that

>>> for i in flatten(l): print i,
John Hunter 1 23 42 5 23

By: Composite of Holger Krekel and Luther Blissett From:
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/121294 and Recipe 1.12 in cookbook

get_recursive_filelist(args)
Recurs all the files and dirs in args ignoring symbolic links and return the files as a list of strings

get_split_ind(seq, N)
seq is a list of words. Return the index into seq such that:

len(’ ’.join(seq[:ind])<=N

is_closed_polygon(X)
Tests whether first and last object in a sequence are the same. These are presumably coordinates on a
polygonal curve, in which case this function tests if that curve is closed.

is_numlike(obj)
return true if obj looks like a number

is_scalar(obj)
return true if obj is not string like and is not iterable

is_sequence_of_strings(obj)
Returns true if obj is iterable and contains strings

is_string_like(obj)
return true if obj looks like a string

is_writable_file_like(obj)
return true if obj looks like a file object with a write method

issubclass_safe(x, klass)
return issubclass(x, klass) and return False on a TypeError

isvector(X)
Like the Matlab (TM) function with the same name, returns true if the supplied numpy array or matrix
looks like a vector, meaning it has a one non-singleton axis (i.e., it can have multiple axes, but all must
have length 1, except for one of them).

If you just want to see if the array has 1 axis, use X.ndim==1

iterable(obj)
return true if obj is iterable

less_simple_linear_interpolation(x, y, xi, extrap=False)
This function provides simple (but somewhat less so than simple_linear_interpolation) linear interpo-
lation. simple_linear_interpolation will give a list of point between a start and an end, while this does
true linear interpolation at an arbitrary set of points.

This is very inefficient linear interpolation meant to be used only for a small number of points in
relatively non-intensive use cases.

304

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/121294

Matplotlib, Release 0.98

listFiles(root, patterns=’*’, recurse=1, return_folders=0)
Recursively list files

from Parmar and Martelli in the Python Cookbook

class maxdict(maxsize)
Bases: dict

A dictionary with a maximum size; this doesn’t override all the relevant methods to contrain size, just
setitem, so use with caution

mkdirs(newdir, mode=511)

onetrue(seq)
Return True if one element of seq is True. It seq is empty, return False.

path_length(X)
Computes the distance travelled along a polygonal curve in N dimensions.

where X is an MxN array or matrix. Returns an array of length M consisting of the distance along the
curve at each point (i.e., the rows of X).

pieces(seq, num=2)
Break up the seq into num tuples

popall(seq)
empty a list

popd(d, *args)
Should behave like python2.3 dict.pop() method; d is a dict:

returns value for key and deletes item; raises a KeyError if key
is not in dict
val = popd(d, key)

returns value for key if key exists, else default. Delete key,
val item if it exists. Will not raise a KeyError
val = popd(d, key, default)

print_cycles(objects, outstream=<open file ’<stdout>’, mode ’w’ at 0xb7b2d068>,
show_progress=False)

objects

A list of objects to find cycles in. It is often useful to pass in gc.garbage to find the cycles that
are preventing some objects from being garbage collected.

outstream The stream for output.

show_progress If True, print the number of objects reached as they are found.

recursive_remove(path)

report_memory(i=0)
return the memory consumed by process

reverse_dict(d)
reverse the dictionary – may lose data if values are not unique!

safezip(*args)
make sure args are equal len before zipping

305

Matplotlib, Release 0.98

class silent_list(type, seq=None)
Bases: list

override repr when returning a list of matplotlib artists to prevent long, meaningless output. This is
meant to be used for a homogeneous list of a give type

simple_linear_interpolation(a, steps)

soundex(name, len=4)
soundex module conforming to Odell-Russell algorithm

strip_math(s)
remove latex formatting from mathtext

to_filehandle(fname, flag=’r’, return_opened=False)
fname can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends
in .gz. flag is a read/write flag for file()

class todate(fmt=’%Y-%m-%d’, missing=’Null’, missingval=None)
Bases: matplotlib.cbook.converter

convert to a date or None

use a time.strptime() format string for conversion

class todatetime(fmt=’%Y-%m-%d’, missing=’Null’, missingval=None)
Bases: matplotlib.cbook.converter

convert to a datetime or None

use a time.strptime() format string for conversion

class tofloat(missing=’Null’, missingval=None)
Bases: matplotlib.cbook.converter

convert to a float or None

class toint(missing=’Null’, missingval=None)
Bases: matplotlib.cbook.converter

convert to an int or None

class tostr(missing=’Null’, missingval=”)
Bases: matplotlib.cbook.converter

convert to string or None

unicode_safe(s)

unique(x)
Return a list of unique elements of x

unmasked_index_ranges(mask, compressed=True)
Find index ranges where mask is False.

mask will be flattened if it is not already 1-D.

Returns Nx2 numpy.ndarray with each row the start and stop indices for slices of the compressed
numpy.ndarray corresponding to each of N uninterrupted runs of unmasked values. If optional
argument compressed is False, it returns the start and stop indices into the original numpy.ndarray,
not the compressed numpy.ndarray. Returns None if there are no unmasked values.

Example:

306

Matplotlib, Release 0.98

y = ma.array(np.arange(5), mask = [0,0,1,0,0])
ii = unmasked_index_ranges(ma.getmaskarray(y))
returns array [[0,2,] [2,4,]]

y.compressed()[ii[1,0]:ii[1,1]]
returns array [3,4,]

ii = unmasked_index_ranges(ma.getmaskarray(y), compressed=False)
returns array [[0, 2], [3, 5]]

y.filled()[ii[1,0]:ii[1,1]]
returns array [3,4,]

Prior to the transforms refactoring, this was used to support masked arrays in Line2D.

vector_lengths(X, P=2.0, axis=None)
Finds the length of a set of vectors in n dimensions. This is like the numpy norm function for vectors,
but has the ability to work over a particular axis of the supplied array or matrix.

Computes (sum((x_i)^P))^(1/P) for each {x_i} being the elements of X along the given axis. If axis
is None, compute over all elements of X.

wrap(prefix, text, cols)
wrap text with prefix at length cols

307

308

CHAPTER

TWENTYSIX

Matplotlib cm

26.1 matplotlib.cm

This module contains the instantiations of color mapping classes

class ScalarMappable(norm=None, cmap=None)
This is a mixin class to support scalar -> RGBA mapping. Handles normalization and colormapping

norm is an instance of colors.Normalize or one of its subclasses, used to map luminance to 0-1.
cmap is a cm colormap instance, for example cm.jet

add_checker(checker)
Add an entry to a dictionary of boolean flags that are set to True when the mappable is changed.

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits
that are None

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the
‘changed’ signal

check_update(checker)
If mappable has changed since the last check, return True; else return False

get_array()
Return the array

get_clim()
return the min, max of the color limits for image scaling

get_cmap()
return the colormap

set_array(A)
Set the image array from numpy array A

set_clim(vmin=None, vmax=None)
set the norm limits for image scaling; if vmin is a length2 sequence, interpret it as (vmin,
vmax) which is used to support setp
ACCEPTS: a length 2 sequence of floats

309

Matplotlib, Release 0.98

set_cmap(cmap)
set the colormap for luminance data
ACCEPTS: a colormap

set_colorbar(im, ax)
set the colorbar image and axes associated with mappable

set_norm(norm)
set the normalization instance

to_rgba(x, alpha=1.0, bytes=False)
Return a normalized rgba array corresponding to x. If x is already an rgb array, insert alpha; if it
is already rgba, return it unchanged. If bytes is True, return rgba as 4 uint8s instead of 4 floats.

get_cmap(name=None, lut=None)
Get a colormap instance, defaulting to rc values if name is None

310

CHAPTER

TWENTYSEVEN

Matplotlib collections

Could not execute ‘dot’. Are you sure you have ‘graphviz’ installed?

27.1 matplotlib.collections

Classes for the efficient drawing of large collections of objects that share most properties, e.g. a large number
of line segments or polygons.

The classes are not meant to be as flexible as their single element counterparts (e.g. you may not be able to
select all line styles) but they are meant to be fast for common use cases (e.g. a bunch of solid line segemnts)

class AsteriskPolygonCollection(numsides, rotation=0, sizes=(1,), **kwargs)
Bases: matplotlib.collections.RegularPolyCollection

Draw a collection of regular asterisks with numsides points.

numsides the number of sides of the polygon

rotation the rotation of the polygon in radians

sizes gives the area of the circle circumscribing the regular polygon in points^2
Valid Collection keyword arguments:

• edgecolors: None
• facecolors: None
• linewidths: None
• antialiaseds: None
• offsets: None
• transOffset: transforms.IdentityTransform()
• norm: None (optional for matplotlib.cm.ScalarMappable)
• cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)
If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

Example: see examples/dynamic_collection.py for complete example:

311

Matplotlib, Release 0.98

offsets = np.random.rand(20,2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]
black = (0,0,0,1)

collection = RegularPolyCollection(
numsides=5, # a pentagon
rotation=0, sizes=(50,),
facecolors = facecolors,
edgecolors = (black,),
linewidths = (1,),
offsets = offsets,
transOffset = ax.transData,
)

class BrokenBarHCollection(xranges, yrange, **kwargs)
Bases: matplotlib.collections.PolyCollection

A collection of horizontal bars spanning yrange with a sequence of xranges.

xranges sequence of (xmin, xwidth)

yrange ymin, ywidth
Valid Collection keyword arguments:

• edgecolors: None
• facecolors: None
• linewidths: None
• antialiaseds: None
• offsets: None
• transOffset: transforms.IdentityTransform()
• norm: None (optional for matplotlib.cm.ScalarMappable)
• cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)
If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

class CircleCollection(sizes)
Bases: matplotlib.collections.Collection

A collection of circles, drawn using splines.

sizes Gives the area of the circle in points^2
Valid Collection keyword arguments:

• edgecolors: None
• facecolors: None
• linewidths: None
• antialiaseds: None
• offsets: None
• transOffset: transforms.IdentityTransform()
• norm: None (optional for matplotlib.cm.ScalarMappable)

312

Matplotlib, Release 0.98

• cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)
If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

draw(renderer)

class Collection(edgecolors=None, facecolors=None, linewidths=None, linestyles=’solid’, an-
tialiaseds=None, offsets=None, transOffset=None, norm=None, cmap=None,
pickradius=5.0, **kwargs)

Bases: matplotlib.artist.Artist, matplotlib.cm.ScalarMappable

Base class for Collections. Must be subclassed to be usable.

All properties in a collection must be sequences or scalars; if scalars, they will be converted to se-
quences. The property of the ith element of the collection is:

prop[i % len(props)]

Keyword arguments and default values:

•edgecolors: None

•facecolors: None

•linewidths: None

•antialiaseds: None

•offsets: None

•transOffset: transforms.IdentityTransform()

•norm: None (optional for matplotlib.cm.ScalarMappable)

•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets).

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

The use of ScalarMappable is optional. If the ScalarMappable matrix _A is not None (ie a call to
set_array has been made), at draw time a call to scalar mappable will be made to set the face colors.

Create a Collection

%(Collection)s

contains(mouseevent)
Test whether the mouse event occurred in the collection.
Returns True | False, dict(ind=itemlist), where every item in itemlist contains the event.

draw(renderer)

get_dashes()

get_datalim(transData)

get_edgecolor()

get_edgecolors()

get_facecolor()

313

Matplotlib, Release 0.98

get_facecolors()

get_linestyle()

get_linestyles()

get_linewidth()

get_linewidths()

get_offsets()
Return the offsets for the collection.

get_paths()

get_pickradius()

get_transforms()

set_alpha(alpha)
Set the alpha tranparencies of the collection. alpha must be a float.
ACCEPTS: float

set_antialiased(aa)
Set the antialiasing state for rendering.
ACCEPTS: Boolean or sequence of booleans

set_antialiaseds(aa)
Set the antialiasing state for rendering.
ACCEPTS: Boolean or sequence of booleans

set_color(c)
Set both the edgecolor and the facecolor. See set_facecolor() and set_edgecolor().
ACCEPTS: matplotlib color arg or sequence of rgba tuples

set_dashes(ls)
Set the linestyles(s) for the collection. ACCEPTS: [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset,
on-off-dash-seq)]

set_edgecolor(c)
Set the edgecolor(s) of the collection. c can be a matplotlib color arg (all patches have same
color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the se-
quence.
If c is ‘face’, the edge color will always be the same as the face color.
ACCEPTS: matplotlib color arg or sequence of rgba tuples

set_edgecolors(c)
Set the edgecolor(s) of the collection. c can be a matplotlib color arg (all patches have same
color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the se-
quence.
If c is ‘face’, the edge color will always be the same as the face color.
ACCEPTS: matplotlib color arg or sequence of rgba tuples

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a matplotlib color arg (all patches have same
color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence
ACCEPTS: matplotlib color arg or sequence of rgba tuples

314

Matplotlib, Release 0.98

set_facecolors(c)
Set the facecolor(s) of the collection. c can be a matplotlib color arg (all patches have same
color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence
ACCEPTS: matplotlib color arg or sequence of rgba tuples

set_linestyle(ls)
Set the linestyles(s) for the collection. ACCEPTS: [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset,
on-off-dash-seq)]

set_linestyles(ls)
Set the linestyles(s) for the collection. ACCEPTS: [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset,
on-off-dash-seq)]

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence
ACCEPTS: float or sequence of floats

set_linewidths(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence
ACCEPTS: float or sequence of floats

set_lw(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence
ACCEPTS: float or sequence of floats

set_offsets(offsets)
Set the offsets for the collection. offsets can be a scalar or a sequence.
ACCEPTS: float or sequence of floats

set_pickradius(pickradius)

update_scalarmappable()
If the scalar mappable array is not none, update colors from scalar data

class LineCollection(segments, linewidths=None, colors=None, antialiaseds=None, linestyles=’solid’,
offsets=None, transOffset=None, norm=None, cmap=None, pickradius=5,
**kwargs)

Bases: matplotlib.collections.Collection

All parameters must be sequences or scalars; if scalars, they will be converted to sequences. The
property of the ith line segment is:

prop[i % len(props)]

i.e., the properties cycle if the len of props is less than the number of segments.

segments a sequence of (line0, line1, line2), where:

linen = (x0, y0), (x1, y1), ... (xm, ym)

or the equivalent numpy array with two columns. Each line can be a different length.

colors must be a sequence of RGBA tuples (eg arbitrary color strings, etc, not allowed).

315

Matplotlib, Release 0.98

antialiaseds must be a sequence of ones or zeros

linestyles [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] a string or dash tuple. The dash tuple is:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

If linewidths, colors, or antialiaseds is None, they default to their rcParams setting, in sequence form.

If offsets and transOffset are not None, then offsets are transformed by transOffset and applied after
the segments have been transformed to display coordinates.

If offsets is not None but transOffset is None, then the offsets are added to the segments before any
transformation. In this case, a single offset can be specified as:

offsets=(xo,yo)

and this value will be added cumulatively to each successive segment, so as to produce a set of
successively offset curves.

norm None (optional for matplotlib.cm.ScalarMappable)

cmap None (optional for matplotlib.cm.ScalarMappable)

pickradius is the tolerance for mouse clicks picking a line. The default is 5 pt.

The use of ScalarMappable is optional. If the ScalarMappable matrix _A is not None (ie a call to
set_array() has been made), at draw time a call to scalar mappable will be made to set the colors.

color(c)
Set the color(s) of the line collection. c can be a matplotlib color arg (all patches have same
color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence
ACCEPTS: matplotlib color arg or sequence of rgba tuples

get_color()

get_colors()

get_paths()

set_color(c)
Set the color(s) of the line collection. c can be a matplotlib color arg (all patches have same
color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence
ACCEPTS: matplotlib color arg or sequence of rgba tuples

set_segments(segments)

set_verts(segments)

class PatchCollection(patches, match_original=False, **kwargs)
Bases: matplotlib.collections.Collection

A generic collection of patches.

This makes it easier to assign a color map to a heterogeneous collection of patches.

This also may improve plotting speed, since PatchCollection will draw faster than a large number of
patches.

patches a sequence of Patch objects. This list may include a heterogeneous assortment of different
patch types.

316

Matplotlib, Release 0.98

match_original If True, use the colors and linewidths of the original patches. If False, new colors may
be assigned by providing the standard collection arguments, facecolor, edgecolor, linewidths,
norm or cmap.

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

The use of ScalarMappable is optional. If the ScalarMappable matrix _A is not None (ie a call to
set_array has been made), at draw time a call to scalar mappable will be made to set the face colors.

get_paths()

class PolyCollection(verts, sizes=None, closed=True, **kwargs)
Bases: matplotlib.collections.Collection

verts is a sequence of (verts0, verts1, ...) where verts_i is a sequence of xy tuples of vertices, or an
equivalent numpy array of shape (nv, 2).

sizes is None (default) or a sequence of floats that scale the corresponding verts_i. The scaling is
applied before the Artist master transform; if the latter is an identity transform, then the overall scaling
is such that if verts_i specify a unit square, then sizes_i is the area of that square in points^2. If
len(sizes) < nv, the additional values will be taken cyclically from the array.

closed, when True, will explicitly close the polygon.

Valid Collection keyword arguments:

•edgecolors: None
•facecolors: None
•linewidths: None
•antialiaseds: None
•offsets: None
•transOffset: transforms.IdentityTransform()
•norm: None (optional for matplotlib.cm.ScalarMappable)
•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)
If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

draw(renderer)

get_paths()

set_verts(verts, closed=True)
This allows one to delay initialization of the vertices.

class QuadMesh(meshWidth, meshHeight, coordinates, showedges, antialiased=True)
Bases: matplotlib.collections.Collection

Class for the efficient drawing of a quadrilateral mesh.

A quadrilateral mesh consists of a grid of vertices. The dimensions of this array are (meshWidth + 1,
meshHeight + 1). Each vertex in the mesh has a different set of “mesh coordinates” representing its
position in the topology of the mesh. For any values (m, n) such that 0 <= m <= meshWidth and 0 <=

n <= meshHeight, the vertices at mesh coordinates (m, n), (m, n + 1), (m + 1, n + 1), and (m + 1, n)

317

Matplotlib, Release 0.98

form one of the quadrilaterals in the mesh. There are thus (meshWidth * meshHeight) quadrilaterals
in the mesh. The mesh need not be regular and the polygons need not be convex.

A quadrilateral mesh is represented by a (2 x ((meshWidth + 1) * (meshHeight + 1))) numpy array
coordinates, where each row is the x and y coordinates of one of the vertices. To define the function
that maps from a data point to its corresponding color, use the set_cmap() method. Each of these
arrays is indexed in row-major order by the mesh coordinates of the vertex (or the mesh coordinates
of the lower left vertex, in the case of the colors).

For example, the first entry in coordinates is the coordinates of the vertex at mesh coordinates (0, 0),
then the one at (0, 1), then at (0, 2) .. (0, meshWidth), (1, 0), (1, 1), and so on.

convert_mesh_to_paths
Converts a given mesh into a sequence of matplotlib.path.Path objects for easier rendering
by backends that do not directly support quadmeshes.
This function is primarily of use to backend implementers.

draw(renderer)

get_datalim(transData)

get_paths(dataTrans=None)

class RegularPolyCollection(numsides, rotation=0, sizes=(1,), **kwargs)
Bases: matplotlib.collections.Collection

Draw a collection of regular polygons with numsides.

numsides the number of sides of the polygon

rotation the rotation of the polygon in radians

sizes gives the area of the circle circumscribing the regular polygon in points^2
Valid Collection keyword arguments:

• edgecolors: None
• facecolors: None
• linewidths: None
• antialiaseds: None
• offsets: None
• transOffset: transforms.IdentityTransform()
• norm: None (optional for matplotlib.cm.ScalarMappable)
• cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)
If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

Example: see examples/dynamic_collection.py for complete example:

offsets = np.random.rand(20,2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]
black = (0,0,0,1)

collection = RegularPolyCollection(
numsides=5, # a pentagon

318

Matplotlib, Release 0.98

rotation=0, sizes=(50,),
facecolors = facecolors,
edgecolors = (black,),
linewidths = (1,),
offsets = offsets,
transOffset = ax.transData,
)

draw(renderer)

get_paths()

class StarPolygonCollection(numsides, rotation=0, sizes=(1,), **kwargs)
Bases: matplotlib.collections.RegularPolyCollection

Draw a collection of regular stars with numsides points.

numsides the number of sides of the polygon

rotation the rotation of the polygon in radians

sizes gives the area of the circle circumscribing the regular polygon in points^2
Valid Collection keyword arguments:

• edgecolors: None
• facecolors: None
• linewidths: None
• antialiaseds: None
• offsets: None
• transOffset: transforms.IdentityTransform()
• norm: None (optional for matplotlib.cm.ScalarMappable)
• cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)
If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

Example: see examples/dynamic_collection.py for complete example:

offsets = np.random.rand(20,2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]
black = (0,0,0,1)

collection = RegularPolyCollection(
numsides=5, # a pentagon
rotation=0, sizes=(50,),
facecolors = facecolors,
edgecolors = (black,),
linewidths = (1,),
offsets = offsets,
transOffset = ax.transData,
)

319

320

CHAPTER

TWENTYEIGHT

Matplotlib colorbar

28.1 matplotlib.colorbar

Colorbar toolkit with two classes and a function:

ColorbarBase the base class with full colorbar drawing functionality. It can be used as-is to
make a colorbar for a given colormap; a mappable object (e.g., image) is not needed.

Colorbar the derived class for use with images or contour plots.

make_axes() a function for resizing an axes and adding a second axes suitable for a colorbar

The matplotlib.Figure.colorbar() method uses make_axes() and Colorbar; the
matplotlib.pyplot.colorbar() function is a thin wrapper over matplotlib.Figure.colorbar().

class Colorbar(ax, mappable, **kw)
Bases: matplotlib.colorbar.ColorbarBase

add_lines(CS)
Add the lines from a non-filled ContourSet to the colorbar.

update_bruteforce(mappable)
Manually change any contour line colors. This is called when the image or contour plot to which
this colorbar belongs is changed.

class ColorbarBase(ax, cmap=None, norm=None, alpha=1.0, values=None, boundaries=None, orien-
tation=’vertical’, extend=’neither’, spacing=’uniform’, ticks=None, format=None,
drawedges=False, filled=True)

Bases: matplotlib.cm.ScalarMappable

Draw a colorbar in an existing axes.

This is a base class for the Colorbar class, which is the basis for the colorbar() method and pylab
function.

It is also useful by itself for showing a colormap. If the cmap kwarg is given but boundaries and
values are left as None, then the colormap will be displayed on a 0-1 scale. To show the under- and
over-value colors, specify the norm as:

colors.Normalize(clip=False)

To show the colors versus index instead of on the 0-1 scale, use:

321

Matplotlib, Release 0.98

norm=colors.NoNorm.

add_lines(levels, colors, linewidths)
Draw lines on the colorbar.

draw_all()
Calculate any free parameters based on the current cmap and norm, and do all the drawing.

set_alpha(alpha)

set_label(label, **kw)

make_axes(parent, **kw)
Resize and reposition a parent axes, and return a child axes suitable for a colorbar:

cax, kw = make_axes(parent, **kw)

Keyword arguments may include the following (with defaults):

orientation ‘vertical’ or ‘horizontal’

Property Description
fraction 0.15; fraction of original axes to use for colorbar
pad 0.05 if vertical, 0.15 if horizontal; fraction of original axes between colorbar and new

image axes
shrink 1.0; fraction by which to shrink the colorbar
aspect 20; ratio of long to short dimensions

All but the first of these are stripped from the input kw set.

Returns (cax, kw), the child axes and the reduced kw dictionary.

322

CHAPTER

TWENTYNINE

Matplotlib colors

29.1 matplotlib.colors

A class for converting color arguments to RGB or RGBA

This class instantiates a single instance colorConverter that is used to convert matlab color strings to RGB.
RGB is a tuple of float RGB values in the range 0-1.

Commands which take color arguments can use several formats to specify the colors. For the basic builtin
colors, you can use a single letter

b : blue g : green r : red c : cyan m : magenta y : yellow k : black w : white

Gray shades can be given as a string encoding a float in the 0-1 range, e.g.:

color = ’0.75’

For a greater range of colors, you have two options. You can specify the color using an html hex string, as
in:

color = ’#eeefff’

or you can pass an R , G , B tuple, where each of R , G , B are in the range [0,1].

Finally, legal html names for colors, like ‘red’, ‘burlywood’ and ‘chartreuse’ are supported.

class BoundaryNorm(boundaries, ncolors, clip=False)
Bases: matplotlib.colors.Normalize

Generate a colormap index based on discrete intervals.

Unlike Normalize or LogNorm, BoundaryNorm maps values to integers instead of to the interval 0-1.

Mapping to the 0-1 interval could have been done via piece-wise linear interpolation, but using in-
tegers seems simpler, and reduces the number of conversions back and forth between integer and
floating point.

boundaries a monotonically increasing sequence

ncolors number of colors in the colormap to be used

If:

323

Matplotlib, Release 0.98

b[i] <= v < b[i+1]

then v is mapped to color j; as i varies from 0 to len(boundaries)-2, j goes from 0 to ncolors-1.

Out-of-range values are mapped to -1 if low and ncolors if high; these are converted to valid indices
by Colormap.__call__() .

inverse(value)

class ColorConverter()

to_rgb(arg)
Returns an RGB tuple of three floats from 0-1.
arg can be an RGB or RGBA sequence or a string in any of several forms:

1.a letter from the set ‘rgbcmykw’
2.a hex color string, like ‘#00FFFF’
3.a standard name, like ‘aqua’
4.a float, like ‘0.4’, indicating gray on a 0-1 scale

if arg is RGBA, the A will simply be discarded.

to_rgba(arg, alpha=None)
Returns an RGBA tuple of four floats from 0-1.
For acceptable values of arg, see to_rgb(). If arg is an RGBA sequence and alpha is not None,
alpha will replace the original A.

to_rgba_array(c, alpha=None)
Returns an Numpy array of RGBA tuples.
Accepts a single mpl color spec or a sequence of specs. If the sequence is a list or array, the
items are changed in place, but an array copy is still returned.
Special case to handle “no color”: if c is “none” (case-insensitive), then an empty array will be
returned. Same for an empty list.

class Colormap(name, N=256)
Base class for all scalar to rgb mappings

Important methods:

•set_bad()

•set_under()

•set_over()

Public class attributes: N : number of rgb quantization levels name : name of colormap

is_gray()

set_bad(color=’k’, alpha=1.0)
Set color to be used for masked values.

set_over(color=’k’, alpha=1.0)
Set color to be used for high out-of-range values. Requires norm.clip = False

324

Matplotlib, Release 0.98

set_under(color=’k’, alpha=1.0)
Set color to be used for low out-of-range values. Requires norm.clip = False

class LinearSegmentedColormap(name, segmentdata, N=256)
Bases: matplotlib.colors.Colormap

Colormap objects based on lookup tables using linear segments.

The lookup transfer function is a simple linear function between defined intensities. There is no limit
to the number of segments that may be defined. Though as the segment intervals start containing
fewer and fewer array locations, there will be inevitable quantization errors

Create color map from linear mapping segments

segmentdata argument is a dictionary with a red, green and blue entries. Each entry should
be a list of x, y0, y1 tuples. See makeMappingArray for details

class ListedColormap(colors, name=’from_list’, N=None)
Bases: matplotlib.colors.Colormap

Colormap object generated from a list of colors.

This may be most useful when indexing directly into a colormap, but it can also be used to generate
special colormaps for ordinary mapping.

Make a colormap from a list of colors.

colors a list of matplotlib color specifications, or an equivalent Nx3 floating point array (N rgb values)

name a string to identify the colormap

N the number of entries in the map. The default is None, in which case there is one colormap entry
for each element in the list of colors. If:

N < len(colors)

the list will be truncated at N. If:

N > len(colors)

the list will be extended by repetition.

class LogNorm(vmin=None, vmax=None, clip=False)
Bases: matplotlib.colors.Normalize

Normalize a given value to the 0-1 range on a log scale

If vmin or vmax is not given, they are taken from the input’s minimum and maximum value respec-
tively. If clip is True and the given value falls outside the range, the returned value will be 0 or 1,
whichever is closer. Returns 0 if:

vmin==vmax

Works with scalars or arrays, including masked arrays. If clip is True, masked values are set to 1;
otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and
masked colors in the colormap, so it is likely to lead to surprises; therefore the default is clip = False.

inverse(value)

325

Matplotlib, Release 0.98

class NoNorm(vmin=None, vmax=None, clip=False)
Bases: matplotlib.colors.Normalize

Dummy replacement for Normalize, for the case where we want to use indices directly in a
ScalarMappable .

If vmin or vmax is not given, they are taken from the input’s minimum and maximum value respec-
tively. If clip is True and the given value falls outside the range, the returned value will be 0 or 1,
whichever is closer. Returns 0 if:

vmin==vmax

Works with scalars or arrays, including masked arrays. If clip is True, masked values are set to 1;
otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and
masked colors in the colormap, so it is likely to lead to surprises; therefore the default is clip = False.

inverse(value)

class Normalize(vmin=None, vmax=None, clip=False)
Normalize a given value to the 0-1 range

If vmin or vmax is not given, they are taken from the input’s minimum and maximum value respec-
tively. If clip is True and the given value falls outside the range, the returned value will be 0 or 1,
whichever is closer. Returns 0 if:

vmin==vmax

Works with scalars or arrays, including masked arrays. If clip is True, masked values are set to 1;
otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and
masked colors in the colormap, so it is likely to lead to surprises; therefore the default is clip = False.

autoscale(A)
Set vmin, vmax to min, max of A.

autoscale_None(A)
autoscale only None-valued vmin or vmax

inverse(value)

scaled()
return true if vmin and vmax set

hex2color(s)
Take a hex string s and return the corresponding rgb 3-tuple Example: #efefef -> (0.93725, 0.93725,
0.93725)

is_color_like(c)

makeMappingArray(N, data)
Create an N -element 1-d lookup table

data represented by a list of x,y0,y1 mapping correspondences. Each element in this list represents
how a value between 0 and 1 (inclusive) represented by x is mapped to a corresponding value between
0 and 1 (inclusive). The two values of y are to allow for discontinuous mapping functions (say as
might be found in a sawtooth) where y0 represents the value of y for values of x <= to that given, and
y1 is the value to be used for x > than that given). The list must start with x=0, end with x=1, and all
values of x must be in increasing order. Values between the given mapping points are determined by
simple linear interpolation.

326

Matplotlib, Release 0.98

The function returns an array “result” where result[x*(N-1)] gives the closest value for values of
x between 0 and 1.

class no_norm(vmin=None, vmax=None, clip=False)
Bases: matplotlib.colors.Normalize

Dummy replacement for Normalize, for the case where we want to use indices directly in a
ScalarMappable .

If vmin or vmax is not given, they are taken from the input’s minimum and maximum value respec-
tively. If clip is True and the given value falls outside the range, the returned value will be 0 or 1,
whichever is closer. Returns 0 if:

vmin==vmax

Works with scalars or arrays, including masked arrays. If clip is True, masked values are set to 1;
otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and
masked colors in the colormap, so it is likely to lead to surprises; therefore the default is clip = False.

inverse(value)

class normalize(vmin=None, vmax=None, clip=False)
Normalize a given value to the 0-1 range

If vmin or vmax is not given, they are taken from the input’s minimum and maximum value respec-
tively. If clip is True and the given value falls outside the range, the returned value will be 0 or 1,
whichever is closer. Returns 0 if:

vmin==vmax

Works with scalars or arrays, including masked arrays. If clip is True, masked values are set to 1;
otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and
masked colors in the colormap, so it is likely to lead to surprises; therefore the default is clip = False.

autoscale(A)
Set vmin, vmax to min, max of A.

autoscale_None(A)
autoscale only None-valued vmin or vmax

inverse(value)

scaled()
return true if vmin and vmax set

rgb2hex(rgb)
Given a len 3 rgb tuple of 0-1 floats, return the hex string

327

328

CHAPTER

THIRTY

Matplotlib pyplot

30.1 matplotlib.pyplot

acorr(*args, **kwargs)
call signature:

acorr(x, normed=False, detrend=mlab.detrend_none, usevlines=False,
maxlags=None, **kwargs)

Plot the autocorrelation of x. If normed = True, normalize the data but the autocorrelation at 0-th lag.
x is detrended by the detrend callable (default no normalization).

Data are plotted as plot(lags, c, **kwargs)

Return value is a tuple (lags, c, line) where:

•lags are a length 2*maxlags+1 lag vector

•c is the 2*maxlags+1 auto correlation vector

•line is a Line2D instance returned by plot()

The default linestyle is None and the default marker is ’o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy.correlate() with mode = 2.

If usevlines is True, vlines() rather than plot() is used to draw vertical lines from the origin to the
acorr. Otherwise, the plot style is determined by the kwargs, which are Line2D properties. The return
value is a tuple (lags, c, linecol, b) where

•linecol is the LineCollection

•b is the x-axis.

maxlags is a positive integer detailing the number of lags to show. The default value of None will
return all (2*len(x)-1) lags.

See the respective plot() or vlines() functions for documentation on valid kwargs.

Example:

xcorr() above, and acorr() below.

Example:

329

Matplotlib, Release 0.98

60 40 20 0 20 40 60
0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

60 40 20 0 20 40 60
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Additional kwargs: hold = [True|False] overrides default hold state

annotate(*args, **kwargs)
call signature:

annotate(s, xy, xytext=None, xycoords=’data’,
textcoords=’data’, arrowprops=None, **kwargs)

Keyword arguments:

Annotate the x, y point xy with text s at x, y location xytext. (If xytext = None, defaults to xy, and if
textcoords = None, defaults to xycoords).

arrowprops, if not None, is a dictionary of line properties (see matplotlib.lines.Line2D) for the
arrow that connects annotation to the point. Valid keys are

Key Description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
head-
width

the width of the base of the arrow head in points

shrink oftentimes it is convenient to have the arrowtip and base a bit away from the text and point
being annotated. If d is the distance between the text and annotated point, shrink will shorten
the arrow so the tip and base are shink percent of the distance d away from the endpoints. ie,
shrink=0.05 is 5%

? any key for matplotlib.patches.polygon

330

Matplotlib, Release 0.98

xycoords and textcoords are strings that indicate the coordinates of xy and xytext.

Prop-
erty

Description

‘figure
points’

points from the lower left corner of the figure

‘figure
pixels’

pixels from the lower left corner of the figure

‘figure
fraction’

0,0 is lower left of figure and 1,1 is upper, right

‘axes
points’

points from lower left corner of axes

‘axes
pixels’

pixels from lower left corner of axes

‘axes
fraction’

0,1 is lower left of axes and 1,1 is upper right

‘data’ use the coordinate system of the object being annotated (default)
‘offset
points’

Specify an offset (in points) from the xy value

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you are using
a polar axes, you do not need to specify polar for the coordinate system since that is the
native “data” coordinate system.

If a ‘points’ or ‘pixels’ option is specified, values will be added to the bottom-left and if negative,
values will be subtracted from the top-right. Eg:

10 points to the right of the left border of the axes and
5 points below the top border
xy=(10,-5), xycoords=’axes points’

Additional kwargs are Text properties:

331

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color any matplotlib color
contains unknown
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion
transform unknown
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

arrow(*args, **kwargs)
call signature:

arrow(x, y, dx, dy, **kwargs)

Draws arrow on specified axis from (x, y) to (x + dx, y + dy).

Optional kwargs control the arrow properties:

332

Matplotlib, Release 0.98

Property Description
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
ec mpl color spec, or None for default, or ‘none’ for no color
edgecolor mpl color spec, or None for default, or ‘none’ for no color
facecolor mpl color spec, or None for default, or ‘none’ for no color
fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linestyle [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth float or None for default
lod [True | False]
ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

Example:

333

Matplotlib, Release 0.98

A3 T3

G3 C3

r
AC

r
GT

r
AG

r
CA

r
CG

r
GC

r
AT

r
GA

r
TG r

CT
r

TC

r
TA

Additional kwargs: hold = [True|False] overrides default hold state

autumn()
Set the default colormap to autumn and apply to current image if any. See colormaps() for more
information.

axes(*args, **kwargs)
Add an axes at position rect specified by:

•axes() by itself creates a default full subplot(111) window axis.

•axes(rect, axisbg=’w’) where rect = [left, bottom, width, height] in normalized (0, 1)
units. axisbg is the background color for the axis, default white.

•axes(h) where h is an axes instance makes h the current axis. An Axes instance is returned.

kwarg Accepts Desctiption
axisbg color the axes background color
frameon [True|False] display the frame?
sharex otherax current axes shares xaxis attribute with otherax
sharey otherax current axes shares yaxis attribute with otherax
polar [True|False] use a polar axes?

Examples:

•examples/pylab_examples/axes_demo.py places custom axes.

•examples/pylab_examples/shared_axis_demo.py uses sharex and sharey.

axhline(*args, **kwargs)
call signature:

334

Matplotlib, Release 0.98

axhline(y=0, xmin=0, xmax=1, **kwargs)

Axis Horizontal Line

Draw a horizontal line at y from xmin to xmax. With the default values of xmin = 0 and xmax = 1,
this line will always span the horizontal extent of the axes, regardless of the xlim settings, even if you
change them, eg. with the set_xlim() command. That is, the horizontal extent is in axes coords:
0=left, 0.5=middle, 1.0=right but the y location is in data coordinates.

Return value is the Line2D instance. kwargs are the same as kwargs to plot, and can be used to control
the line properties. Eg.,

•draw a thick red hline at y = 0 that spans the xrange

>>> axhline(linewidth=4, color=’r’)

•draw a default hline at y = 1 that spans the xrange

>>> axhline(y=1)

•draw a default hline at y = .5 that spans the the middle half of the xrange

>>> axhline(y=.5, xmin=0.25, xmax=0.75)

Valid kwargs are Line2D properties:

335

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

See axhspan() for example plot and source code

Additional kwargs: hold = [True|False] overrides default hold state

axhspan(*args, **kwargs)
call signature:

axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)

Axis Horizontal Span.

y coords are in data units and x coords are in axes (relative 0-1) units.

Draw a horizontal span (rectangle) from ymin to ymax. With the default values of xmin = 0 and xmax

336

Matplotlib, Release 0.98

= 1, this always span the xrange, regardless of the xlim settings, even if you change them, eg. with the
set_xlim() command. That is, the horizontal extent is in axes coords: 0=left, 0.5=middle, 1.0=right
but the y location is in data coordinates.

Return value is a matplotlib.patches.Polygon instance.

Examples:

•draw a gray rectangle from y = 0.25-0.75 that spans the horizontal extent of the axes

>>> axhspan(0.25, 0.75, facecolor=’0.5’, alpha=0.5)

Valid kwargs are Polygon properties:

Property Description
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
ec mpl color spec, or None for default, or ‘none’ for no color
edgecolor mpl color spec, or None for default, or ‘none’ for no color
facecolor mpl color spec, or None for default, or ‘none’ for no color
fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linestyle [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth float or None for default
lod [True | False]
ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

Example:

337

Matplotlib, Release 0.98

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

Additional kwargs: hold = [True|False] overrides default hold state

axis(*v, **kwargs)
Set/Get the axis properties:

>>> axis()

returns the current axes limits [xmin, xmax, ymin, ymax].

>>> axis(v)

sets the min and max of the x and y axes, with v = [xmin, xmax, ymin, ymax].

>>> axis(’off’)

turns off the axis lines and labels.

>>> axis(’equal’)

changes limits of x or y axis so that equal increments of x and y have the same length; a circle is
circular.

>>> axis(’scaled’)

achieves the same result by changing the dimensions of the plot box instead of the axis data limits.

338

Matplotlib, Release 0.98

>>> axis(’tight’)

changes x and y axis limits such that all data is shown. If all data is already shown, it will move it
to the center of the figure without modifying (xmax - xmin) or (ymax - ymin). Note this is slightly
different than in matlab.

>>> axis(’image’)

is ‘scaled’ with the axis limits equal to the data limits.

>>> axis(’auto’)

and

>>> axis(’normal’)

are deprecated. They restore default behavior; axis limits are automatically scaled to make the data fit
comfortably within the plot box.

if len(*v)==0, you can pass in xmin, xmax, ymin, ymax as kwargs selectively to alter just those limits
without changing the others. See xlim() and ylim() for more information

The xmin, xmax, ymin, ymax tuple is returned

axvline(*args, **kwargs)
call signature:

axvline(x=0, ymin=0, ymax=1, **kwargs)

Axis Vertical Line

Draw a vertical line at x from ymin to ymax. With the default values of ymin = 0 and ymax = 1, this
line will always span the vertical extent of the axes, regardless of the xlim settings, even if you change
them, eg. with the set_xlim() command. That is, the vertical extent is in axes coords: 0=bottom,
0.5=middle, 1.0=top but the x location is in data coordinates.

Return value is the Line2D instance. kwargs are the same as kwargs to plot, and can be used to control
the line properties. Eg.,

•draw a thick red vline at x = 0 that spans the yrange

>>> axvline(linewidth=4, color=’r’)

•draw a default vline at x = 1 that spans the yrange

>>> axvline(x=1)

•draw a default vline at x = .5 that spans the the middle half of the yrange

>>> axvline(x=.5, ymin=0.25, ymax=0.75)

Valid kwargs are Line2D properties:

339

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

See axhspan() for example plot and source code

Additional kwargs: hold = [True|False] overrides default hold state

axvspan(*args, **kwargs)
call signature:

axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)

Axis Vertical Span.

x coords are in data units and y coords are in axes (relative 0-1) units.

Draw a vertical span (rectangle) from xmin to xmax. With the default values of ymin = 0 and ymax =

340

Matplotlib, Release 0.98

1, this always span the yrange, regardless of the ylim settings, even if you change them, eg. with the
set_ylim() command. That is, the vertical extent is in axes coords: 0=bottom, 0.5=middle, 1.0=top
but the y location is in data coordinates.

Return value is the matplotlib.patches.Polygon instance.

Examples:

•draw a vertical green translucent rectangle from x=1.25 to 1.55 that spans the yrange of the axes

>>> axvspan(1.25, 1.55, facecolor=’g’, alpha=0.5)

Valid kwargs are Polygon properties:

Property Description
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
ec mpl color spec, or None for default, or ‘none’ for no color
edgecolor mpl color spec, or None for default, or ‘none’ for no color
facecolor mpl color spec, or None for default, or ‘none’ for no color
fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linestyle [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth float or None for default
lod [True | False]
ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

See axhspan() for example plot and source code

Additional kwargs: hold = [True|False] overrides default hold state

bar(*args, **kwargs)
call signature:

bar(left, height, width=0.8, bottom=0,
color=None, edgecolor=None, linewidth=None,
yerr=None, xerr=None, ecolor=None, capsize=3,
align=’edge’, orientation=’vertical’, log=False)

341

Matplotlib, Release 0.98

Make a bar plot with rectangles bounded by:

left, left + width, bottom, bottom + height (left, right, bottom and top edges)

left, height, width, and bottom can be either scalars or sequences

Return value is a list of matplotlib.patches.Rectangle instances.

Required arguments:

Argument Description
left the x coordinates of the left sides of the bars
height the heights of the bars

Optional keyword arguments:

Keyword Description
width the widths of the bars
bottom the y coordinates of the bottom edges of the bars
color the colors of the bars
edgecolor the colors of the bar edges
linewidth width of bar edges; None means use default linewidth; 0 means don’t draw edges.
xerr if not None, will be used to generate errorbars on the bar chart
yerr if not None, will be used to generate errorbars on the bar chart
ecolor specifies the color of any errorbar
capsize (default 3) determines the length in points of the error bar caps
align ‘edge’ (default) | ‘center’
orientation ‘vertical’ | ‘horizontal’
log [False|True] False (default) leaves the orientation axis as-is; True sets it to log scale

For vertical bars, align = ‘edge’ aligns bars by their left edges in left, while align = ‘center’ interprets
these values as the x coordinates of the bar centers. For horizontal bars, align = ‘edge’ aligns bars by
their bottom edges in bottom, while align = ‘center’ interprets these values as the y coordinates of the
bar centers.

The optional arguments color, edgecolor, linewidth, xerr, and yerr can be either scalars or sequences
of length equal to the number of bars. This enables you to use bar as the basis for stacked bar charts,
or candlestick plots.

Other optional kwargs:

342

Matplotlib, Release 0.98

Property Description
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
ec mpl color spec, or None for default, or ‘none’ for no color
edgecolor mpl color spec, or None for default, or ‘none’ for no color
facecolor mpl color spec, or None for default, or ‘none’ for no color
fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linestyle [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth float or None for default
lod [True | False]
ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

Example: A stacked bar chart.

343

Matplotlib, Release 0.98

G1 G2 G3 G4 G5
0

10

20

30

40

50

60

70

80
S
co

re
s

Scores by group and gender

Men
Women

Additional kwargs: hold = [True|False] overrides default hold state

barbs(*args, **kwargs)
Plot a 2-D field of barbs.

call signatures:

barb(U, V, **kw)
barb(U, V, C, **kw)
barb(X, Y, U, V, **kw)
barb(X, Y, U, V, C, **kw)

Arguments:

X, Y: The x and y coordinates of the barb locations (default is head of barb; see pivot
kwarg)

U, V: give the x and y components of the barb shaft
C: an optional array used to map colors to the barbs

All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be generated
as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X) and len(Y) match the
column and row dimensions of U, then X and Y will be expanded with numpy.meshgrid().

U, V, C may be masked arrays, but masked X, Y are not supported at present.

Keyword arguments:

344

Matplotlib, Release 0.98

length: Length of the barb in points; the other parts of the barb are scaled against this.
Default is 9

pivot: [‘tip’ | ‘middle’] The part of the arrow that is at the grid point; the arrow rotates
about this point, hence the name pivot. Default is ‘tip’

barbcolor: [color | color sequence] Specifies the color all parts of the barb except any
flags. This parameter is analagous to the edgecolor parameter for polygons, which
can be used instead. However this parameter will override facecolor.

flagcolor: [color | color sequence] Specifies the color of any flags on the barb. This
parameter is analagous to the facecolor parameter for polygons, which can be used
instead. However this parameter will override facecolor. If this is not set (and C has
not either) then flagcolor will be set to match barbcolor so that the barb has a uniform
color. If C has been set, flagcolor has no effect.

sizes: A dictionary of coefficients specifying the ratio of a given feature to the length of
the barb. Only those values one wishes to override need to be included. These features
include:
Unexpected indentation.

‘spacing’ - space between features (flags, full/half barbs) ‘height’ - height
(distance from shaft to top) of a flag or full barb ‘width’ - width of a flag,
twice the width of a full barb ‘emptybarb’ - radius of the circle used for low
magnitudes

fill_empty: A flag on whether the empty barbs (circles) that are drawn should be filled with
the flag color. If they are not filled, they will be drawn such that no color is applied to
the center. Default is False

rounding: A flag to indicate whether the vector magnitude should be rounded when allo-
cating barb components. If True, the magnitude is rounded to the nearest multiple of
the half-barb increment. If False, the magnitude is simply truncated to the next lowest
multiple. Default is True

barb_increments: A dictionary of increments specifying values to associate with different
parts of the barb. Only those values one wishes to override need to be included.
Unexpected indentation.

‘half’ - half barbs (Default is 5) ‘full’ - full barbs (Default is 10) ‘flag’ - flags
(default is 50)

flip_barb: Either a single boolean flag or an array of booleans. Single boolean indicates
whether the lines and flags should point opposite to normal for all barbs. An array
(which should be the same size as the other data arrays) indicates whether to flip for
each individual barb. Normal behavior is for the barbs and lines to point right (comes
from wind barbs having these features point towards low pressure in the Northern
Hemisphere.) Default is False

Barbs are traditionally used in meteorology as a way to plot the speed and direction of wind observa-
tions, but can technically be used to plot any two dimensional vector quantity. As opposed to arrows,
which give vector magnitude by the length of the arrow, the barbs give more quantitative information
about the vector magnitude by putting slanted lines or a triangle for various increments in magnitude,
as show schematically below:

/ / / / ——————————

345

Matplotlib, Release 0.98

The largest increment is given by a triangle (or “flag”). After those come full lines (barbs). The
smallest increment is a half line. There is only, of course, ever at most 1 half line. If the magnitude
is small and only needs a single half-line and no full lines or triangles, the half-line is offset from the
end of the barb so that it can be easily distinguished from barbs with a single full line. The magnitude
for the barb shown above would nominally be 65, using the standard increments of 50, 10, and 5.

linewidths and edgecolors can be used to customize the barb. Additional PolyCollection keyword
arguments:

Property Description
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
label any string
linestyle [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linestyles [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

barh(*args, **kwargs)
call signature:

346

Matplotlib, Release 0.98

barh(bottom, width, height=0.8, left=0, **kwargs)

Make a horizontal bar plot with rectangles bounded by:

left, left + width, bottom, bottom + height (left, right, bottom and top edges)

bottom, width, height, and left can be either scalars or sequences

Return value is a list of matplotlib.patches.Rectangle instances.

Required arguments:

Argument Description
bottom the vertical positions of the bottom edges of the bars
width the lengths of the bars

Optional keyword arguments:

Keyword Description
height the heights (thicknesses) of the bars
left the x coordinates of the left edges of the bars
color the colors of the bars
edgecolor the colors of the bar edges
linewidth width of bar edges; None means use default linewidth; 0 means don’t draw edges.
xerr if not None, will be used to generate errorbars on the bar chart
yerr if not None, will be used to generate errorbars on the bar chart
ecolor specifies the color of any errorbar
capsize (default 3) determines the length in points of the error bar caps
align ‘edge’ (default) | ‘center’
log [False|True] False (default) leaves the horizontal axis as-is; True sets it to log scale

Setting align = ‘edge’ aligns bars by their bottom edges in bottom, while align = ‘center’ interprets
these values as the y coordinates of the bar centers.

The optional arguments color, edgecolor, linewidth, xerr, and yerr can be either scalars or sequences
of length equal to the number of bars. This enables you to use barh as the basis for stacked bar charts,
or candlestick plots.

other optional kwargs:

347

Matplotlib, Release 0.98

Property Description
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
ec mpl color spec, or None for default, or ‘none’ for no color
edgecolor mpl color spec, or None for default, or ‘none’ for no color
facecolor mpl color spec, or None for default, or ‘none’ for no color
fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linestyle [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth float or None for default
lod [True | False]
ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

bone()
Set the default colormap to bone and apply to current image if any. See colormaps() for more
information.

box(on=None)
Turn the axes box on or off according to on.

If on is None, toggle state.

boxplot(*args, **kwargs)
call signature:

boxplot(x, notch=0, sym=’+’, vert=1, whis=1.5,
positions=None, widths=None)

Make a box and whisker plot for each column of x or each vector in sequence x. The box extends
from the lower to upper quartile values of the data, with a line at the median. The whiskers extend
from the box to show the range of the data. Flier points are those past the end of the whiskers.

•notch = 0 (default) produces a rectangular box plot.

•notch = 1 will produce a notched box plot

348

Matplotlib, Release 0.98

sym (default ‘b+’) is the default symbol for flier points. Enter an empty string (‘’) if you don’t want
to show fliers.

•vert = 1 (default) makes the boxes vertical.

•vert = 0 makes horizontal boxes. This seems goofy, but that’s how Matlab did it.

whis (default 1.5) defines the length of the whiskers as a function of the inner quartile range. They
extend to the most extreme data point within (whis*(75%-25%)) data range.

positions (default 1,2,...,n) sets the horizontal positions of the boxes. The ticks and limits are auto-
matically set to match the positions.

widths is either a scalar or a vector and sets the width of each box. The default is 0.5, or
0.15*(distance between extreme positions) if that is smaller.

x is an array or a sequence of vectors.

Returns a list of the matplotlib.lines.Line2D instances added.

Example:

1 2 3
100

50

0

50

100

150

200

Additional kwargs: hold = [True|False] overrides default hold state

broken_barh(*args, **kwargs)
call signature:

broken_barh(self, xranges, yrange, **kwargs)

349

Matplotlib, Release 0.98

A collection of horizontal bars spanning yrange with a sequence of xranges.

Required arguments:

Argument Description
xranges sequence of (xmin, xwidth)
yrange sequence of (ymin, ywidth)

kwargs are matplotlib.collections.BrokenBarHCollection properties:

Property Description
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
label any string
linestyle [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linestyles [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number

these can either be a single argument, ie:

facecolors = ’black’

or a sequence of arguments for the various bars, ie:

350

Matplotlib, Release 0.98

facecolors = (’black’, ’red’, ’green’)

Example:

0 50 100 150 200
seconds since start

Bill

Jim

race interrupted

Additional kwargs: hold = [True|False] overrides default hold state

cla(*args, **kwargs)
Clear the current axes

clabel(*args, **kwargs)
call signature:

clabel(cs, **kwargs)

adds labels to line contours in cs, where cs is a ContourSet object returned by contour.

clabel(cs, v, **kwargs)

only labels contours listed in v.

Optional keyword arguments:

fontsize: See http://matplotlib.sf.net/fonts.html

Additional kwargs: hold = [True|False] overrides default hold state

351

http://matplotlib.sf.net/fonts.html

Matplotlib, Release 0.98

clf()
Clear the current figure

clim(vmin=None, vmax=None)
Set the color limits of the current image

To apply clim to all axes images do:

clim(0, 0.5)

If either vmin or vmax is None, the image min/max respectively will be used for color scaling.

If you want to set the clim of multiple images, use, for example:

for im in gca().get_images():
im.set_clim(0, 0.05)

close(*args)
Close a figure window

close() by itself closes the current figure

close(num) closes figure number num

close(h) where h is a Figure instance, closes that figure

close(’all’) closes all the figure windows

cohere(*args, **kwargs)
call signature:

cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none,
window = mlab.window_hanning, noverlap=0, **kwargs)

cohere the coherence between x and y. Coherence is the normalized cross spectral density:

Cxy =
|Pxy|

2

Pxx ∗ Pyy
(30.1)

The return value is a tuple (Cxy, f), where f are the frequencies of the coherence vector.

See the psd() for a description of the optional parameters.

kwargs are applied to the lines.

References:

•Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley & Sons
(1986)

kwargs control the Line2D properties of the coherence plot:

352

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

Example:

353

Matplotlib, Release 0.98

0 1 2 3 4 5
time

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

s1
 a

n
d
 s

2

0 10 20 30 40 50
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

co
h
e
re

n
ce

Additional kwargs: hold = [True|False] overrides default hold state

colorbar(mappable=None, cax=None, ax=None, **kw)
Add a colorbar to a plot.

Function signatures for the pyplot interface; all but the first are also method signatures for the
matplotlib.Figure.colorbar() method:

colorbar(**kwargs)
colorbar(mappable, **kwargs)
colorbar(mappable, cax=cax, **kwargs)
colorbar(mappable, ax=ax, **kwargs)

arguments:

mappable the image, ContourSet, etc. to which the colorbar applies; this argument is
mandatory for the matplotlib.Figure.colorbar() method but optional for the
matplotlib.pyplot.colorbar() function, which sets the default to the current
image.

keyword arguments:

cax None | axes object into which the colorbar will be drawn
ax None | parent axes object from which space for a new colorbar axes will be stolen

Additional keyword arguments are of two kinds:

354

Matplotlib, Release 0.98

axes properties:

Property Description
fraction 0.15; fraction of original axes to use for colorbar
pad 0.05 if vertical, 0.15 if horizontal; fraction of original axes between colorbar and new

image axes
shrink 1.0; fraction by which to shrink the colorbar
aspect 20; ratio of long to short dimensions

colorbar properties:

Prop-
erty

Description

ex-
tend

[‘neither’ | ‘both’ | ‘min’ | ‘max’] If not ‘neither’, make pointed end(s) for out-of- range
values. These are set for a given colormap using the colormap set_under and set_over methods.

spac-
ing

[‘uniform’ | ‘proportional’] Uniform spacing gives each discrete color the same space;
proportional makes the space proportional to the data interval.

ticks [None | list of ticks | Locator object] If None, ticks are determined automatically from the
input.

for-
mat

[None | format string | Formatter object] If None, the ScalarFormatter is used. If a format
string is given, e.g. ‘%.3f’, that is used. An alternative Formatter object may be given
instead.

drawedges[False | True] If true, draw lines at color boundaries.
The following will probably be useful only in the context of indexed colors (that
is, when the mappable has norm=NoNorm()), or other unusual circumstances.

Prop-
erty

Description

bound-
aries

None or a sequence

values None or a sequence which must be of length 1 less than the sequence of boundaries. For each
region delimited by adjacent entries in boundaries, the color mapped to the corresponding
value in values will be used.

If mappable is a ContourSet, its extend kwarg is included automatically.

Note that the shrink kwarg provides a simple way to keep a vertical colorbar, for example, from being
taller than the axes of the mappable to which the colorbar is attached; but it is a manual method
requiring some trial and error. If the colorbar is too tall (or a horizontal colorbar is too wide) use a
smaller value of shrink.

For more precise control, you can manually specify the positions of the axes objects in which the
mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs.

colormaps()
matplotlib provides the following colormaps.

•autumn

•bone

•cool

•copper

•flag

•gray

355

Matplotlib, Release 0.98

•hot

•hsv

•jet

•pink

•prism

•spring

•summer

•winter

•spectral

You can set the colormap for an image, pcolor, scatter, etc, either as a keyword argument:

imshow(X, cmap=cm.hot)

or post-hoc using the corresponding pylab interface function:

imshow(X)
hot()
jet()

In interactive mode, this will update the colormap allowing you to see which one works best for your
data.

colors()
This is a do nothing function to provide you with help on how matplotlib handles colors.

Commands which take color arguments can use several formats to specify the colors. For the basic
builtin colors, you can use a single letter

Alias Color
‘b’ blue
‘g’ green
‘r’ red
‘c’ cyan
‘m’ magenta
‘y’ yellow
‘k’ black
‘w’ white

For a greater range of colors, you have two options. You can specify the color using an html hex
string, as in:

color = ’#eeefff’

or you can pass an R,G,B tuple, where each of R,G,B are in the range [0,1].

You can also use any legal html name for a color, for example:

color = ’red’,
color = ’burlywood’
color = ’chartreuse’

356

Matplotlib, Release 0.98

The example below creates a subplot with a dark slate gray background

subplot(111, axisbg=(0.1843, 0.3098, 0.3098))

Here is an example that creates a pale turqoise title:

title(’Is this the best color?’, color=’#afeeee’)

connect(s, func)
Connect event with string s to func. The signature of func is:

def func(event)

where event is a matplotlib.backend_bases.Event. The following events are recognized

•‘button_press_event’

•‘button_release_event’

•‘draw_event’

•‘key_press_event’

•‘key_release_event’

•‘motion_notify_event’

•‘pick_event’

•‘resize_event’

•‘scroll_event’

For the location events (button and key press/release), if the mouse is over the axes, the variable
event.inaxes will be set to the Axes the event occurs is over, and additionally, the variables
event.xdata and event.ydata will be defined. This is the mouse location in data coords. See
KeyEvent and MouseEvent for more info.

Return value is a connection id that can be used with mpl_disconnect().

Example usage:

def on_press(event):
print ’you pressed’, event.button, event.xdata, event.ydata

cid = canvas.mpl_connect(’button_press_event’, on_press)

contour(*args, **kwargs)
contour() and contourf() draw contour lines and filled contours, respectively. Except as noted,
function signatures and return values are the same for both versions.

contourf() differs from the Matlab (TM) version in that it does not draw the polygon edges, because
the contouring engine yields simply connected regions with branch cuts. To draw the edges, add line
contours with calls to contour().

call signatures:

contour(Z)

357

Matplotlib, Release 0.98

make a contour plot of an array Z. The level values are chosen automatically.

contour(X,Y,Z)

X, Y specify the (x, y) coordinates of the surface

contour(Z,N)
contour(X,Y,Z,N)

contour N automatically-chosen levels.

contour(Z,V)
contour(X,Y,Z,V)

draw contour lines at the values specified in sequence V

contourf(..., V)

fill the (len(V)-1) regions between the values in V

contour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

X, Y, and Z must be arrays with the same dimensions.

Z may be a masked array, but filled contouring may not handle internal masked regions correctly.

C = contour(...) returns a ContourSet object.

Optional keyword arguments:

colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will be
used.
If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.
If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted
in different colors in the order specified.

alpha: float The alpha blending value
cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and col-

ors is None, a default Colormap is used.
norm: [None | Normalize] A matplotlib.colors.Normalize instance for scaling

data values to colors. If norm is None and colors is None, the default linear scaling is
used.

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will correspond
to the lower left corner, location (0,0). If ‘image’, the rc value for image.origin will
be used.
This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]

If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries. In
this case, the position of Z[0,0] is the center of the pixel, not a corner. If origin

358

Matplotlib, Release 0.98

is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the position of
Z[-1,-1].
This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default MaxNLocator
is used. The locator is used to determine the contour levels if they are not given
explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, con-
tour levels are automatically added to one or both ends of the range
so that all data are included. These added ranges are then mapped to
the special colormap values which default to the ends of the colormap
range, but can be set via matplotlib.cm.Colormap.set_under() and
matplotlib.cm.Colormap.set_over() methods.

contour-only keyword arguments:

linewidths: [None | number | tuple of numbers] If linewidths is None, the default
width in lines.linewidth in matplotlibrc is used
If a number, all levels will be plotted with this linewidth.
If a tuple, different levels will be plotted with different linewidths in the order specified

contourf-only keyword arguments:

antialiased: [True | False] enable antialiasing
nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer to

divide the domain into subdomains of roughly nchunk by nchunk points. This may
never actually be advantageous, so this option may be removed. Chunking introduces
artifacts at the chunk boundaries unless antialiased is False.

Example:

359

Matplotlib, Release 0.98

2 1 0 1 2

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.0

-0.6

-0
.2

0.2
0.2

0.6 1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6

Additional kwargs: hold = [True|False] overrides default hold state

contourf(*args, **kwargs)
contour() and contourf() draw contour lines and filled contours, respectively. Except as noted,
function signatures and return values are the same for both versions.

contourf() differs from the Matlab (TM) version in that it does not draw the polygon edges, because
the contouring engine yields simply connected regions with branch cuts. To draw the edges, add line
contours with calls to contour().

call signatures:

contour(Z)

make a contour plot of an array Z. The level values are chosen automatically.

contour(X,Y,Z)

X, Y specify the (x, y) coordinates of the surface

contour(Z,N)
contour(X,Y,Z,N)

contour N automatically-chosen levels.

360

Matplotlib, Release 0.98

contour(Z,V)
contour(X,Y,Z,V)

draw contour lines at the values specified in sequence V

contourf(..., V)

fill the (len(V)-1) regions between the values in V

contour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

X, Y, and Z must be arrays with the same dimensions.

Z may be a masked array, but filled contouring may not handle internal masked regions correctly.

C = contour(...) returns a ContourSet object.

Optional keyword arguments:

colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will be
used.
If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.
If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted
in different colors in the order specified.

alpha: float The alpha blending value
cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and col-

ors is None, a default Colormap is used.
norm: [None | Normalize] A matplotlib.colors.Normalize instance for scaling

data values to colors. If norm is None and colors is None, the default linear scaling is
used.

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will correspond
to the lower left corner, location (0,0). If ‘image’, the rc value for image.origin will
be used.
This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]

If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries. In
this case, the position of Z[0,0] is the center of the pixel, not a corner. If origin
is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the position of
Z[-1,-1].
This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default MaxNLocator
is used. The locator is used to determine the contour levels if they are not given
explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, con-
tour levels are automatically added to one or both ends of the range
so that all data are included. These added ranges are then mapped to
the special colormap values which default to the ends of the colormap

361

Matplotlib, Release 0.98

range, but can be set via matplotlib.cm.Colormap.set_under() and
matplotlib.cm.Colormap.set_over() methods.

contour-only keyword arguments:

linewidths: [None | number | tuple of numbers] If linewidths is None, the default
width in lines.linewidth in matplotlibrc is used
If a number, all levels will be plotted with this linewidth.
If a tuple, different levels will be plotted with different linewidths in the order specified

contourf-only keyword arguments:

antialiased: [True | False] enable antialiasing
nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer to

divide the domain into subdomains of roughly nchunk by nchunk points. This may
never actually be advantageous, so this option may be removed. Chunking introduces
artifacts at the chunk boundaries unless antialiased is False.

Example:

2 1 0 1 2

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.0

-0.6

-0
.2

0.2
0.2

0.6 1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6

Additional kwargs: hold = [True|False] overrides default hold state

cool()
Set the default colormap to cool and apply to current image if any. See colormaps() for more
information.

362

Matplotlib, Release 0.98

copper()
Set the default colormap to copper and apply to current image if any. See colormaps() for more
information.

csd(*args, **kwargs)
call signature:

csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=window_hanning, noverlap=0, **kwargs)

The cross spectral density Pxy by Welches average periodogram method. The vectors x and y are
divided into NFFT length segments. Each segment is detrended by function detrend and windowed
by function window. The product of the direct FFTs of x and y are averaged over each segment to
compute Pxy, with a scaling to correct for power loss due to windowing.

See psd() for a description of the optional parameters.

Returns the tuple (Pxy, freqs). P is the cross spectrum (complex valued), and 10 log10 |Pxy| is plotted.

References: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley
& Sons (1986)

kwargs control the Line2D properties:

363

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

Example:

364

Matplotlib, Release 0.98

0 1 2 3 4 5
time

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

s1
 a

n
d
 s

2

0 10 20 30 40 50
Frequency

80

70

60

50

40

30

20

C
S
D

 (
d
b
)

Additional kwargs: hold = [True|False] overrides default hold state

delaxes(*args)
delaxes(ax): remove ax from the current figure. If ax doesn’t exist, an error will be raised.

delaxes(): delete the current axes

disconnect(cid)
disconnect callback id cid

Example usage:

cid = canvas.mpl_connect(’button_press_event’, on_press)
#...later
canvas.mpl_disconnect(cid)

draw()
redraw the current figure

errorbar(*args, **kwargs)
call signature:

errorbar(x, y, yerr=None, xerr=None,
fmt=’-’, ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False)

365

Matplotlib, Release 0.98

Plot x versus y with error deltas in yerr and xerr. Vertical errorbars are plotted if yerr is not None.
Horizontal errorbars are plotted if xerr is not None.

x, y, xerr, and yerr can all be scalars, which plots a single error bar at x, y.

Optional keyword arguments:

xerr/yerr: [scalar | N, Nx1, Nx2 array-like] If a scalar number, len(N) array-like object,
or an Nx1 array-like object, errorbars are drawn +/- value.
If a rank-1, Nx2 Numpy array, errorbars are drawn at -column1 and +column2

fmt: ‘-‘ The plot format symbol for y. If fmt is None, just plot the errorbars with no line
symbols. This can be useful for creating a bar plot with errorbars.

ecolor: [None | mpl color] a matplotlib color arg which gives the color the errorbar
lines; if None, use the marker color.

elinewidth: scalar the linewidth of the errorbar lines. If None, use the linewidth.
capsize: scalar the size of the error bar caps in points
barsabove: [True | False] if True, will plot the errorbars above the plot symbols. Default

is below.
lolims/uplims/xlolims/xuplims: [False | True] These arguments can be used to indicate

that a value gives only upper/lower limits. In that case a caret symbol is used to
indicate this. lims-arguments may be of the same type as xerr and yerr.

All other keyword arguments are passed on to the plot command for the markers, so you can add
additional key=value pairs to control the errorbar markers. For example, this code makes big red
squares with thick green edges:

x,y,yerr = rand(3,10)
errorbar(x, y, yerr, marker=’s’,

mfc=’red’, mec=’green’, ms=20, mew=4)

where mfc, mec, ms and mew are aliases for the longer property names, markerfacecolor, markeredge-
color, markersize and markeredgewith.

valid kwargs for the marker properties are

366

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

Return value is a length 3 tuple. The first element is the Line2D instance for the y symbol lines. The
second element is a list of error bar cap lines, the third element is a list of LineCollection instances
for the horizontal and vertical error ranges.

Example:

367

Matplotlib, Release 0.98

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Additional kwargs: hold = [True|False] overrides default hold state

figimage(*args, **kwargs)
call signatures:

figimage(X, **kwargs)

adds a non-resampled array X to the figure.

figimage(X, xo, yo)

with pixel offsets xo, yo,

X must be a float array:

•If X is MxN, assume luminance (grayscale)

•If X is MxNx3, assume RGB

•If X is MxNx4, assume RGBA

Optional keyword arguments:

368

Matplotlib, Release 0.98

Key-
word

Description

xo or
yo

An integer, the x and y image offset in pixels

cmap a matplotlib.cm.ColorMap instance, eg cm.jet. If None, default to the rc image.cmap
value

norm a matplotlib.colors.Normalize instance. The default is normalization(). This scales
luminance -> 0-1

vmin|vmaxare used to scale a luminance image to 0-1. If either is None, the min and max of the
luminance values will be used. Note if you pass a norm instance, the settings for vmin and
vmax will be ignored.

alpha the alpha blending value, default is 1.0
origin [‘upper’ | ‘lower’] Indicates where the [0,0] index of the array is in the upper left or lower left

corner of the axes. Defaults to the rc image.origin value

figimage complements the axes image (imshow()) which will be resampled to fit the current axes. If
you want a resampled image to fill the entire figure, you can define an Axes with size [0,1,0,1].

An matplotlib.image.FigureImage instance is returned.

Addition kwargs: hold = [True|False] overrides default hold state

figlegend(handles, labels, loc, **kwargs)
Place a legend in the figure.

labels a sequence of strings

369

Matplotlib, Release 0.98

handles a sequence of Line2D or Patch instances

loc can be a string or an integer specifying the legend location

Example:

figlegend((line1, line2, line3),
(’label1’, ’label2’, ’label3’),
’upper right’)

See legend() for information about the location codes

A matplotlib.legend.Legend instance is returned.

figtext(*args, **kwargs)
Call signature:

figtext(x, y, s, fontdict=None, **kwargs)

Add text to figure at location x, y (relative 0-1 coords). See text() for the meaning of the other
arguments.

kwargs control the Text properties:

370

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color any matplotlib color
contains unknown
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion
transform unknown
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True, Figure-
Class=<class ’matplotlib.figure.Figure’>, **kwargs)

call signature:

figure(num = None, figsize=(8, 6), dpi=80, facecolor=’w’, edgecolor=’k’)

Create a new figure and return a matplotlib.figure.Figure instance. If num = None, the figure
number will be incremented and a new figure will be created. The returned figure objects have a
number attribute holding this number.

If num is an integer, and figure(num) already exists, make it active and return the handle to it. If
figure(num) does not exist it will be created. Numbering starts at 1, matlab style:

figure(1)

371

Matplotlib, Release 0.98

If you are creating many figures, make sure you explicitly call “close” on the figures you are not using,
because this will enable pylab to properly clean up the memory.

Optional keyword arguments:

Keyword Description
figsize width x height in inches; defaults to rc figure.figsize
dpi resolution; defaults to rc figure.dpi
facecolor the background color; defaults to rc figure.facecolor
edgecolor the border color; defaults to rc figure.edgecolor

rcParams defines the default values, which can be modified in the matplotlibrc file

FigureClass is a Figure or derived class that will be passed on to new_figure_manager() in the
backends which allows you to hook custom Figure classes into the pylab interface. Additional kwargs
will be passed on to your figure init function.

fill(*args, **kwargs)
call signature:

fill(*args, **kwargs)

Plot filled polygons. args is a variable length argument, allowing for multiple x, y pairs with an
optional color format string; see plot() for details on the argument parsing. For example, to plot a
polygon with vertices at x, y in blue.:

ax.fill(x,y, ’b’)

An arbitrary number of x, y, color groups can be specified:

ax.fill(x1, y1, ’g’, x2, y2, ’r’)

Return value is a list of Patch instances that were added.

The same color strings that plot() supports are supported by the fill format string.

If you would like to fill below a curve, eg. shade a region between 0 and y along x, use
poly_between(), eg.:

xs, ys = poly_between(x, 0, y)
axes.fill(xs, ys, facecolor=’red’, alpha=0.5)

See examples/pylab_examples/fill_between.py for more examples.

The closed kwarg will close the polygon when True (default).

kwargs control the Polygon properties:

372

Matplotlib, Release 0.98

Property Description
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
ec mpl color spec, or None for default, or ‘none’ for no color
edgecolor mpl color spec, or None for default, or ‘none’ for no color
facecolor mpl color spec, or None for default, or ‘none’ for no color
fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linestyle [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth float or None for default
lod [True | False]
ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

Example:

373

Matplotlib, Release 0.98

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Additional kwargs: hold = [True|False] overrides default hold state

findobj(o=None, match=None) pyplot signature:
findobj(o=gcf(), match=None)

recursively find all :class:matplotlib.artist.Artist instances contained in self

match can be

•None: return all objects contained in artist (including artist)

•function with signature boolean = match(artist) used to filter matches

•class instance: eg Line2D. Only return artists of class type

374

Matplotlib, Release 0.98

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Model complexity --->

0

5

10

15

20
M

e
ss

a
g
e
 l
e
n
g
th

 -
--

>
Minimum Message Length

Model length
Data length
Total message length

flag()
Set the default colormap to flag and apply to current image if any. See colormaps() for more
information.

gca(**kwargs)
Return the current axis instance. This can be used to control axis properties either using set or the
Axes methods, for example, setting the xaxis range:

plot(t,s)
set(gca(), ’xlim’, [0,10])

or:

plot(t,s)
a = gca()
a.set_xlim([0,10])

gcf()
Return a handle to the current figure.

gci()
Get the current ScalarMappable instance (image or patch collection), or None if no images or patch
collections have been defined. The commands imshow() and figimage() create Image instances,
and the commands pcolor() and scatter() create Collection instances.

375

Matplotlib, Release 0.98

get_current_fig_manager()

get_plot_commands()

ginput(*args, **kwargs)
call signature:

ginput(self, n=1, timeout=30, show_clicks=True)

Blocking call to interact with the figure.

This will wait for n clicks from the user and return a list of the coordinates of each click.

If timeout is negative, does not timeout.

If n is negative, accumulate clicks until a middle click terminates the input.

Right clicking cancels last input.

gray()
Set the default colormap to gray and apply to current image if any. See colormaps() for more
information.

grid(*args, **kwargs)
call signature:

grid(self, b=None, **kwargs)

Set the axes grids on or off; b is a boolean

If b is None and len(kwargs)==0, toggle the grid state. If kwargs are supplied, it is assumed that
you want a grid and b is thus set to True

kawrgs are used to set the grid line properties, eg:

ax.grid(color=’r’, linestyle=’-’, linewidth=2)

Valid Line2D kwargs are

376

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

hexbin(*args, **kwargs)
call signature:

hexbin(x, y, C = None, gridsize = 100, bins = None,
xscale = ’linear’, yscale = ’linear’,
cmap=None, norm=None, vmin=None, vmax=None,
alpha=1.0, linewidths=None, edgecolors=’none’
reduce_C_function = np.mean,
**kwargs)

Make a hexagonal binning plot of x versus y, where x, y are 1-D sequences of the same length, N. If C
is None (the default), this is a histogram of the number of occurences of the observations at (x[i],y[i]).

377

Matplotlib, Release 0.98

If C is specified, it specifies values at the coordinate (x[i],y[i]). These values are accumulated for each
hexagonal bin and then reduced according to reduce_C_function, which defaults to numpy’s mean
function (np.mean). (If C is specified, it must also be a 1-D sequence of the same length as x and y.)

x, y and/or C may be masked arrays, in which case only unmasked points will be plotted.

Optional keyword arguments:

gridsize: [100 | integer] The number of hexagons in the x-direction, default is 100. The
corresponding number of hexagons in the y-direction is chosen such that the hexagons
are approximately regular. Alternatively, gridsize can be a tuple with two elements
specifying the number of hexagons in the x-direction and the y-direction.

bins: [None | ‘log’ | integer | sequence] If None, no binning is applied; the color of each
hexagon directly corresponds to its count value.
If ‘log’, use a logarithmic scale for the color map. Internally, log10(i + 1) is used to
determine the hexagon color.
If an integer, divide the counts in the specified number of bins, and color the hexagons
accordingly.
If a sequence of values, the values of the lower bound of the bins to be used.

xscale: [‘linear’ | ‘log’] Use a linear or log10 scale on the horizontal axis.
scale: [‘linear’ | ‘log’] Use a linear or log10 scale on the vertical axis.

Other keyword arguments controlling color mapping and normalization arguments:

cmap: [None | Colormap] a matplotlib.cm.Colormap instance. If None, defaults to
rc image.cmap.

norm: [None | Normalize] matplotlib.colors.Normalize instance is used to scale
luminance data to 0,1.

vmin/vmax: scalar vmin and vmax are used in conjunction with norm to normalize lumi-
nance data. If either are None, the min and max of the color array C is used. Note if
you pass a norm instance, your settings for vmin and vmax will be ignored.

alpha: scalar the alpha value for the patches
linewidths: [None | scalar] If None, defaults to rc lines.linewidth. Note that this is a

tuple, and if you set the linewidths argument you must set it as a sequence of floats, as
required by RegularPolyCollection.

Other keyword arguments controlling the Collection properties:

edgecolors: [None | mpl color | color sequence] If ‘none’, draws the edges in the same
color as the fill color. This is the default, as it avoids unsightly unpainted pixels
between the hexagons.
If None, draws the outlines in the default color.
If a matplotlib color arg or sequence of rgba tuples, draws the outlines in the specified
color.

Here are the standard descriptions of all the Collection kwargs:

378

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
label any string
linestyle [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linestyles [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number

The return value is a PolyCollection instance; use get_array() on this PolyCollection to get
the counts in each hexagon.

Example:

379

Matplotlib, Release 0.98

4 3 2 1 0 1 2 3 4

15

10

5

0

5

10

15

20

Hexagon binning

0

20

40

60

80

100

120

140

co
u
n
ts

4 3 2 1 0 1 2 3 4

15

10

5

0

5

10

15

20

With a log color scale

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

lo
g
1
0
(N

)

Additional kwargs: hold = [True|False] overrides default hold state

hist(*args, **kwargs)
call signature:

hist(x, bins=10, range=None, normed=False, cumulative=False,
bottom=None, histtype=’bar’, align=’mid’,
orientation=’vertical’, rwidth=None, log=False, **kwargs)

Compute the histogram of x. The return value is a tuple (n, bins, patches) or ([n0, n1, ...], bins,
[patches0, patches1,...]) if the input contains multiple data.

Keyword arguments:

bins: either an integer number of bins or a sequence giving the bins. x are the data to be
binned. x can be an array or a 2D array with multiple data in its columns. Note, if
bins is an integer input argument=numbins, bins + 1 bin edges will be returned, com-
patible with the semantics of numpy.histogram() with the new = True argument.
Unequally spaced bins are supported if bins is a sequence.

range: The lower and upper range of the bins. Lower and upper outliers are ignored. If
not provided, range is (x.min(), x.max()). Range has no effect if bins is a sequence.

normed: If True, the first element of the return tuple will be the counts normalized to form
a probability density, i.e., n/(len(x)*dbin). In a probability density, the integral
of the histogram should be 1; you can verify that with a trapezoidal integration of the
probability density function:

380

Matplotlib, Release 0.98

pdf, bins, patches = ax.hist(...)
print np.sum(pdf * np.diff(bins))

cumulative: If True, then a histogram is computed where each bin gives the counts in that
bin plus all bins for smaller values. The last bin gives the total number of datapoints.
If normed is also True then the histogram is normalized such that the last bin equals
one. If cumulative evaluates to less than 0 (e.g. -1), the direction of accumulation is
reversed. In this case, if normed is also True, then the histogram is normalized such
that the first bin equals 1.

histtype: [‘bar’ | ‘barstacked’ | ‘step’ | ‘stepfilled’] The type of histogram to draw.
• ‘bar’ is a traditional bar-type histogram
• ‘barstacked’ is a bar-type histogram where multiple data are stacked on top

of each other.
• ‘step’ generates a lineplot that is by default unfilled
• ‘stepfilled’ generates a lineplot that this by default filled.

align: [’left’ | ‘mid’ | ‘right’] Controls how the histogram is plotted.
• ‘left’: bars are centered on the left bin edges
• ‘mid’: bars are centered between the bin edges
• ‘right’: bars are centered on the right bin edges.

orientation: [‘horizontal’ | ‘vertical’] If ‘horizontal’, barh() will be used for bar-type
histograms and the bottom kwarg will be the left edges.

rwidth: the relative width of the bars as a fraction of the bin width. If None, automatically
compute the width. Ignored if histtype = ‘step’.

log: If True, the histogram axis will be set to a log scale. If log is True and x is a 1D
array, empty bins will be filtered out and only the non-empty (n, bins, patches) will be
returned.

kwargs are used to update the properties of the hist Rectangle instances:

381

Matplotlib, Release 0.98

Property Description
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
ec mpl color spec, or None for default, or ‘none’ for no color
edgecolor mpl color spec, or None for default, or ‘none’ for no color
facecolor mpl color spec, or None for default, or ‘none’ for no color
fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
hatch unknown
label any string
linestyle [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth float or None for default
lod [True | False]
ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

You can use labels for your histogram, and only the first Rectangle gets the label (the others get the
magic string ‘_nolegend_’. This will make the histograms work in the intuitive way for bar charts:

ax.hist(10+2*np.random.randn(1000), label=’men’)
ax.hist(12+3*np.random.randn(1000), label=’women’, alpha=0.5)
ax.legend()

Example:

382

Matplotlib, Release 0.98

40 60 80 100 120 140 160
Smarts

0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
ro

b
a
b
ili

ty
Histogram of IQ : µ=100, σ=15

Additional kwargs: hold = [True|False] overrides default hold state

hlines(*args, **kwargs)
call signature:

hlines(y, xmin, xmax, colors=’k’, linestyle=’solid’, **kwargs)

Plot horizontal lines at each y from xmin to xmax.

Returns the LineCollection that was added.

Required arguments:

y: a 1-D numpy array or iterable.
xmin and xmax: can be scalars or len(x) numpy arrays. If they are scalars, then the

respective values are constant, else the widths of the lines are determined by xmin and
xmax.

Optional keyword arguments:

colors: a line collections color argument, either a single color or a len(y) list of colors
linestyle: [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

Example:

383

Matplotlib, Release 0.98

0.0 0.2 0.4 0.6 0.8 1.0 1.2
time (s)

1

0

1

2

3

4

5
Comparison of model with data

Additional kwargs: hold = [True|False] overrides default hold state

hold(b=None)
Set the hold state. If b is None (default), toggle the hold state, else set the hold state to boolean value
b:

hold() # toggle hold
hold(True) # hold is on
hold(False) # hold is off

When hold is True, subsequent plot commands will be added to the current axes. When hold is False,
the current axes and figure will be cleared on the next plot command.

hot()
Set the default colormap to hot and apply to current image if any. See colormaps() for more infor-
mation.

hsv()
Set the default colormap to hsv and apply to current image if any. See colormaps() for more infor-
mation.

imread(*args, **kwargs)
Return image file in fname as numpy.array.

Return value is a numpy.array. For grayscale images, the return array is MxN. For RGB images, the
return value is MxNx3. For RGBA images the return value is MxNx4.

384

Matplotlib, Release 0.98

matplotlib can only read PNGs natively, but if PIL is installed, it will use it to load the image and
return an array (if possible) which can be used with imshow().

TODO: support RGB and grayscale return values in _image.readpng

imshow(*args, **kwargs)
call signature:

imshow(X, cmap=None, norm=None, aspect=None, interpolation=None,
alpha=1.0, vmin=None, vmax=None, origin=None, extent=None,
**kwargs)

Display the image in X to current axes. X may be a float array, a uint8 array or a PIL image. If X is an
array, X can have the following shapes:

•MxN – luminance (grayscale, float array only)

•MxNx3 – RGB (float or uint8 array)

•MxNx4 – RGBA (float or uint8 array)

The value for each component of MxNx3 and MxNx4 float arrays should be in the range 0.0 to 1.0;
MxN float arrays may be normalised.

An matplotlib.image.AxesImage instance is returned.

Keyword arguments:

cmap: [None | Colormap] A matplotlib.cm.Colormap instance, eg. cm.jet. If None,
default to rc image.cmap value.
cmap is ignored when X has RGB(A) information

aspect: [None | ‘auto’ | ‘equal’ | scalar] If ‘auto’, changes the image aspect ratio to
match that of the axes
If ‘equal’, and extent is None, changes the axes aspect ratio to match that of the image.
If extent is not None, the axes aspect ratio is changed to match that of the extent.
If None, default to rc image.aspect value.

interpolation: Acceptable values are None, ‘nearest’, ‘bilinear’, ‘bicubic’, ‘spline16’,
‘spline36’, ‘hanning’, ‘hamming’, ‘hermite’, ‘kaiser’, ‘quadric’, ‘catrom’, ‘gaussian’,
‘bessel’, ‘mitchell’, ‘sinc’, ‘lanczos’, ‘blackman’
If interpolation is None, default to rc image.interpolation. See also the filternorm
and filterrad parameters

norm: [None | Normalize] An matplotlib.colors.Normalize instance; if None,
default is normalization(). This scales luminance -> 0-1
norm is only used for an MxN float array.

vmin/vmax: [None | scalar] Used to scale a luminance image to 0-1. If either is None,
the min and max of the luminance values will be used. Note if norm is not None, the
settings for vmin and vmax will be ignored.

alpha: scalar The alpha blending value, between 0 (transparent) and 1 (opaque)
origin: [None | ‘upper’ | ‘lower’] Place the [0,0] index of the array in the upper left or

lower left corner of the axes. If None, default to rc image.origin.
extent: [None | scalars (left, right, bottom, top)] Eata values of the axes. The default

assigns zero-based row, column indices to the x, y centers of the pixels.

385

http://www.pythonware.com/products/pil/

Matplotlib, Release 0.98

shape: [None | scalars (columns, rows)] For raw buffer images
filternorm: A parameter for the antigrain image resize filter. From the antigrain documen-

tation, if filternorm = 1, the filter normalizes integer values and corrects the rounding
errors. It doesn’t do anything with the source floating point values, it corrects only
integers according to the rule of 1.0 which means that any sum of pixel weights must
be equal to 1.0. So, the filter function must produce a graph of the proper shape.

filterrad: The filter radius for filters that have a radius parameter, i.e. when interpolation
is one of: ‘sinc’, ‘lanczos’ or ‘blackman’

Additional kwargs are Artist properties:

Property Description
alpha float
animated [True | False]
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
figure a matplotlib.figure.Figure instance
label any string
lod [True | False]
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

Example:

386

Matplotlib, Release 0.98

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Additional kwargs: hold = [True|False] overrides default hold state

ioff()
Turn interactive mode off.

ion()
Turn interactive mode on.

ishold()
Return the hold status of the current axes

isinteractive()
Return the interactive status

jet()
Set the default colormap to jet and apply to current image if any. See colormaps() for more infor-
mation.

legend(*args, **kwargs)
call signature:

legend(*args, **kwargs)

Place a legend on the current axes at location loc. Labels are a sequence of strings and loc can be a
string or an integer specifying the legend location.

To make a legend with existing lines:

387

Matplotlib, Release 0.98

legend()

legend() by itself will try and build a legend using the label property of the lines/patches/collections.
You can set the label of a line by doing:

plot(x, y, label=’my data’)

or:

line.set_label(’my data’).

If label is set to ‘_nolegend_’, the item will not be shown in legend.

To automatically generate the legend from labels:

legend((’label1’, ’label2’, ’label3’))

To make a legend for a list of lines and labels:

legend((line1, line2, line3), (’label1’, ’label2’, ’label3’))

To make a legend at a given location, using a location argument:

legend((’label1’, ’label2’, ’label3’), loc=’upper left’)

or:

legend((line1, line2, line3), (’label1’, ’label2’, ’label3’), loc=2)

The location codes are

Location String Location Code
‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

If none of these are locations are suitable, loc can be a 2-tuple giving x,y in axes coords, ie:

loc = 0, 1 # left top
loc = 0.5, 0.5 # center

Keyword arguments:

isaxes: [True | False] Indicates that this is an axes legend

388

Matplotlib, Release 0.98

numpoints: integer The number of points in the legend line, default is 4
prop: [None | FontProperties] A matplotlib.font_manager.FontProperties in-

stance, or None to use rc settings.
pad: [None | scalar] The fractional whitespace inside the legend border, between 0 and

1. If None, use rc settings.
markerscale: [None | scalar] The relative size of legend markers vs. original. If None,

use rc settings.
shadow: [None | False | True] If True, draw a shadow behind legend. If None, use rc

settings.
labelsep: [None | scalar] The vertical space between the legend entries. If None, use rc

settings.
handlelen: [None | scalar] The length of the legend lines. If None, use rc settings.
handletextsep: [None | scalar] The space between the legend line and legend text. If

None, use rc settings.
axespad: [None | scalar] The border between the axes and legend edge. If None, use rc

settings.

Example:

Model complexity --->

M
e
ss

a
g
e
 l
e
n
g
th

 -
--

>

Minimum Message Length

Model length

Data length

Total message length

loglog(*args, **kwargs)
call signature:

389

Matplotlib, Release 0.98

loglog(*args, **kwargs)

Make a plot with log scaling on the x and y axis.

loglog() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_xscale()/matplotlib.axes.Axes.set_yscale().

Notable keyword arguments:

basex/basey: scalar > 1 base of the x/y logarithm
subsx/subsy: [None | sequence] the location of the minor x/y ticks; None de-

faults to autosubs, which depend on the number of decades in the plot; see
matplotlib.axes.Axes.set_xscale()/matplotlib.axes.Axes.set_yscale()
for details

The remaining valid kwargs are Line2D properties:

390

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

Example:

391

Matplotlib, Release 0.98

0 5 10 15 20
10-2

10-1

100
se

m
ilo

g
y

10-2 10-1 100 101 102
1.0

0.5

0.0

0.5

1.0

se
m

ilo
g
x

4-4 4-3 4-2 4-1 40 41 42 43100

101

102

lo
g
lo

g
 b

a
se

 4
 o

n
 x

Additional kwargs: hold = [True|False] overrides default hold state

matshow(A, fignum=None, **kw)
Display an array as a matrix in a new figure window.

The origin is set at the upper left hand corner and rows (first dimension of the array) are displayed
horizontally. The aspect ratio of the figure window is that of the array, unless this would make an
excessively short or narrow figure.

Tick labels for the xaxis are placed on top.

With the exception of fignum, keyword arguments are passed to imshow().

fignum: [None | integer | False] By default, matshow() creates a new figure window with auto-
matic numbering. If fignum is given as an integer, the created figure will use this figure number.
Because of how matshow() tries to set the figure aspect ratio to be the one of the array, if you
provide the number of an already existing figure, strange things may happen.
If fignum is False or 0, a new figure window will NOT be created.

over(func, *args, **kwargs)
over calls:

func(*args, **kwargs)

with hold(True) and then restores the hold state.

pcolor(*args, **kwargs)
call signatures:

392

Matplotlib, Release 0.98

pcolor(C, **kwargs)
pcolor(X, Y, C, **kwargs)

Create a pseudocolor plot of a 2-D array.

C is the array of color values.

X and Y, if given, specify the (x, y) coordinates of the colored quadrilaterals; the quadrilateral for
C[i,j] has corners at:

(X[i, j], Y[i, j]),
(X[i, j+1], Y[i, j+1]),
(X[i+1, j], Y[i+1, j]),
(X[i+1, j+1], Y[i+1, j+1]).

Ideally the dimensions of X and Y should be one greater than those of C; if the dimensions are the
same, then the last row and column of C will be ignored.

Note that the the column index corresponds to the x-coordinate, and the row index corresponds to y;
for details, see the Grid Orientation section below.

If either or both of X and Y are 1-D arrays or column vectors, they will be expanded as needed into
the appropriate 2-D arrays, making a rectangular grid.

X, Y and C may be masked arrays. If either C[i, j], or one of the vertices surrounding C[i,j] (X or Y at
[i, j], [i+1, j], [i, j+1],[i+1, j+1]) is masked, nothing is plotted.

Keyword arguments:

cmap: [None | Colormap] A matplotlib.cm.Colormap instance. If None, use rc set-
tings.

norm: [None | Normalize] An matplotlib.colors.Normalize instance is used to
scale luminance data to 0,1. If None, defaults to normalize().

vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to nor-
malize luminance data. If either are None, the min and max of the color array C is
used. If you pass a norm instance, vmin and vmax will be ignored.

shading: [‘flat’ | ‘faceted’] If ‘faceted’, a black grid is drawn around each rectangle; if
‘flat’, edges are not drawn. Default is ‘flat’, contrary to Matlab(TM).
This kwarg is deprecated; please use ‘edgecolors’ instead: • shading=’flat’ –

edgecolors=’None’
• shading=’faceted – edgecolors=’k’

edgecolors: [None | ‘None’ | color | color sequence] If None, the rc setting is used by
default.
If ‘None’, edges will not be visible.
An mpl color or sequence of colors will set the edge color

alpha: 0 <= scalar <= 1 the alpha blending value

Return value is a matplotlib.collection.Collection instance.

The grid orientation follows the Matlab(TM) convention: an array C with shape (nrows, ncolumns) is
plotted with the column number as X and the row number as Y, increasing up; hence it is plotted the
way the array would be printed, except that the Y axis is reversed. That is, C is taken as C*(*y, x).

Similarly for meshgrid():

393

Matplotlib, Release 0.98

x = np.arange(5)
y = np.arange(3)
X, Y = meshgrid(x,y)

is equivalent to:

X = array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]])
Y = array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2]])

so if you have:

C = rand(len(x), len(y))

then you need:

pcolor(X, Y, C.T)

or:

pcolor(C.T)

Matlab pcolor() always discards the last row and column of C, but matplotlib displays the last row
and column if X and Y are not specified, or if X and Y have one more row and column than C.

kwargs can be used to control the PolyCollection properties:

394

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
label any string
linestyle [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linestyles [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

pcolormesh(*args, **kwargs)
call signatures:

pcolormesh(C)
pcolormesh(X, Y, C)
pcolormesh(C, **kwargs)

C may be a masked array, but X and Y may not. Masked array support is implemented via cmap and
norm; in contrast, pcolor() simply does not draw quadrilaterals with masked colors or vertices.

Keyword arguments:

395

Matplotlib, Release 0.98

cmap: [None | Colormap] A matplotlib.cm.Colormap instance. If None, use rc set-
tings.

norm: [None | Normalize] A matplotlib.colors.Normalize instance is used to
scale luminance data to 0,1. If None, defaults to normalize().

vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to nor-
malize luminance data. If either are None, the min and max of the color array C is
used. If you pass a norm instance, vmin and vmax will be ignored.

shading: [‘flat’ | ‘faceted’] If ‘faceted’, a black grid is drawn around each rectangle; if
‘flat’, edges are not drawn. Default is ‘flat’, contrary to Matlab(TM).
This kwarg is deprecated; please use ‘edgecolors’ instead: • shading=’flat’ –

edgecolors=’None’
• shading=’faceted – edgecolors=’k’

edgecolors: [None | ‘None’ | color | color sequence] If None, the rc setting is used by
default.
If ‘None’, edges will not be visible.
An mpl color or sequence of colors will set the edge color

alpha: 0 <= scalar <= 1 the alpha blending value

Return value is a matplotlib.collection.QuadMesh object.

See pcolor() for an explanation of the grid orientation and the expansion of 1-D X and/or Y to 2-D
arrays.

kwargs can be used to control the matplotlib.collections.QuadMesh properties:

396

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
label any string
linestyle [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linestyles [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

pie(*args, **kwargs)
call signature:

pie(x, explode=None, labels=None,
colors=(’b’, ’g’, ’r’, ’c’, ’m’, ’y’, ’k’, ’w’),
autopct=None, pctdistance=0.6, labeldistance=1.1, shadow=False)

Make a pie chart of array x. The fractional area of each wedge is given by x/sum(x). If sum(x) <= 1,
then the values of x give the fractional area directly and the array will not be normalized.

Keyword arguments:

397

Matplotlib, Release 0.98

explode: [None | len(x) sequence] If not None, is a len(x) array which specifies the frac-
tion of the radius with which to offset each wedge.

colors: [None | color sequence] A sequence of matplotlib color args through which the
pie chart will cycle.

labels: [None | len(x) sequence of strings] A sequence of strings providing the labels
for each wedge

autopct: [None | format string | format function] If not None, is a string or function
used to label the wedges with their numeric value. The label will be placed inside the
wedge. If it is a format string, the label will be fmt%pct. If it is a function, it will be
called.

pctdistance: scalar The ratio between the center of each pie slice and the start of the text
generated by autopct. Ignored if autopct is None; default is 0.6.

labeldistance: scalar The radial distance at which the pie labels are drawn
shadow: [False | True] Draw a shadow beneath the pie.

The pie chart will probably look best if the figure and axes are square. Eg.:

figure(figsize=(8,8))
ax = axes([0.1, 0.1, 0.8, 0.8])

Return value: If autopct is None, return the tuple (patches, texts):

• patches is a sequence of matplotlib.patches.Wedge instances
• texts is a list of the label matplotlib.text.Text instances.

If autopct is not None, return the tuple (patches, texts, autotexts), where patches and texts are as
above, and autotexts is a list of Text instances for the numeric labels.

Additional kwargs: hold = [True|False] overrides default hold state

pink()
Set the default colormap to pink and apply to current image if any. See colormaps() for more
information.

plot(*args, **kwargs)
Plot lines and/or markers to the Axes. args is a variable length argument, allowing for multiple x, y
pairs with an optional format string. For example, each of the following is legal:

plot(x, y) # plot x and y using the default line style and color
plot(x, y, ’bo’) # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, ’r+’) # ditto, but with red plusses

If x and/or y is 2-dimensional, then the corresponding columns will be plotted.

An arbitrary number of x, y, fmt groups can be specified, as in:

a.plot(x1, y1, ’g^’, x2, y2, ’g-’)

Return value is a list of lines that were added.

The following line styles are supported:

398

Matplotlib, Release 0.98

- # solid line
-- # dashed line
-. # dash-dot line
: # dotted line
. # points
, # pixels
o # circle symbols
^ # triangle up symbols
v # triangle down symbols
< # triangle left symbols
> # triangle right symbols
s # square symbols
+ # plus symbols
x # cross symbols
D # diamond symbols
d # thin diamond symbols
1 # tripod down symbols
2 # tripod up symbols
3 # tripod left symbols
4 # tripod right symbols
h # hexagon symbols
H # rotated hexagon symbols
p # pentagon symbols
| # vertical line symbols
_ # horizontal line symbols
steps # use gnuplot style ’steps’ # kwarg only

The following color abbreviations are supported:

b # blue
g # green
r # red
c # cyan
m # magenta
y # yellow
k # black
w # white

In addition, you can specify colors in many weird and wonderful ways, including full names
(’green’), hex strings (’#008000’), RGB or RGBA tuples ((0,1,0,1)) or grayscale intensities
as a string (’0.8’). Of these, the string specifications can be used in place of a fmt group, but the
tuple forms can be used only as kwargs.

Line styles and colors are combined in a single format string, as in ’bo’ for blue circles.

The kwargs can be used to set line properties (any property that has a set_* method). You can use
this to set a line label (for auto legends), linewidth, anitialising, marker face color, etc. Here is an
example:

plot([1,2,3], [1,2,3], ’go-’, label=’line 1’, linewidth=2)
plot([1,2,3], [1,4,9], ’rs’, label=’line 2’)
axis([0, 4, 0, 10])
legend()

399

Matplotlib, Release 0.98

If you make multiple lines with one plot command, the kwargs apply to all those lines, e.g.:

plot(x1, y1, x2, y2, antialised=False)

Neither line will be antialiased.

The kwargs are Line2D properties:

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

kwargs scalex and scaley, if defined, are passed on to autoscale_view() to determine whether the
x and y axes are autoscaled; the default is True.

Additional kwargs: hold = [True|False] overrides default hold state

400

Matplotlib, Release 0.98

plot_date(*args, **kwargs)
call signature:

plot_date(x, y, fmt=’bo’, tz=None, xdate=True, ydate=False, **kwargs)

Similar to the plot() command, except the x or y (or both) data is considered to be dates, and the
axis is labeled accordingly.

x and/or y can be a sequence of dates represented as float days since 0001-01-01 UTC.

See dates for helper functions date2num(), num2date() and drange() for help on creating the
required floating point dates.

Keyword arguments:

fmt: string The plot format string.
tz: [None | timezone string] The time zone to use in labeling dates. If None, defaults to

rc value.
xdate: [True | False] If True, the x-axis will be labeled with dates.
ydate: [False | True] If True, the y-axis will be labeled with dates.

Note if you are using custom date tickers and formatters, it may be necessary to set
the formatters/locators after the call to plot_date() since plot_date() will set the de-
fault tick locator to matplotlib.ticker.AutoDateLocator (if the tick locator is not al-
ready set to a matplotlib.ticker.DateLocator instance) and the default tick formatter
to matplotlib.ticker.AutoDateFormatter (if the tick formatter is not already set to a
matplotlib.ticker.DateFormatter instance).

Valid kwargs are Line2D properties:

401

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

plotfile(fname, cols=(0,), plotfuncs=None, comments=’#’, skiprows=0, checkrows=5, delimiter=’, ’,
**kwargs)

Plot the data in fname

cols is a sequence of column identifiers to plot. An identifier is either an int or a string. If it is an
int, it indicates the column number. If it is a string, it indicates the column header. matplotlib will
make column headers lower case, replace spaces with underscores, and remove all illegal characters;
so ’Adj Close*’ will have name ’adj_close’.

•If len(cols) == 1, only that column will be plotted on the y axis.

•If len(cols) > 1, the first element will be an identifier for data for the x axis and the remaining

402

Matplotlib, Release 0.98

elements will be the column indexes for multiple subplots

plotfuncs, if not None, is a dictionary mapping identifier to an Axes plotting function as a string.
Default is ‘plot’, other choices are ‘semilogy’, ‘fill’, ‘bar’, etc. You must use the same type of identifier
in the cols vector as you use in the plotfuncs dictionary, eg., integer column numbers in both or column
names in both.

comments, skiprows, checkrows, and delimiter are all passed on to matplotlib.pylab.csv2rec()
to load the data into a record array.

kwargs are passed on to plotting functions.

Example usage:

plot the 2nd and 4th column against the 1st in two subplots
plotfile(fname, (0,1,3))

plot using column names; specify an alternate plot type for volume
plotfile(fname, (’date’, ’volume’, ’adj_close’), plotfuncs={’volume’: ’semilogy’})

plotting()
Plotting commands

403

Matplotlib, Release 0.98

Command Description
axes Create a new axes
axis Set or return the current axis limits
bar make a bar chart
boxplot make a box and whiskers chart
cla clear current axes
clabel label a contour plot
clf clear a figure window
close close a figure window
colorbar add a colorbar to the current figure
cohere make a plot of coherence
contour make a contour plot
contourf make a filled contour plot
csd make a plot of cross spectral density
draw force a redraw of the current figure
errorbar make an errorbar graph
figlegend add a legend to the figure
figimage add an image to the figure, w/o resampling
figtext add text in figure coords
figure create or change active figure
fill make filled polygons
gca return the current axes
gcf return the current figure
gci get the current image, or None
getp get a handle graphics property
hist make a histogram
hold set the hold state on current axes
legend add a legend to the axes
loglog a log log plot
imread load image file into array
imshow plot image data
matshow display a matrix in a new figure preserving aspect
pcolor make a pseudocolor plot
plot make a line plot
plotfile plot data from a flat file
psd make a plot of power spectral density
quiver make a direction field (arrows) plot
rc control the default params
savefig save the current figure
scatter make a scatter plot
setp set a handle graphics property
semilogx log x axis
semilogy log y axis
show show the figures
specgram a spectrogram plot
stem make a stem plot
subplot make a subplot (numrows, numcols, axesnum)
table add a table to the axes
text add some text at location x,y to the current axes
title add a title to the current axes
xlabel add an xlabel to the current axes
ylabel add a ylabel to the current axes

404

Matplotlib, Release 0.98

The following commands will set the default colormap accordingly:

•autumn

•bone

•cool

•copper

•flag

•gray

•hot

•hsv

•jet

•pink

•prism

•spring

•summer

•winter

•spectral

polar(*args, **kwargs)
call signature:

polar(theta, r, **kwargs)

Make a polar plot. Multiple theta, r arguments are supported, with format strings, as in plot().

prism()
Set the default colormap to prism and apply to current image if any. See colormaps() for more
information.

psd(*args, **kwargs)
call signature:

psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, **kwargs)

The power spectral density by Welches average periodogram method. The vector x is divided into
NFFT length segments. Each segment is detrended by function detrend and windowed by function
window. noperlap gives the length of the overlap between segments. The |fft(i)|2 of each segment i
are averaged to compute Pxx, with a scaling to correct for power loss due to windowing. Fs is the
sampling frequency.

Keyword arguments:

NFFT: integer The length of the fft segment, must be a power of 2
Fs: integer The sampling frequency.
Fc: integer The center frequency of x (defaults to 0), which offsets the yextents of the

image to reflect the frequency range used when a signal is acquired and then filtered
and downsampled to baseband.

405

Matplotlib, Release 0.98

detrend: The function applied to each segment before fft-ing, designed to remove the mean
or linear trend. Unlike in matlab, where the detrend parameter is a vector, in matplotlib
is it a function. The pylab module defines detrend_none(), detrend_mean(), and
detrend_linear(), but you can use a custom function as well.

window: The function used to window the segments. window is a function, unlike in mat-
lab where it is a vector. pylab defines window_none(), and window_hanning(),
but you can use a custom function as well.

noverlap: integer Gives the length of the overlap between segments.

Returns the tuple (Pxx, freqs).

For plotting, the power is plotted as 10 log10(Pxx) for decibels, though Pxx itself is returned.

References: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley
& Sons (1986)

kwargs control the Line2D properties:

406

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

quiver(*args, **kwargs)
Plot a 2-D field of arrows.

call signatures:

quiver(U, V, **kw)
quiver(U, V, C, **kw)
quiver(X, Y, U, V, **kw)
quiver(X, Y, U, V, C, **kw)

Arguments:

407

Matplotlib, Release 0.98

X, Y: The x and y coordinates of the arrow locations (default is tail of arrow; see pivot
kwarg)

U, V: give the x and y components of the arrow vectors
C: an optional array used to map colors to the arrows

All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be generated
as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X) and len(Y) match the
column and row dimensions of U, then X and Y will be expanded with numpy.meshgrid().

U, V, C may be masked arrays, but masked X, ** are not supported at present.

Keyword arguments:

units: [’width’ | ‘height’ | ‘dots’ | ‘inches’ | ‘x’ | ‘y’] arrow units; the arrow dimensions
except for length are in multiples of this unit.
• ‘width’ or ‘height’: the width or height of the axes
• ‘dots’ or ‘inches’: pixels or inches, based on the figure dpi
• ‘x’ or ‘y’: X or Y data units

In all cases the arrow aspect ratio is 1, so that if U*==*V the angle of the arrow on
the plot is 45 degrees CCW from the x-axis.
The arrows scale differently depending on the units, however. For ‘x’ or ‘y’, the arrows
get larger as one zooms in; for other units, the arrow size is independent of the zoom
state. For ‘width or ‘height’, the arrow size increases with the width and height of
the axes, respectively, when the the window is resized; for ‘dots’ or ‘inches’, resizing
does not change the arrows.

scale: [None | float] data units per arrow unit, e.g. m/s per plot width; a smaller scale
parameter makes the arrow longer. If None, a simple autoscaling algorithm is used,
based on the average vector length and the number of vectors.

width: shaft width in arrow units; default depends on choice of units, above, and number
of vectors; a typical starting value is about 0.005 times the width of the plot.

headwidth: scalar head width as multiple of shaft width, default is 3
headlength: scalar head length as multiple of shaft width, default is 5
headaxislength: scalar head length at shaft intersection, default is 4.5
minshaft: scalar length below which arrow scales, in units of head length. Do not set this

to less than 1, or small arrows will look terrible! Default is 1
minlength: scalar minimum length as a multiple of shaft width; if an arrow length is less

than this, plot a dot (hexagon) of this diameter instead. Default is 1.
pivot: [‘tail’ | ‘middle’ | ‘tip’] The part of the arrow that is at the grid point; the arrow

rotates about this point, hence the name pivot.
color: [color | color sequence] This is a synonym for the PolyCollection facecolor

kwarg. If C has been set, color has no effect.

The defaults give a slightly swept-back arrow; to make the head a triangle, make headaxislength the
same as headlength. To make the arrow more pointed, reduce headwidth or increase headlength and
headaxislength. To make the head smaller relative to the shaft, scale down all the head parameters.
You will probably do best to leave minshaft alone.

linewidths and edgecolors can be used to customize the arrow outlines. Additional PolyCollection
keyword arguments:

408

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
label any string
linestyle [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linestyles [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

quiverkey(*args, **kwargs)
Add a key to a quiver plot.

call signature:

quiverkey(Q, X, Y, U, label, **kw)

Arguments:

Q: The Quiver instance returned by a call to quiver.
X, Y: The location of the key; additional explanation follows.
U: The length of the key

409

Matplotlib, Release 0.98

label: a string with the length and units of the key

Keyword arguments:

coordinates = [‘axes’ | ‘figure’ | ‘data’ | ‘inches’] Coordinate system and units for X,
Y: ‘axes’ and ‘figure’ are normalized coordinate systems with 0,0 in the lower left
and 1,1 in the upper right; ‘data’ are the axes data coordinates (used for the locations
of the vectors in the quiver plot itself); ‘inches’ is position in the figure in inches, with
0,0 at the lower left corner.

color: overrides face and edge colors from Q.
labelpos = [‘N’ | ‘S’ | ‘E’ | ‘W’] Position the label above, below, to the right, to the left

of the arrow, respectively.
labelsep: Distance in inches between the arrow and the label. Default is 0.1
labelcolor: defaults to default Text color.
fontproperties: A dictionary with keyword arguments accepted by the FontProperties

initializer: family, style, variant, size, weight

Any additional keyword arguments are used to override vector properties taken from Q.

The positioning of the key depends on X, Y, coordinates, and labelpos. If labelpos is ‘N’ or ‘S’, X,
Y give the position of the middle of the key arrow. If labelpos is ‘E’, X, Y positions the head, and if
labelpos is ‘W’, X, Y positions the tail; in either of these two cases, X, Y is somewhere in the middle
of the arrow+label key object.

Additional kwargs: hold = [True|False] overrides default hold state

rc(*args, **kwargs)
Set the current rc params. Group is the grouping for the rc, eg. for lines.linewidth the group
is lines, for axes.facecolor, the group is axes, and so on. Group may also be a list or tuple of
group names, eg. (xtick, ytick). kwargs is a dictionary attribute name/value pairs, eg:

rc(’lines’, linewidth=2, color=’r’)

sets the current rc params and is equivalent to:

rcParams[’lines.linewidth’] = 2
rcParams[’lines.color’] = ’r’

The following aliases are available to save typing for interactive users:

Alias Property
‘lw’ ‘linewidth’
‘ls’ ‘linestyle’
‘c’ ‘color’
‘fc’ ‘facecolor’
‘ec’ ‘edgecolor’
‘mew’ ‘markeredgewidth’
‘aa’ ‘antialiased’

Thus you could abbreviate the above rc command as:

rc(’lines’, lw=2, c=’r’)

410

Matplotlib, Release 0.98

Note you can use python’s kwargs dictionary facility to store dictionaries of default parameters. Eg,
you can customize the font rc as follows:

font = {’family’ : ’monospace’,
’weight’ : ’bold’,
’size’ : ’larger’}

rc(’font’, **font) # pass in the font dict as kwargs

This enables you to easily switch between several configurations. Use rcdefaults() to restore the
default rc params after changes.

rcdefaults()
Restore the default rc params - the ones that were created at matplotlib load time.

rgrids(*args, **kwargs)
Set/Get the radial locations of the gridlines and ticklabels on a polar plot.

call signatures:

lines, labels = rgrids()
lines, labels = rgrids(radii, labels=None, angle=22.5, **kwargs)

When called with no arguments, rgrid() simply returns the tuple (lines, labels), where lines is an
array of radial gridlines (Line2D instances) and labels is an array of tick labels (Text instances).
When called with arguments, the labels will appear at the specified radial distances and angles.

labels, if not None, is a len(radii) list of strings of the labels to use at each angle.

If labels is None, the rformatter will be used

Examples:

set the locations of the radial gridlines and labels
lines, labels = rgrids((0.25, 0.5, 1.0))

set the locations and labels of the radial gridlines and labels
lines, labels = rgrids((0.25, 0.5, 1.0), (’Tom’, ’Dick’, ’Harry’)

savefig(*args, **kwargs)
call signature:

savefig(fname, dpi=None, facecolor=’w’, edgecolor=’w’,
orientation=’portrait’, papertype=None, format=None,
transparent=False):

Save the current figure.

The output formats available depend on the backend being used.

Arguments:

fname: A string containing a path to a filename, or a Python file-like object.
If format is None and fname is a string, the output format is deduced from the exten-
sion of the filename.

411

Matplotlib, Release 0.98

Keyword arguments:

dpi: [None | scalar > 0] The resolution in dots per inch. If None it will default to the
value savefig.dpi in the matplotlibrc file.

facecolor, edgecolor: the colors of the figure rectangle
orientation: [‘landscape’ | ‘portrait’] not supported on all backends; currently only on

postscript output
papertype: One of ‘letter’, ‘legal’, ‘executive’, ‘ledger’, ‘a0’ through ‘a10’, ‘b0’ through

‘b10’. Only supported for postscript output.
format: One of the file extensions supported by the active backend. Most backends support

png, pdf, ps, eps and svg.
transparent: If True, the figure patch and axes patches will all be transparent. This is

useful, for example, for displaying a plot on top of a colored background on a web
page. The transparency of these patches will be restored to their original values upon
exit of this function.

scatter(*args, **kwargs)
call signatures:

scatter(x, y, s=20, c=’b’, marker=’o’, cmap=None, norm=None,
vmin=None, vmax=None, alpha=1.0, linewidths=None,
verts=None, **kwargs)

Make a scatter plot of x versus y, where x, y are 1-D sequences of the same length, N.

Keyword arguments:

s: size in points^2. It is a scalar or an array of the same length as x and y.
c: a color. c can be a single color format string, or a sequence of color specifications of

length N, or a sequence of N numbers to be mapped to colors using the cmap and
norm specified via kwargs (see below). Note that c should not be a single numeric
RGB or RGBA sequence because that is indistinguishable from an array of values to
be colormapped. c can be a 2-D array in which the rows are RGB or RGBA, however.

marker: can be one of:
Value Description
‘s’ square
‘o’ circle
‘^’ triangle up
‘>’ triangle right
‘v’ triangle down
‘<’ triangle left
‘d’ diamond
‘p’ pentagram
‘h’ hexagon
‘8’ octagon
‘+’ plus
‘x’ cross

The marker can also be a tuple (numsides, style, angle), which will create a custom,
regular symbol.

412

Matplotlib, Release 0.98

numsides: the number of sides
style: the style of the regular symbol:

Value Description
0 a regular polygon
1 a star-like symbol
2 an asterisk
3 a circle (numsides and angle is ignored)

angle: the angle of rotation of the symbol
Finally, marker can be (verts, 0): verts is a sequence of (x, y) vertices for a custom
scatter symbol. Alternatively, use the kwarg combination marker = None, verts =

verts.

Any or all of x, y, s, and c may be masked arrays, in which case all masks will be combined and only
unmasked points will be plotted.

Other keyword arguments: the color mapping and normalization arguments will be used only if c is
an array of floats.

cmap: [None | Colormap] A matplotlib.colors.Colormap instance. If None, de-
faults to rc image.cmap. cmap is only used if c is an array of floats.

norm: [None | Normalize] A matplotlib.colors.Normalize instance is used to
scale luminance data to 0, 1. If None, use the default normalize(). norm is only
used if c is an array of floats.

vmin/vmax: vmin and vmax are used in conjunction with norm to normalize luminance
data. If either are None, the min and max of the color array C is used. Note if you
pass a norm instance, your settings for vmin and vmax will be ignored.

alpha: 0 <= scalar <= 1 The alpha value for the patches
linewidths: [None | scalar | sequence] If None, defaults to (lines.linewidth,). Note that

this is a tuple, and if you set the linewidths argument you must set it as a sequence of
floats, as required by RegularPolyCollection.

Optional kwargs control the Collection properties; in particular:

edgecolors: ‘none’ to plot faces with no outlines
facecolors: ‘none’ to plot unfilled outlines

Here are the standard descriptions of all the Collection kwargs:

413

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
label any string
linestyle [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linestyles [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number

A Collection instance is returned.

Additional kwargs: hold = [True|False] overrides default hold state

sci(im)
Set the current image (target of colormap commands like jet(), hot() or clim()).

semilogx(*args, **kwargs)
call signature:

semilogx(*args, **kwargs)

Make a plot with log scaling on the x axis.

414

Matplotlib, Release 0.98

semilogx() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_xscale().

Notable keyword arguments:

basex: scalar > 1 base of the x logarithm
subsx: [None | sequence] The location of the minor xticks; None defaults to autosubs,

which depend on the number of decades in the plot; see set_xscale() for details.

The remaining valid kwargs are Line2D properties:

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

See loglog() for example code and figure

Additional kwargs: hold = [True|False] overrides default hold state

415

Matplotlib, Release 0.98

semilogy(*args, **kwargs)
call signature:

semilogy(*args, **kwargs)

Make a plot with log scaling on the y axis.

semilogy() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_yscale().

Notable keyword arguments:

basey: scalar > 1 Base of the y logarithm
subsy: [None | sequence] The location of the minor yticks; None defaults to autosubs,

which depend on the number of decades in the plot; see set_yscale() for details.

The remaining valid kwargs are Line2D properties:

416

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color or c any matplotlib color
contains unknown
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’ | ‘None’ | ‘ ‘

| ‘’]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or
mec

any matplotlib color

markeredgewidth or
mew

float value in points

markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

See loglog() for example code and figure

Additional kwargs: hold = [True|False] overrides default hold state

setp(*args, **kwargs)
matplotlib supports the use of setp() (“set property”) and getp() to set and get object properties,
as well as to do introspection on the object. For example, to set the linestyle of a line to be dashed,
you can do:

>>> line, = plot([1,2,3])
>>> setp(line, linestyle=’--’)

417

Matplotlib, Release 0.98

If you want to know the valid types of arguments, you can provide the name of the property you want
to set without a value:

>>> setp(line, ’linestyle’)
linestyle: [’-’ | ’--’ | ’-.’ | ’:’ | ’steps’ | ’None’]

If you want to see all the properties that can be set, and their possible values, you can do:

>>> setp(line)
... long output listing omitted

setp() operates on a single instance or a list of instances. If you are in query mode introspecting the
possible values, only the first instance in the sequence is used. When actually setting values, all the
instances will be set. E.g., suppose you have a list of two lines, the following will make both lines
thicker and red:

>>> x = arange(0,1.0,0.01)
>>> y1 = sin(2*pi*x)
>>> y2 = sin(4*pi*x)
>>> lines = plot(x, y1, x, y2)
>>> setp(lines, linewidth=2, color=’r’)

setp() works with the matlab(TM) style string/value pairs or with python kwargs. For example, the
following are equivalent

>>> setp(lines, ’linewidth’, 2, ’color’, r’) # matlab style

>>> setp(lines, linewidth=2, color=’r’) # python style

specgram(*args, **kwargs)
call signature:

specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window = mlab.window_hanning, noverlap=128,
cmap=None, xextent=None)

Compute a spectrogram of data in x. Data are split into NFFT length segments and the PSD of each
section is computed. The windowing function window is applied to each segment, and the amount of
overlap of each segment is specified with noverlap.

Keyword arguments:

cmap: A matplotlib.cm.Colormap instance; if None use default determined by rc
xextent: The image extent in the xaxes xextent=xmin, xmax default 0, max(bins), 0,

max(freqs) where bins is the return value from mlab.specgram

See psd() for information on the other keyword arguments.

Return value is (Pxx, freqs, bins, im):

•bins are the time points the spectrogram is calculated over

•freqs is an array of frequencies

418

Matplotlib, Release 0.98

•Pxx is a len(times) x len(freqs) array of power

•im is a matplotlib.image.AxesImage instance

Note: If x is real (i.e. non-complex), only the positive spectrum is shown. If x is complex, both
positive and negative parts of the spectrum are shown.

Additional kwargs: hold = [True|False] overrides default hold state

spectral()
Set the default colormap to spectral and apply to current image if any. See colormaps() for more
information.

spring()
Set the default colormap to spring and apply to current image if any. See colormaps() for more
information.

spy(*args, **kwargs)
call signature:

spy(Z, precision=None, marker=None, markersize=None,
aspect=’equal’, **kwargs)

spy(Z) plots the sparsity pattern of the 2-D array Z.

If precision is None, any non-zero value will be plotted; else, values of |Z| > precision will be plotted.

The array will be plotted as it would be printed, with the first index (row) increasing down and the
second index (column) increasing to the right.

By default aspect is ‘equal’, so that each array element occupies a square space; set the aspect kwarg
to ‘auto’ to allow the plot to fill the plot box, or to any scalar number to specify the aspect ratio of an
array element directly.

Two plotting styles are available: image or marker. Both are available for full arrays, but only the
marker style works for scipy.sparse.spmatrix instances.

If marker and markersize are None, an image will be returned and any remaining kwargs are passed
to imshow(); else, a Line2D object will be returned with the value of marker determining the marker
type, and any remaining kwargs passed to the plot() method.

If marker and markersize are None, useful kwargs include:

•cmap

•alpha

See documentation for imshow() for details.

For controlling colors, e.g. cyan background and red marks, use:

cmap = mcolors.ListedColormap([’c’,’r’])

If marker or markersize is not None, useful kwargs include:

•marker

•markersize

•color

419

Matplotlib, Release 0.98

See documentation for plot() for details.

Useful values for marker include:

•‘s’ square (default)

•‘o’ circle

•‘.’ point

•‘,’ pixel

Additional kwargs: hold = [True|False] overrides default hold state

stem(*args, **kwargs)
call signature:

stem(x, y, linefmt=’b-’, markerfmt=’bo’, basefmt=’r-’)

A stem plot plots vertical lines (using linefmt) at each x location from the baseline to y, and places a
marker there using markerfmt. A horizontal line at 0 is is plotted using basefmt.

Return value is a tuple (markerline, stemlines, baseline).

See this document for details and examples/pylab_examples/stem_plot.py for a demo.

Additional kwargs: hold = [True|False] overrides default hold state

step(*args, **kwargs)
call signature:

step(x, y, *args, **kwargs)

Make a step plot. Additional keyword args to step() are the same as those for plot().

x and y must be 1-D sequences, and it is assumed, but not checked, that x is uniformly increasing.

Keyword arguments:

where: [‘pre’ | ‘post’ | ‘mid’] If ‘pre’, the interval from x[i] to x[i+1] has level y[i]
If ‘post’, that interval has level y[i+1]
If ‘mid’, the jumps in y occur half-way between the x-values.

Additional kwargs: hold = [True|False] overrides default hold state

subplot(*args, **kwargs)
Create a subplot command, creating axes with:

subplot(numRows, numCols, plotNum)

where plotNum = 1 is the first plot number and increasing plotNums fill rows first. max(plotNum) ==

numRows * numCols

You can leave out the commas if numRows <= numCols <= plotNum < 10, as in:

subplot(211) # 2 rows, 1 column, first (upper) plot

420

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/stem.html

Matplotlib, Release 0.98

subplot(111) is the default axis.

The background color of the subplot can be specified via keyword argument axisbg, which takes a
color string as value, as in:

subplot(211, axisbg=’y’)

See axes() for additional information on axes() and subplot() keyword arguments.

New subplots that overlap old will delete the old axes. If you do not want this behavior, use
matplotlib.figure.Figure.add_subplot() or the axes() command. Eg.:

from pylab import *
plot([1,2,3]) # implicitly creates subplot(111)
subplot(211) # overlaps, subplot(111) is killed
plot(rand(12), rand(12))

subplot_tool(targetfig=None)
Launch a subplot tool window for targetfig (default gcf).

A matplotlib.widgets.SubplotTool instance is returned.

subplots_adjust(*args, **kwargs)
call signature:

subplots_adjust(left=None, bottom=None, right=None, top=None,
wspace=None, hspace=None)

Tune the subplot layout via the matplotlib.figure.SubplotParams mechanism. The parameter
meanings (and suggested defaults) are:

left = 0.125 # the left side of the subplots of the figure
right = 0.9 # the right side of the subplots of the figure
bottom = 0.1 # the bottom of the subplots of the figure
top = 0.9 # the top of the subplots of the figure
wspace = 0.2 # the amount of width reserved for blank space between subplots
hspace = 0.2 # the amount of height reserved for white space between subplots

The actual defaults are controlled by the rc file

summer()
Set the default colormap to summer and apply to current image if any. See colormaps() for more
information.

suptitle(*args, **kwargs)
Add a centered title to the figure.

kwargs are matplotlib.text.Text properties. Using figure coordinates, the defaults are:

x = 0.5
the x location of text in figure coords

y = 0.98
the y location of the text in figure coords

horizontalalignment = ’center’
the horizontal alignment of the text

421

Matplotlib, Release 0.98

verticalalignment = ’top’
the vertical alignment of the text

A matplotlib.text.Text instance is returned.

Example:

fig.subtitle(’this is the figure title’, fontsize=12)

switch_backend(newbackend)
Switch the default backend to newbackend. This feature is experimental, and is only expected to
work switching to an image backend. Eg, if you have a bunch of PostScript scripts that you want to
run from an interactive ipython session, you may want to switch to the PS backend before running
them to avoid having a bunch of GUI windows popup. If you try to interactively switch from one GUI
backend to another, you will explode.

Calling this command will close all open windows.

table(*args, **kwargs)
call signature:

table(cellText=None, cellColours=None,
cellLoc=’right’, colWidths=None,
rowLabels=None, rowColours=None, rowLoc=’left’,
colLabels=None, colColours=None, colLoc=’center’,
loc=’bottom’, bbox=None):

Add a table to the current axes. Returns a matplotlib.table.Table instance. For finer grained
control over tables, use the Table class and add it to the axes with add_table().

Thanks to John Gill for providing the class and table.

kwargs control the Table properties:

Property Description
alpha float
animated [True | False]
axes an axes instance
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
contains unknown
figure a matplotlib.figure.Figure instance
fontsize a float in points
label any string
lod [True | False]
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number

text(*args, **kwargs)
call signature:

422

Matplotlib, Release 0.98

text(x, y, s, fontdict=None, **kwargs)

Add text in string s to axis at location x, y, data coordinates.

Keyword arguments:

fontdict: A dictionary to override the default text properties. If fontdict is None, the de-
faults are determined by your rc parameters.

withdash: [False | True] Creates a TextWithDash instance instead of a Text instance.

Individual keyword arguments can be used to override any given parameter:

text(x, y, s, fontsize=12)

The default transform specifies that text is in data coords, alternatively, you can specify text in axis
coords (0,0 is lower-left and 1,1 is upper-right). The example below places text in the center of the
axes:

text(0.5, 0.5,’matplotlib’,
horizontalalignment=’center’,
verticalalignment=’center’,
transform = ax.transAxes)

You can put a rectangular box around the text instance (eg. to set a background color) by using the
keyword bbox. bbox is a dictionary of matplotlib.patches.Rectangle properties. For example:

text(x, y, s, bbox=dict(facecolor=’red’, alpha=0.5))

Valid kwargs are matplotlib.text.Text properties:

423

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
color any matplotlib color
contains unknown
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion
transform unknown
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

thetagrids(*args, **kwargs)
Set/Get the theta locations of the gridlines and ticklabels.

If no arguments are passed, return a tuple (lines, labels) where lines is an array of radial gridlines
(Line2D instances) and labels is an array of tick labels (Text instances):

lines, labels = thetagrids()

Otherwise the syntax is:

lines, labels = thetagrids(angles, labels=None, fmt=’%d’, frac = 1.1)

set the angles at which to place the theta grids (these gridlines are equal along the theta dimension).

angles is in degrees.

424

Matplotlib, Release 0.98

labels, if not None, is a len(angles) list of strings of the labels to use at each angle.

If labels is None, the labels will be fmt%angle.

frac is the fraction of the polar axes radius at which to place the label (1 is the edge). Eg. 1.05 is
outside the axes and 0.95 is inside the axes.

Return value is a list of tuples (lines, labels):

•lines are Line2D instances

•labels are Text instances.

Note that on input, the labels argument is a list of strings, and on output it is a list of Text instances.

Examples:

set the locations of the radial gridlines and labels
lines, labels = thetagrids(range(45,360,90))

set the locations and labels of the radial gridlines and labels
lines, labels = thetagrids(range(45,360,90), (’NE’, ’NW’, ’SW’,’SE’))

title(s, *args, **kwargs)
Set the title of the current axis to s.

Default font override is:

override = {’fontsize’: ’medium’,
’verticalalignment’: ’bottom’,
’horizontalalignment’: ’center’}

See the text() docstring for information of how override and the optional args work.

twinx(ax=None)
Make a second axes overlay ax (or the current axes if ax is None) sharing the xaxis. The ticks for ax2
will be placed on the right, and the ax2 instance is returned.

See examples/pylab_examples/two_scales.py

twiny(ax=None)
Make a second axes overlay ax (or the current axes if ax is None) sharing the yaxis. The ticks for ax2
will be placed on the top, and the ax2 instance is returned.

vlines(*args, **kwargs)
call signature:

vlines(x, ymin, ymax, color=’k’)

Plot vertical lines at each x from ymin to ymax. ymin or ymax can be scalars or len(x) numpy arrays.
If they are scalars, then the respective values are constant, else the heights of the lines are determined
by ymin and ymax.

colors is a line collections color args, either a single color or a len(x) list of colors

linestyle is one of [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

Returns the matplotlib.collections.LineCollection that was added.

kwargs are LineCollection properties:

425

Matplotlib, Release 0.98

Property Description
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
label any string
linestyle [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linestyles [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
segments unknown
transform unknown
verts unknown
visible [True | False]
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

waitforbuttonpress(*args, **kwargs)
call signature:

waitforbuttonpress(self, timeout=-1)

Blocking call to interact with the figure.

This will return True is a key was pressed, False if a mouse button was pressed and None if timeout
was reached without either being pressed.

If timeout is negative, does not timeout.

426

Matplotlib, Release 0.98

winter()
Set the default colormap to winter and apply to current image if any. See colormaps() for more
information.

xcorr(*args, **kwargs)
call signature:

xcorr(x, y, normed=False, detrend=mlab.detrend_none,
usevlines=False, **kwargs):

Plot the cross correlation between x and y. If normed = True, normalize the data but the cross correla-
tion at 0-th lag. x and y are detrended by the detrend callable (default no normalization). x and y must
be equal length.

Data are plotted as plot(lags, c, **kwargs)

Return value is a tuple (lags, c, line) where:

•lags are a length 2*maxlags+1 lag vector

•c is the 2*maxlags+1 auto correlation vector

•line is a Line2D instance returned by plot().

The default linestyle is None and the default marker is ‘o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy.correlate() with mode = 2.

If usevlines is True:

vlines() rather than plot() is used to draw vertical lines from the origin to the xcorr.
Otherwise the plotstyle is determined by the kwargs, which are Line2D properties.
The return value is a tuple (lags, c, linecol, b) where linecol is the
matplotlib.collections.LineCollection instance and b is the x-axis.

maxlags is a positive integer detailing the number of lags to show. The default value of None will
return all (2*len(x)-1) lags.

Example:

xcorr() above, and acorr() below.

Example:

427

Matplotlib, Release 0.98

60 40 20 0 20 40 60
0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

60 40 20 0 20 40 60
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Additional kwargs: hold = [True|False] overrides default hold state

xlabel(s, *args, **kwargs)
Set the x axis label of the current axis to s

Default override is:

override = {
’fontsize’ : ’small’,
’verticalalignment’ : ’top’,
’horizontalalignment’ : ’center’
}

See text() for information of how override and the optional args work

xlim(*args, **kwargs)
Set/Get the xlimits of the current axes:

xmin, xmax = xlim() # return the current xlim
xlim((xmin, xmax)) # set the xlim to xmin, xmax
xlim(xmin, xmax) # set the xlim to xmin, xmax

If you do not specify args, you can pass the xmin and xmax as kwargs, eg.:

xlim(xmax=3) # adjust the max leaving min unchanged
xlim(xmin=1) # adjust the min leaving max unchanged

428

Matplotlib, Release 0.98

The new axis limits are returned as a length 2 tuple.

xscale(*args, **kwargs)
call signature:

xscale(scale, **kwargs)

Set the scaling for the x-axis: ‘linear’ | ‘log’ | ‘symlog’

Different keywords may be accepted, depending on the scale:

‘linear’
‘log’

basex/basey: The base of the logarithm
subsx/subsy: Where to place the subticks between each major tick. Should be a

sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4, 5,
6, 7, 8, 9]
will place 10 logarithmically spaced minor ticks between each major tick.

‘symlog’

basex/basey: The base of the logarithm
linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to avoid

having the plot go to infinity around zero).
subsx/subsy: Where to place the subticks between each major tick. Should be a

sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4, 5,
6, 7, 8, 9]
will place 10 logarithmically spaced minor ticks between each major tick.

xticks(*args, **kwargs)
Set/Get the xlimits of the current ticklocs and labels:

return locs, labels where locs is an array of tick locations and
labels is an array of tick labels.
locs, labels = xticks()

set the locations of the xticks
xticks(arange(6))

set the locations and labels of the xticks
xticks(arange(5), (’Tom’, ’Dick’, ’Harry’, ’Sally’, ’Sue’))

The keyword args, if any, are Text properties.

ylabel(s, *args, **kwargs)
Set the y axis label of the current axis to s.

Defaults override is:

override = {
’fontsize’ : ’small’,
’verticalalignment’ : ’center’,
’horizontalalignment’ : ’right’,
’rotation’=’vertical’ : }

429

Matplotlib, Release 0.98

See text() for information on how override and the optional args work.

ylim(*args, **kwargs)
Set/Get the ylimits of the current axes:

ymin, ymax = ylim() # return the current ylim
ylim((ymin, ymax)) # set the ylim to ymin, ymax
ylim(ymin, ymax) # set the ylim to ymin, ymax

If you do not specify args, you can pass the ymin and ymax as kwargs, eg.:

ylim(ymax=3) # adjust the max leaving min unchanged
ylim(ymin=1) # adjust the min leaving max unchanged

The new axis limits are returned as a length 2 tuple.

yscale(*args, **kwargs)
call signature:

xscale(scale, **kwargs)

Set the scaling for the y-axis: ‘linear’ | ‘log’ | ‘symlog’

Different keywords may be accepted, depending on the scale:

‘linear’
‘log’

basex/basey: The base of the logarithm
subsx/subsy: Where to place the subticks between each major tick. Should be a

sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4, 5,
6, 7, 8, 9]
will place 10 logarithmically spaced minor ticks between each major tick.

‘symlog’

basex/basey: The base of the logarithm
linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to avoid

having the plot go to infinity around zero).
subsx/subsy: Where to place the subticks between each major tick. Should be a

sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4, 5,
6, 7, 8, 9]
will place 10 logarithmically spaced minor ticks between each major tick.

yticks(*args, **kwargs)
Set/Get the ylimits of the current ticklocs and labels:

return locs, labels where locs is an array of tick locations and
labels is an array of tick labels.
locs, labels = yticks()

set the locations of the yticks
yticks(arange(6))

430

Matplotlib, Release 0.98

set the locations and labels of the yticks
yticks(arange(5), (’Tom’, ’Dick’, ’Harry’, ’Sally’, ’Sue’))

The keyword args, if any, are Text properties.

431

432

CHAPTER

THIRTYONE

Matplotlib backends

31.1 matplotlib.backend_bases

Abstract base classes define the primitives that renderers and graphics contexts must implement to serve as
a matplotlib backend

RendererBase An abstract base class to handle drawing/rendering operations.

FigureCanvasBase The abstraction layer that separates the matplotlib.figure.Figure from the back-
end specific details like a user interface drawing area

GraphicsContextBase An abstract base class that provides color, line styles, etc...

Event The base class for all of the matplotlib event handling. Derived classes suh as KeyEvent and
MouseEvent store the meta data like keys and buttons pressed, x and y locations in pixel and Axes
coordinates.

class Cursors()

class DrawEvent(name, canvas, renderer)
Bases: matplotlib.backend_bases.Event

An event triggered by a draw operation on the canvas

In addition to the Event attributes, the following event attributes are defined:

renderer the RendererBase instance for the draw event

class Event(name, canvas, guiEvent=None)
A matplotlib event. Attach additional attributes as defined in FigureCanvasBase.mpl_connect().
The following attributes are defined and shown with their default values

name the event name

canvas the FigureCanvas instance generating the event

guiEvent the GUI event that triggered the matplotlib event

class FigureCanvasBase(figure)
The canvas the figure renders into.

Public attributes

figure A matplotlib.figure.Figure instance

433

Matplotlib, Release 0.98

blit(bbox=None)
blit the canvas in bbox (default entire canvas)

button_press_event(x, y, button, guiEvent=None)
Backend derived classes should call this function on any mouse button press. x,y are the canvas
coords: 0,0 is lower, left. button and key are as defined in MouseEvent.
This method will be call all functions connected to the ‘button_press_event’ with a MouseEvent
instance.

button_release_event(x, y, button, guiEvent=None)
Backend derived classes should call this function on any mouse button release.

x the canvas coordinates where 0=left
y the canvas coordinates where 0=bottom
guiEvent the native UI event that generated the mpl event

This method will be call all functions connected to the ‘button_release_event’ with a
MouseEvent instance.

draw(*args, **kwargs)
Render the Figure

draw_cursor(event)
Draw a cursor in the event.axes if inaxes is not None. Use native GUI drawing for efficiency if
possible

draw_event(renderer)
This method will be call all functions connected to the ‘draw_event’ with a DrawEvent

draw_idle(*args, **kwargs)
draw() only if idle; defaults to draw but backends can overrride

flush_events()
Flush the GUI events for the figure. Implemented only for backends with GUIs.

get_default_filetype()

get_supported_filetypes()

get_supported_filetypes_grouped()

get_width_height()
return the figure width and height in points or pixels (depending on the backend), truncated to
integers

idle_event(guiEvent=None)
call when GUI is idle

key_press_event(key, guiEvent=None)
This method will be call all functions connected to the ‘key_press_event’ with a KeyEvent

key_release_event(key, guiEvent=None)
This method will be call all functions connected to the ‘key_release_event’ with a KeyEvent

motion_notify_event(x, y, guiEvent=None)
Backend derived classes should call this function on any motion-notify-event.

x the canvas coordinates where 0=left
y the canvas coordinates where 0=bottom

434

Matplotlib, Release 0.98

guiEvent the native UI event that generated the mpl event

This method will be call all functions connected to the ‘motion_notify_event’ with a
MouseEvent instance.

mpl_connect(s, func)
Connect event with string s to func. The signature of func is:

def func(event)

where event is a matplotlib.backend_bases.Event. The following events are recognized

•‘button_press_event’
•‘button_release_event’
•‘draw_event’
•‘key_press_event’
•‘key_release_event’
•‘motion_notify_event’
•‘pick_event’
•‘resize_event’
•‘scroll_event’

For the location events (button and key press/release), if the mouse is over the axes, the variable
event.inaxes will be set to the Axes the event occurs is over, and additionally, the variables
event.xdata and event.ydata will be defined. This is the mouse location in data coords. See
KeyEvent and MouseEvent for more info.
Return value is a connection id that can be used with mpl_disconnect().
Example usage:

def on_press(event):
print ’you pressed’, event.button, event.xdata, event.ydata

cid = canvas.mpl_connect(’button_press_event’, on_press)

mpl_disconnect(cid)
disconnect callback id cid
Example usage:

cid = canvas.mpl_connect(’button_press_event’, on_press)
#...later
canvas.mpl_disconnect(cid)

onHilite(ev)
Mouse event processor which highlights the artists under the cursor. Connect this to the ‘mo-
tion_notify_event’ using:

canvas.mpl_connect(’motion_notify_event’,canvas.onHilite)

onRemove(ev)
Mouse event processor which removes the top artist under the cursor. Connect this to the
‘mouse_press_event’ using:

435

Matplotlib, Release 0.98

canvas.mpl_connect(’mouse_press_event’,canvas.onRemove)

pick(mouseevent)

pick_event(mouseevent, artist, **kwargs)
This method will be called by artists who are picked and will fire off PickEvent callbacks
registered listeners

print_bmp(*args, **kwargs)

print_emf(*args, **kwargs)

print_eps(*args, **kwargs)

print_figure(filename, dpi=None, facecolor=’w’, edgecolor=’w’, orientation=’portrait’, format=None,
**kwargs)

Render the figure to hardcopy. Set the figure patch face and edge colors. This is useful because
some of the GUIs have a gray figure face color background and you’ll probably want to override
this on hardcopy.
Arguments are:

filename can also be a file object on image backends
orientation only currently applies to PostScript printing.
dpi the dots per inch to save the figure in; if None, use savefig.dpi
facecolor the facecolor of the figure
edgecolor the edgecolor of the figure
orientation ‘ landscape’ | ‘portrait’ (not supported on all backends)
format when set, forcibly set the file format to save to

print_pdf(*args, **kwargs)

print_png(*args, **kwargs)

print_ps(*args, **kwargs)

print_raw(*args, **kwargs)

print_rgb(*args, **kwargs)

print_svg(*args, **kwargs)

print_svgz(*args, **kwargs)

resize(w, h)
set the canvas size in pixels

resize_event()
This method will be call all functions connected to the ‘resize_event’ with a ResizeEvent

scroll_event(x, y, step, guiEvent=None)
Backend derived classes should call this function on any scroll wheel event. x,y are the canvas
coords: 0,0 is lower, left. button and key are as defined in MouseEvent.
This method will be call all functions connected to the ‘scroll_event’ with a MouseEvent in-
stance.

set_window_title(title)
Set the title text of the window containing the figure. Note that this has no effect if there is no
window (eg, a PS backend).

436

Matplotlib, Release 0.98

start_event_loop(timeout)
Start an event loop. This is used to start a blocking event loop so that interactive functions, such
as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main
GUI event loop, which is always running and has nothing to do with this.
This is implemented only for backends with GUIs.

start_event_loop_default(timeout=0)
Start an event loop. This is used to start a blocking event loop so that interactive functions, such
as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main
GUI event loop, which is always running and has nothing to do with this.
This function provides default event loop functionality based on time.sleep that is meant to be
used until event loop functions for each of the GUI backends can be written. As such, it throws
a deprecated warning.
Call signature:

start_event_loop_default(self,timeout=0)

This call blocks until a callback function triggers stop_event_loop() or timeout is reached. If
timeout is <=0, never timeout.

stop_event_loop()
Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such
as ginput and waitforbuttonpress, can wait for events.
This is implemented only for backends with GUIs.

stop_event_loop_default()
Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such
as ginput and waitforbuttonpress, can wait for events.
Call signature:
Literal block expected; none found.
stop_event_loop_default(self)

switch_backends(FigureCanvasClass)
instantiate an instance of FigureCanvasClass
This is used for backend switching, eg, to instantiate a FigureCanvasPS from a FigureCanvas-
GTK. Note, deep copying is not done, so any changes to one of the instances (eg, setting figure
size or line props), will be reflected in the other

class FigureManagerBase(canvas, num)
Helper class for matlab mode, wraps everything up into a neat bundle

Public attibutes:

canvas A FigureCanvasBase instance

num The figure nuamber

destroy()

full_screen_toggle()

key_press(event)

resize(w, h)
For gui backends: resize window in pixels

437

Matplotlib, Release 0.98

set_window_title(title)
Set the title text of the window containing the figure. Note that this has no effect if there is no
window (eg, a PS backend).

show_popup(msg)
Display message in a popup – GUI only

class GraphicsContextBase()
An abstract base class that provides color, line styles, etc...

copy_properties(gc)
Copy properties from gc to self

get_alpha()
Return the alpha value used for blending - not supported on all backends

get_antialiased()
Return true if the object should try to do antialiased rendering

get_capstyle()
Return the capstyle as a string in (‘butt’, ‘round’, ‘projecting’)

get_clip_path()
Return the clip path in the form (path, transform), where path is a Path instance, and transform
is an affine transform to apply to the path before clipping.

get_clip_rectangle()
Return the clip rectangle as a Bbox instance

get_dashes()
Return the dash information as an offset dashlist tuple The dash list is a even size list that gives
the ink on, ink off in pixels. See p107 of to postscript BLUEBOOK for more info
Default value is None

get_hatch()
Gets the current hatch style

get_joinstyle()
Return the line join style as one of (‘miter’, ‘round’, ‘bevel’)

get_linestyle(style)
Return the linestyle: one of (‘solid’, ‘dashed’, ‘dashdot’, ‘dotted’).

get_linewidth()
Return the line width in points as a scalar

get_rgb()
returns a tuple of three floats from 0-1. color can be a matlab format string, a html hex color
string, or a rgb tuple

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends

set_antialiased(b)
True if object should be drawn with antialiased rendering

set_capstyle(cs)
Set the capstyle as a string in (‘butt’, ‘round’, ‘projecting’)

438

http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF

Matplotlib, Release 0.98

set_clip_path(path)
Set the clip path and transformation. Path should be a TransformedPath instance.

set_clip_rectangle(rectangle)
Set the clip rectangle with sequence (left, bottom, width, height)

set_dashes(dash_offset, dash_list)
Set the dash style for the gc.

dash_offset is the offset (usually 0).
dash_list specifies the on-off sequence as points. (None, None) specifies a solid line

set_foreground(fg, isRGB=False)
Set the foreground color. fg can be a matlab format string, a html hex color string, an rgb unit
tuple, or a float between 0 and 1. In the latter case, grayscale is used.
The GraphicsContextBase converts colors to rgb internally. If you know the color is rgb
already, you can set isRGB=True to avoid the performace hit of the conversion

set_graylevel(frac)
Set the foreground color to be a gray level with frac

set_hatch(hatch)
Sets the hatch style for filling

set_joinstyle(js)
Set the join style to be one of (‘miter’, ‘round’, ‘bevel’)

set_linestyle(style)
Set the linestyle to be one of (‘solid’, ‘dashed’, ‘dashdot’, ‘dotted’).

set_linewidth(w)
Set the linewidth in points

class IdleEvent(name, canvas, guiEvent=None)
Bases: matplotlib.backend_bases.Event

An event triggered by the GUI backend when it is idle – useful for passive animation

class KeyEvent(name, canvas, key, x=0, y=0, guiEvent=None)
Bases: matplotlib.backend_bases.LocationEvent

A key event (key press, key release).

Attach additional attributes as defined in FigureCanvasBase.mpl_connect().

In addition to the Event and LocationEvent attributes, the following attributes are defined:

key the key pressed: None, chr(range(255), shift, win, or control

This interface may change slightly when better support for modifier keys is included.

Example usage:

def on_key(event):
print ’you pressed’, event.key, event.xdata, event.ydata

cid = fig.canvas.mpl_connect(’key_press_event’, on_key)

439

Matplotlib, Release 0.98

class LocationEvent(name, canvas, x, y, guiEvent=None)
Bases: matplotlib.backend_bases.Event

A event that has a screen location

The following additional attributes are defined and shown with their default values

In addition to the Event attributes, the following event attributes are defined:

x x position - pixels from left of canvas

y y position - pixels from bottom of canvas

inaxes the Axes instance if mouse is over axes

xdata x coord of mouse in data coords

ydata y coord of mouse in data coords

x, y in figure coords, 0,0 = bottom, left

class MouseEvent(name, canvas, x, y, button=None, key=None, step=0, guiEvent=None)
Bases: matplotlib.backend_bases.LocationEvent

A mouse event (‘button_press_event’, ‘button_release_event’, ‘scroll_event’, ‘motion_notify_event’).

In addition to the Event and LocationEvent attributes, the following attributes are defined:

button button pressed None, 1, 2, 3, ‘up’, ‘down’ (up and down are used for scroll events)

key the key pressed: None, chr(range(255), ‘shift’, ‘win’, or ‘control’

step number of scroll steps (positive for ‘up’, negative for ‘down’)

Example usage:

def on_press(event):
print ’you pressed’, event.button, event.xdata, event.ydata

cid = fig.canvas.mpl_connect(’button_press_event’, on_press)

x, y in figure coords, 0,0 = bottom, left button pressed None, 1, 2, 3, ‘up’, ‘down’

class NavigationToolbar2(canvas)
Base class for the navigation cursor, version 2

backends must implement a canvas that handles connections for ‘button_press_event’ and ‘but-
ton_release_event’. See FigureCanvasBase.mpl_connect() for more information

They must also define

save_figure() save the current figure
set_cursor() if you want the pointer icon to change
_init_toolbar() create your toolbar widget
draw_rubberband() (optional) draw the zoom to rect “rubberband” rectangle
press() (optional) whenever a mouse button is pressed, you’ll be notified with the event
release() (optional) whenever a mouse button is released, you’ll be notified with the

event
dynamic_update() (optional) dynamically update the window while navigating

440

Matplotlib, Release 0.98

set_message() (optional) display message
set_history_buttons() (optional) you can change the history back / forward buttons

to indicate disabled / enabled state.

That’s it, we’ll do the rest!

back(*args)
move back up the view lim stack

drag_pan(event)
the drag callback in pan/zoom mode

draw()
redraw the canvases, update the locators

draw_rubberband(event, x0, y0, x1, y1)
draw a rectangle rubberband to indicate zoom limits

dynamic_update()

forward(*args)
move forward in the view lim stack

home(*args)
restore the original view

mouse_move(event)

pan(*args)
Activate the pan/zoom tool. pan with left button, zoom with right

press(event)
this will be called whenver a mouse button is pressed

press_pan(event)
the press mouse button in pan/zoom mode callback

press_zoom(event)
the press mouse button in zoom to rect mode callback

push_current()
push the current view limits and position onto the stack

release(event)
this will be called whenever mouse button is released

release_pan(event)
the release mouse button callback in pan/zoom mode

release_zoom(event)
the release mouse button callback in zoom to rect mode

save_figure(*args)
save the current figure

set_cursor(cursor)
Set the current cursor to one of the Cursors enums values

set_history_buttons()
enable or disable back/forward button

441

Matplotlib, Release 0.98

set_message(s)
display a message on toolbar or in status bar

update()
reset the axes stack

zoom(*args)
activate zoom to rect mode

class PickEvent(name, canvas, mouseevent, artist, guiEvent=None, **kwargs)
Bases: matplotlib.backend_bases.Event

a pick event, fired when the user picks a location on the canvas sufficiently close to an artist.

Attrs: all the Event attributes plus

mouseevent the MouseEvent that generated the pick

artist the Artist picked

other extra class dependent attrs – eg a Line2D pick may define different extra attributes than a
PatchCollection pick event

Example usage:

line, = ax.plot(rand(100), ’o’, picker=5) # 5 points tolerance

def on_pick(event):
thisline = event.artist
xdata, ydata = thisline.get_data()
ind = event.ind
print ’on pick line:’, zip(xdata[ind], ydata[ind])

cid = fig.canvas.mpl_connect(’pick_event’, on_pick)

class RendererBase()
An abstract base class to handle drawing/rendering operations.

The following methods must be implemented in the backend:

•draw_path()

•draw_image()

•draw_text()

•get_text_width_height_descent()

The following methods should be implemented in the backend for optimization reasons:

•draw_markers()

•draw_path_collection()

•draw_quad_mesh()

close_group(s)
Close a grouping element with label s Is only currently used by backend_svg

draw_image(x, y, im, bbox, clippath=None, clippath_trans=None)
Draw the image instance into the current axes;

442

Matplotlib, Release 0.98

x is the distance in pixels from the left hand side of the canvas.
y the distance from the origin. That is, if origin is upper, y is the distance from top. If origin is

lower, y is the distance from bottom
im the matplotlib._image.Image instance
bbox a matplotlib.transforms.Bbox instance for clipping, or None

draw_markers(gc, marker_path, marker_trans, path, trans, rgbFace=None)
Draws a marker at each of the vertices in path. This includes all vertices, including control points
on curves. To avoid that behavior, those vertices should be removed before calling this function.

gc the GraphicsContextBase instance
marker_trans is an affine transform applied to the marker.
trans is an affine transform applied to the path.

This provides a fallback implementation of draw_markers that makes multiple calls to
draw_path(). Some backends may want to override this method in order to draw the marker
only once and reuse it multiple times.

draw_path(gc, path, transform, rgbFace=None)
Draws a Path instance using the given affine transform.

draw_path_collection(master_transform, cliprect, clippath, clippath_trans, paths, all_transforms, off-
sets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds)

Draws a collection of paths, selecting drawing properties from the lists facecolors, edgecolors,
linewidths, linestyles and antialiaseds. offsets is a list of offsets to apply to each of the paths.
The offsets in offsets are first transformed by offsetTrans before being applied.
This provides a fallback implementation of draw_path_collection() that makes multi-
ple calls to draw_path. Some backends may want to override this in order to render each
set of path data only once, and then reference that path multiple times with the different
offsets, colors, styles etc. The generator methods _iter_collection_raw_paths() and
_iter_collection() are provided to help with (and standardize) the implementation across
backends. It is highly recommended to use those generators, so that changes to the behavior of
draw_path_collection() can be made globally.

draw_quad_mesh(master_transform, cliprect, clippath, clippath_trans, meshWidth, meshHeight, coordi-
nates, offsets, offsetTrans, facecolors, antialiased, showedges)

This provides a fallback implementation of draw_quad_mesh() that generates paths and then
calls draw_path_collection().

draw_tex(gc, x, y, s, prop, angle, ismath=’TeX!’)

draw_text(gc, x, y, s, prop, angle, ismath=False)
Draw the text instance

gc the GraphicsContextBase instance
x the x location of the text in display coords
y the y location of the text in display coords
s a matplotlib.text.Text instance
prop a matplotlib.font_manager.FontProperties instance
angle the rotation angle in degrees

backend implementers note
When you are trying to determine if you have gotten your bounding box right (which is what
enables the text layout/alignment to work properly), it helps to change the line in text.py:

443

Matplotlib, Release 0.98

if 0: bbox_artist(self, renderer)

to if 1, and then the actual bounding box will be blotted along with your text.

flipy()
Return true if y small numbers are top for renderer Is used for drawing text (matplotlib.text)
and images (matplotlib.image) only

get_canvas_width_height()
return the canvas width and height in display coords

get_image_magnification()
Get the factor by which to magnify images passed to draw_image(). Allows a backend to have
images at a different resolution to other artists.

get_texmanager()
return the matplotlib.texmanager.TexManager instance

get_text_width_height_descent(s, prop, ismath)
get the width and height, and the offset from the bottom to the baseline (descent), in display
coords of the string s with FontProperties prop

new_gc()
Return an instance of a GraphicsContextBase

open_group(s)
Open a grouping element with label s. Is only currently used by backend_svg

option_image_nocomposite()
overwrite this method for renderers that do not necessarily want to rescale and composite raster
images. (like SVG)

points_to_pixels(points)
Convert points to display units

points a float or a numpy array of float

return points converted to pixels
You need to override this function (unless your backend doesn’t have a dpi, eg, postscript or
svg). Some imaging systems assume some value for pixels per inch:

points to pixels = points * pixels_per_inch/72.0 * dpi/72.0

start_rasterizing()

stop_rasterizing()

strip_math(s)

class ResizeEvent(name, canvas)
Bases: matplotlib.backend_bases.Event

An event triggered by a canvas resize

In addition to the Event attributes, the following event attributes are defined:

width width of the canvas in pixels

height height of the canvas in pixels

444

Matplotlib, Release 0.98

31.2 matplotlib.backends.backend_gtkagg

TODO We’ll add this later, importing the gtk backends requires an active X-session, which is not compatible
with cron jobs.

31.3 matplotlib.backends.backend_qt4agg

autodoc can’t import/find module ‘matplotlib.backends.backend_qt4agg’, it reported error: “No module
named PyQt4”,please check your spelling and sys.path

31.4 matplotlib.backends.backend_wxagg

class FigureCanvasWxAgg(parent, id, figure)
Bases: matplotlib.backends.backend_agg.FigureCanvasAgg,
matplotlib.backends.backend_wx.FigureCanvasWx

The FigureCanvas contains the figure and does event handling.

In the wxPython backend, it is derived from wxPanel, and (usually) lives inside a frame instantiated
by a FigureManagerWx. The parent window probably implements a wxSizer to control the displayed
control size - but we give a hint as to our preferred minimum size.

Initialise a FigureWx instance.

•Initialise the FigureCanvasBase and wxPanel parents.

•Set event handlers for: EVT_SIZE (Resize event) EVT_PAINT (Paint event)

blit(bbox=None)
Transfer the region of the agg buffer defined by bbox to the display. If bbox is None, the entire
buffer is transferred.

draw(drawDC=None)
Render the figure using agg.

print_figure(filename, *args, **kwargs)

class FigureFrameWxAgg(num, fig)
Bases: matplotlib.backends.backend_wx.FigureFrameWx

get_canvas(fig)

class NavigationToolbar2WxAgg(canvas)
Bases: matplotlib.backends.backend_wx.NavigationToolbar2Wx

get_canvas(frame, fig)

new_figure_manager(num, *args, **kwargs)
Create a new figure manager instance

445

446

Part V

Glossary

447

Matplotlib, Release 0.98

AGG The Anti-Grain Geometry (Agg) rendering engine, capable of rendering high-quality images

Cairo The Cairo graphics engine

EPS Encapsulated Postscript (EPS)

FLTK FLTK (pronounced “fulltick”) is a cross-platform C++ GUI toolkit for UNIX/Linux (X11), Mi-
crosoft Windows, and MacOS X

freetype freetype is a font rasterization library used by matplotlib which supports TrueType, Type 1, and
OpenType fonts.

GDK The Gimp Drawing Kit for GTK+

GTK The GIMP Toolkit (GTK) graphical user interface library

JPG The Joint Photographic Experts Group (JPEG) compression method and file format for photographic
images

numpy numpy is the standard numerical array library for python, the successor to Numeric and numarray.
numpy provides fast operations for homogeneous data sets and common mathematical operations like
correlations, standard deviation, fourier transforms, and convolutions.

PDF Adobe’s Portable Document Format (PDF)

PNG Portable Network Graphics (PNG), a raster graphics format that employs lossless data compression
which is more suitable for line art than the lossy jpg format. Unlike the gif format, png is not encum-
bered by requirements for a patent license.

PS Postscript (PS) is a vector graphics ASCII text language widely used in printers and publishing.
Postscript was developerd by adobe systems and is starting to show its age: for example is does
not have an alpha channel. PDF was designed in part as a next-generation document format to replace
postscript

pyfltk pyfltk provides python wrappers for the FLTK widgets library for use with FLTKAgg

pygtk pygtk provides python wrappers for the GTK widgets library for use with the GTK or GTKAgg
backend. Widely used on linux, and is often packages as ‘python-gtk2’

pyqt pyqt provides python wrappers for the Qt widgets library and is requied by the matplotlib QtAgg
and Qt4Agg backends. Widely used on linux and windows; many linux distributions package this as
‘python-qt3’ or ‘python-qt4’.

python python is an object oriented interpreted language widely used for scripting, application develop-
ment, web application servers, scientific computing and more.

Qt Qt is a cross-platform application framework for desktop and embedded development.

Qt4 Qt4 is the most recent version of Qt cross-platform application framework for desktop and embedded
development.

raster graphics Raster graphics, or bitmaps, represent an image as an array of pixels which is resolution
dependent. Raster graphics are generally most practical for photo-realistic images, but do not scale
easily without loss of quality.

449

http://antigrain.com
http://cairographics.org
http://en.wikipedia.org/wiki/Encapsulated_PostScript
http://www.fltk.org/
http://www.freetype.org/
http://www.gtk.org/
http://en.wikipedia.org/wiki/Jpeg
http://numpy.scipy.org
http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/PostScript
http://pyfltk.sourceforge.net/
http://www.pygtk.org/
http://wiki.python.org/moin/PyQt
http://python.org
http://trolltech.com/products/qt/
http://trolltech.com/products/qt/
http://en.wikipedia.org/wiki/Raster_graphics

Matplotlib, Release 0.98

SVG The Scalable Vector Graphics format (SVG). An XML based vector graphics format supported by
many web browsers.

TIFF Tagged Image File Format (TIFF) is a file format for storing images, including photographs and line
art.

Tk Tk is a graphical user interface for Tcl and many other dynamic languages. It can produce rich, native
applications that run unchanged across Windows, Mac OS X, Linux and more.

vector graphics vector graphics use geometrical primitives based upon mathematical equations to represent
images in computer graphics. Primitives can include points, lines, curves, and shapes or polygons.
Vector graphics are scalable, which means that they can be resized without suffering from issues
related to inherent resolution like are seen in raster graphics. Vector graphics are generally most
practical for typesetting and graphic design applications.

wxpython wxpython provides python wrappers for the wxWidgets library for use with the WX and WXAgg
backends. Widely used on linux, OS-X and windows, it is often packaged by linux distributions as
‘python-wxgtk’

wxWidgets WX is cross-platform GUI and tools library for GTK, MS Windows, and MacOS. It uses na-
tive widgets for each operating system, so applications will have the look-and-feel that users on that
operating system expect.

450

http://en.wikipedia.org/wiki/Svg
http://en.wikipedia.org/wiki/Tagged_Image_File_Format
http://www.tcl.tk/
http://en.wikipedia.org/wiki/Vector_graphics
http://www.wxpython.org/
http://www.wxwidgets.org/

MODULE INDEX

M
matplotlib, 147
matplotlib.afm, 151
matplotlib.artist, 153
matplotlib.axes, 201
matplotlib.axis, 291
matplotlib.backend_bases, 433
matplotlib.backends.backend_wxagg, 445
matplotlib.cbook, 299
matplotlib.cm, 309
matplotlib.collections, 311
matplotlib.colorbar, 321
matplotlib.colors, 323
matplotlib.figure, 187
matplotlib.lines, 160
matplotlib.patches, 165
matplotlib.path, 133
matplotlib.pyplot, 329
matplotlib.text, 178
matplotlib.transforms, 117

451

452

INDEX

Symbols
~ <HOME>, 95

A
acorr() (Axes method), 201
acorr() (in module matplotlib.pyplot), 329
add_artist() (Axes method), 202
add_axes() (Figure method), 187
add_axobserver() (Figure method), 189
add_callback() (Artist method), 153
add_checker() (ScalarMappable method), 309
add_collection() (Axes method), 202
add_line() (Axes method), 202
add_lines() (ColorbarBase method), 322
add_lines() (Colorbar method), 321
add_patch() (Axes method), 202
add_subplot() (Figure method), 189
add_table() (Axes method), 202
Affine2D (class in matplotlib.transforms), 126
Affine2DBase (class in matplotlib.transforms), 125
AffineBase (class in matplotlib.transforms), 125
AFM (class in matplotlib.afm), 151
aliased_name() (ArtistInspector method), 157
allequal() (in module matplotlib.cbook), 302
allpairs() (in module matplotlib.cbook), 302
alltrue() (in module matplotlib.cbook), 302
anchored() (BboxBase method), 119
annotate() (Axes method), 202
annotate() (in module matplotlib.pyplot), 330
Annotation (class in matplotlib.text), 178
append() (RingBuffer method), 301
apply_aspect() (Axes method), 204
Arc (class in matplotlib.patches), 165
arc (Path attribute), 134
Arrow (class in matplotlib.patches), 166
arrow() (Axes method), 204
arrow() (in module matplotlib.pyplot), 332

Artist (class in matplotlib.artist), 153
ArtistInspector (class in matplotlib.artist), 157
AsteriskPolygonCollection (class in mat-

plotlib.collections), 311
autofmt_xdate() (Figure method), 189
autoscale() (Normalize method), 326
autoscale() (ScalarMappable method), 309
autoscale() (normalize method), 327
autoscale_None() (Normalize method), 326
autoscale_None() (ScalarMappable method), 309
autoscale_None() (normalize method), 327
autoscale_view() (Axes method), 206
autumn() (in module matplotlib.pyplot), 334
Axes (class in matplotlib.axes), 201
axes() (in module matplotlib.pyplot), 334
axhline() (Axes method), 206
axhline() (in module matplotlib.pyplot), 334
axhspan() (Axes method), 207
axhspan() (in module matplotlib.pyplot), 336
Axis (class in matplotlib.axis), 291
axis() (Axes method), 209
axis() (in module matplotlib.pyplot), 338
axvline() (Axes method), 209
axvline() (in module matplotlib.pyplot), 339
axvspan() (Axes method), 210
axvspan() (in module matplotlib.pyplot), 340

B
back() (NavigationToolbar2 method), 441
back() (Stack method), 301
bar() (Axes method), 211
bar() (in module matplotlib.pyplot), 341
barbs() (Axes method), 214
barbs() (in module matplotlib.pyplot), 344
barh() (Axes method), 216
barh() (in module matplotlib.pyplot), 346
Bbox (class in matplotlib.transforms), 122

453

Matplotlib, Release 0.98

bbox_artist() (in module matplotlib.patches),
178

BboxBase (class in matplotlib.transforms), 119
BboxTransform (class in matplotlib.transforms),

132
BboxTransformFrom (class in mat-

plotlib.transforms), 132
BboxTransformTo (class in matplotlib.transforms),

132
blended_transform_factory() (in module mat-

plotlib.transforms), 130
BlendedAffine2D (class in matplotlib.transforms),

130
BlendedGenericTransform (class in mat-

plotlib.transforms), 129
blit() (FigureCanvasBase method), 434
blit() (FigureCanvasWxAgg method), 445
bone() (in module matplotlib.pyplot), 348
BoundaryNorm (class in matplotlib.colors), 323
bounds (BboxBase attribute), 119
box() (in module matplotlib.pyplot), 348
boxplot() (Axes method), 218
boxplot() (in module matplotlib.pyplot), 348
broken_barh() (Axes method), 219
broken_barh() (in module matplotlib.pyplot), 349
BrokenBarHCollection (class in mat-

plotlib.collections), 312
bubble() (Stack method), 302
Bunch (class in matplotlib.cbook), 299
button_press_event() (FigureCanvasBase

method), 434
button_release_event() (FigureCanvasBase

method), 434
byAttribute() (Sorter method), 301
byItem() (Sorter method), 301

C
CallbackRegistry (class in matplotlib.cbook),

299
can_zoom() (Axes method), 221
change_geometry() (SubplotBase method), 289
changed() (ScalarMappable method), 309
check_update() (ScalarMappable method), 309
Circle (class in matplotlib.patches), 167
CircleCollection (class in mat-

plotlib.collections), 312
CirclePolygon (class in matplotlib.patches), 168
cla() (Axes method), 221

cla() (Axis method), 291
cla() (in module matplotlib.pyplot), 351
clabel() (Axes method), 221
clabel() (in module matplotlib.pyplot), 351
clean() (Grouper method), 300
clear() (Affine2D method), 127
clear() (Axes method), 221
clear() (Figure method), 190
clear() (MemoryMonitor method), 301
clear() (Stack method), 302
clf() (Figure method), 190
clf() (in module matplotlib.pyplot), 352
clim() (in module matplotlib.pyplot), 352
close() (in module matplotlib.pyplot), 352
close_group() (RendererBase method), 442
cohere() (Axes method), 221
cohere() (in module matplotlib.pyplot), 352
Collection (class in matplotlib.collections), 313
color() (LineCollection method), 316
Colorbar (class in matplotlib.colorbar), 321
colorbar() (Figure method), 190
colorbar() (in module matplotlib.pyplot), 354
ColorbarBase (class in matplotlib.colorbar), 321
ColorConverter (class in matplotlib.colors), 324
Colormap (class in matplotlib.colors), 324
colormaps() (in module matplotlib.pyplot), 355
colors() (in module matplotlib.pyplot), 356
composite_transform_factory() (in module

matplotlib.transforms), 132
CompositeAffine2D (class in mat-

plotlib.transforms), 132
CompositeGenericTransform (class in mat-

plotlib.transforms), 130
connect() (Axes method), 223
connect() (CallbackRegistry method), 300
connect() (in module matplotlib.pyplot), 357
contains() (Annotation method), 180
contains() (Artist method), 153
contains() (Axes method), 223
contains() (BboxBase method), 119
contains() (Collection method), 313
contains() (Ellipse method), 169
contains() (Figure method), 191
contains() (Line2D method), 161
contains() (Patch method), 170
contains() (Rectangle method), 174
contains() (Text method), 181
contains() (Tick method), 294

454 Index

Matplotlib, Release 0.98

contains() (XAxis method), 295
contains() (YAxis method), 296
contains_path() (Path method), 134
contains_point() (Path method), 134
containsx() (BboxBase method), 119
containsy() (BboxBase method), 119
contour() (Axes method), 223
contour() (in module matplotlib.pyplot), 357
contourf() (Axes method), 225
contourf() (in module matplotlib.pyplot), 360
convert_mesh_to_paths (QuadMesh attribute),

318
convert_units() (Axis method), 291
convert_xunits() (Artist method), 153
convert_yunits() (Artist method), 153
converter (class in matplotlib.cbook), 303
cool() (in module matplotlib.pyplot), 362
copper() (in module matplotlib.pyplot), 363
copy_properties() (GraphicsContextBase

method), 438
corners() (BboxBase method), 120
count_contains() (BboxBase method), 120
count_overlaps() (BboxBase method), 120
csd() (Axes method), 228
csd() (in module matplotlib.pyplot), 363
Cursors (class in matplotlib.backend_bases), 433

D
dedent() (in module matplotlib.cbook), 303
delaxes() (Figure method), 191
delaxes() (in module matplotlib.pyplot), 365
delete_masked_points() (in module mat-

plotlib.cbook), 303
destroy() (FigureManagerBase method), 437
dict_delall() (in module matplotlib.cbook), 303
disconnect() (Axes method), 230
disconnect() (CallbackRegistry method), 300
disconnect() (in module matplotlib.pyplot), 365
distances_along_curve() (in module mat-

plotlib.cbook), 303
dpi (Figure attribute), 191
drag_pan() (Axes method), 230
drag_pan() (NavigationToolbar2 method), 441
draw() (Annotation method), 180
draw() (Arc method), 166
draw() (Artist method), 153
draw() (Axes method), 230
draw() (Axis method), 291

draw() (CircleCollection method), 313
draw() (Collection method), 313
draw() (FigureCanvasBase method), 434
draw() (FigureCanvasWxAgg method), 445
draw() (Figure method), 191
draw() (Line2D method), 161
draw() (NavigationToolbar2 method), 441
draw() (Patch method), 170
draw() (PolyCollection method), 317
draw() (QuadMesh method), 318
draw() (RegularPolyCollection method), 319
draw() (TextWithDash method), 185
draw() (Text method), 181
draw() (Tick method), 294
draw() (in module matplotlib.pyplot), 365
draw_all() (ColorbarBase method), 322
draw_artist() (Axes method), 230
draw_artist() (Figure method), 191
draw_bbox() (in module matplotlib.patches), 178
draw_cursor() (FigureCanvasBase method), 434
draw_event() (FigureCanvasBase method), 434
draw_idle() (FigureCanvasBase method), 434
draw_image() (RendererBase method), 442
draw_markers() (RendererBase method), 443
draw_path() (RendererBase method), 443
draw_path_collection() (RendererBase

method), 443
draw_quad_mesh() (RendererBase method), 443
draw_rubberband() (NavigationToolbar2

method), 441
draw_tex() (RendererBase method), 443
draw_text() (RendererBase method), 443
DrawEvent (class in matplotlib.backend_bases), 433
dynamic_update() (NavigationToolbar2 method),

441

E
Ellipse (class in matplotlib.patches), 168
empty() (Stack method), 302
end_pan() (Axes method), 230
environment variable

~ <HOME>, 95
HOME, 84, 95
MPLCONFIGDIR, 84, 95
PATH, 44, 47
PYTHONPATH, 95

errorbar() (Axes method), 230
errorbar() (in module matplotlib.pyplot), 365

Index 455

Matplotlib, Release 0.98

Event (class in matplotlib.backend_bases), 433
exception_to_str() (in module mat-

plotlib.cbook), 303
expanded() (BboxBase method), 120
extents (BboxBase attribute), 120

F
FancyArrow (class in matplotlib.patches), 169
figaspect() (in module matplotlib.figure), 200
figimage() (Figure method), 191
figimage() (in module matplotlib.pyplot), 368
figlegend() (in module matplotlib.pyplot), 369
figtext() (in module matplotlib.pyplot), 370
Figure (class in matplotlib.figure), 187
figure() (in module matplotlib.pyplot), 371
FigureCanvasBase (class in mat-

plotlib.backend_bases), 433
FigureCanvasWxAgg (class in mat-

plotlib.backends.backend_wxagg), 445
FigureFrameWxAgg (class in mat-

plotlib.backends.backend_wxagg), 445
FigureManagerBase (class in mat-

plotlib.backend_bases), 437
fill() (Axes method), 233
fill() (in module matplotlib.pyplot), 372
finddir() (in module matplotlib.cbook), 303
findobj() (ArtistInspector method), 157
findobj() (Artist method), 153
findobj() (in module matplotlib.pyplot), 374
flag() (in module matplotlib.pyplot), 375
flatten() (in module matplotlib.cbook), 303
flipy() (RendererBase method), 444
flush_events() (FigureCanvasBase method), 434
format_coord() (Axes method), 235
format_xdata() (Axes method), 235
format_ydata() (Axes method), 235
forward() (NavigationToolbar2 method), 441
forward() (Stack method), 302
from_bounds (Bbox attribute), 122
from_extents (Bbox attribute), 122
from_values (Affine2D attribute), 127
frozen() (Affine2DBase method), 126
frozen() (BboxBase method), 120
frozen() (BlendedGenericTransform method), 129
frozen() (CompositeGenericTransform method),

131
frozen() (IdentityTransform method), 128
frozen() (TransformNode method), 119

frozen() (TransformWrapper method), 125
full_screen_toggle() (FigureManagerBase

method), 437
fully_contains() (BboxBase method), 120
fully_containsx() (BboxBase method), 120
fully_containsy() (BboxBase method), 120
fully_overlaps() (BboxBase method), 120

G
gca() (Figure method), 193
gca() (in module matplotlib.pyplot), 375
gcf() (in module matplotlib.pyplot), 375
gci() (in module matplotlib.pyplot), 375
get() (RingBuffer method), 301
get() (in module matplotlib.artist), 158
get_aa() (Line2D method), 161
get_aa() (Patch method), 171
get_adjustable() (Axes method), 235
get_affine() (AffineBase method), 125
get_affine() (BlendedGenericTransform

method), 129
get_affine() (CompositeGenericTransform

method), 131
get_affine() (IdentityTransform method), 128
get_affine() (Transform method), 124
get_aliases() (ArtistInspector method), 157
get_alpha() (Artist method), 154
get_alpha() (GraphicsContextBase method), 438
get_anchor() (Axes method), 235
get_angle() (AFM method), 151
get_animated() (Artist method), 154
get_antialiased() (GraphicsContextBase

method), 438
get_antialiased() (Line2D method), 161
get_antialiased() (Patch method), 171
get_array() (ScalarMappable method), 309
get_aspect() (Axes method), 235
get_autoscale_on() (Axes method), 235
get_axes() (Artist method), 154
get_axes() (Figure method), 194
get_axis_bgcolor() (Axes method), 235
get_axisbelow() (Axes method), 235
get_bbox() (Rectangle method), 174
get_bbox_char() (AFM method), 152
get_c() (Line2D method), 161
get_canvas() (FigureFrameWxAgg method), 445
get_canvas() (NavigationToolbar2WxAgg

method), 445

456 Index

Matplotlib, Release 0.98

get_canvas_width_height() (RendererBase
method), 444

get_capheight() (AFM method), 152
get_capstyle() (GraphicsContextBase method),

438
get_child_artists() (Axes method), 235
get_children() (Axes method), 235
get_children() (Axis method), 291
get_children() (Figure method), 194
get_children() (Tick method), 294
get_clim() (ScalarMappable method), 309
get_clip_box() (Artist method), 154
get_clip_on() (Artist method), 154
get_clip_path() (Artist method), 154
get_clip_path() (GraphicsContextBase method),

438
get_clip_rectangle() (GraphicsContextBase

method), 438
get_closed() (Polygon method), 173
get_cmap() (ScalarMappable method), 309
get_cmap() (in module matplotlib.cm), 310
get_color() (Line2D method), 161
get_color() (LineCollection method), 316
get_color() (Text method), 181
get_colors() (LineCollection method), 316
get_contains() (Artist method), 154
get_current_fig_manager() (in module mat-

plotlib.pyplot), 376
get_cursor_props() (Axes method), 236
get_dash_capstyle() (Line2D method), 161
get_dash_joinstyle() (Line2D method), 161
get_dashdirection() (TextWithDash method),

185
get_dashes() (Collection method), 313
get_dashes() (GraphicsContextBase method),

438
get_dashlength() (TextWithDash method), 185
get_dashpad() (TextWithDash method), 185
get_dashpush() (TextWithDash method), 185
get_dashrotation() (TextWithDash method),

185
get_data() (Line2D method), 161
get_data_interval() (Axis method), 291
get_data_interval() (XAxis method), 295
get_data_interval() (XTick method), 296
get_data_interval() (YAxis method), 296
get_data_interval() (YTick method), 297
get_data_ratio() (Axes method), 236

get_data_transform() (Patch method), 171
get_datalim() (Collection method), 313
get_datalim() (QuadMesh method), 318
get_default_filetype() (FigureCanvasBase

method), 434
get_dpi() (Figure method), 194
get_ec() (Patch method), 171
get_edgecolor() (Collection method), 313
get_edgecolor() (Figure method), 195
get_edgecolor() (Patch method), 171
get_edgecolors() (Collection method), 313
get_extents() (Patch method), 171
get_extents() (Path method), 134
get_facecolor() (Collection method), 313
get_facecolor() (Figure method), 195
get_facecolor() (Patch method), 171
get_facecolors() (Collection method), 314
get_familyname() (AFM method), 152
get_fc() (Patch method), 171
get_figheight() (Figure method), 195
get_figure() (Artist method), 154
get_figure() (TextWithDash method), 185
get_figwidth() (Figure method), 195
get_fill() (Patch method), 171
get_font_properties() (Text method), 181
get_fontname() (AFM method), 152
get_fontname() (Text method), 181
get_fontsize() (Text method), 181
get_fontstyle() (Text method), 181
get_fontweight() (Text method), 181
get_frame() (Axes method), 236
get_frame_on() (Axes method), 236
get_frameon() (Figure method), 195
get_fullname() (AFM method), 152
get_fully_transformed_path() (Transformed-

Path method), 133
get_geometry() (SubplotBase method), 289
get_gridlines() (Axis method), 291
get_ha() (Text method), 182
get_hatch() (GraphicsContextBase method), 438
get_hatch() (Patch method), 171
get_height() (Rectangle method), 174
get_height_char() (AFM method), 152
get_horizontal_stem_width() (AFM method),

152
get_horizontalalignment() (Text method), 182
get_image_magnification() (RendererBase

method), 444

Index 457

Matplotlib, Release 0.98

get_images() (Axes method), 236
get_joinstyle() (GraphicsContextBase method),

438
get_kern_dist() (AFM method), 152
get_kern_dist_from_name() (AFM method),

152
get_label() (Artist method), 154
get_label() (Axis method), 291
get_label_position() (XAxis method), 295
get_label_position() (YAxis method), 296
get_legend() (Axes method), 236
get_lines() (Axes method), 236
get_linestyle() (Collection method), 314
get_linestyle() (GraphicsContextBase method),

438
get_linestyle() (Line2D method), 161
get_linestyle() (Patch method), 171
get_linestyles() (Collection method), 314
get_linewidth() (Collection method), 314
get_linewidth() (GraphicsContextBase method),

438
get_linewidth() (Line2D method), 161
get_linewidth() (Patch method), 171
get_linewidths() (Collection method), 314
get_loc() (Tick method), 294
get_ls() (Line2D method), 161
get_ls() (Patch method), 171
get_lw() (Line2D method), 161
get_lw() (Patch method), 171
get_major_formatter() (Axis method), 291
get_major_locator() (Axis method), 291
get_major_ticks() (Axis method), 291
get_majorticklabels() (Axis method), 291
get_majorticklines() (Axis method), 292
get_majorticklocs() (Axis method), 292
get_marker() (Line2D method), 161
get_markeredgecolor() (Line2D method), 161
get_markeredgewidth() (Line2D method), 161
get_markerfacecolor() (Line2D method), 161
get_markersize() (Line2D method), 161
get_matrix() (Affine2D method), 127
get_matrix() (AffineBase method), 125
get_matrix() (BboxTransformFrom method), 132
get_matrix() (BboxTransformTo method), 132
get_matrix() (BboxTransform method), 132
get_matrix() (BlendedAffine2D method), 130
get_matrix() (CompositeAffine2D method), 132
get_matrix() (IdentityTransform method), 128

get_matrix() (ScaledTranslation method), 133
get_mec() (Line2D method), 161
get_mew() (Line2D method), 161
get_mfc() (Line2D method), 161
get_minor_formatter() (Axis method), 292
get_minor_locator() (Axis method), 292
get_minor_ticks() (Axis method), 292
get_minorticklabels() (Axis method), 292
get_minorticklines() (Axis method), 292
get_minorticklocs() (Axis method), 292
get_minpos() (XAxis method), 295
get_minpos() (XTick method), 296
get_minpos() (YAxis method), 296
get_minpos() (YTick method), 297
get_ms() (Line2D method), 161
get_name() (Text method), 182
get_name_char() (AFM method), 152
get_navigate() (Axes method), 236
get_navigate_mode() (Axes method), 236
get_offset_text() (Axis method), 292
get_offsets() (Collection method), 314
get_pad() (Tick method), 294
get_pad_pixels() (Tick method), 294
get_patch_transform() (Arrow method), 167
get_patch_transform() (Ellipse method), 169
get_patch_transform() (Patch method), 171
get_patch_transform() (Rectangle method),

174
get_patch_transform() (RegularPolygon

method), 175
get_patch_transform() (Shadow method), 176
get_patch_transform() (Wedge method), 177
get_patch_transform() (YAArrow method), 178
get_path() (Arrow method), 167
get_path() (Ellipse method), 169
get_path() (Line2D method), 162
get_path() (Patch method), 171
get_path() (PathPatch method), 173
get_path() (Polygon method), 174
get_path() (Rectangle method), 174
get_path() (RegularPolygon method), 176
get_path() (Shadow method), 176
get_path() (Wedge method), 177
get_path() (YAArrow method), 178
get_path_collection_extents() (in module

matplotlib.path), 135
get_paths() (Collection method), 314
get_paths() (LineCollection method), 316

458 Index

Matplotlib, Release 0.98

get_paths() (PatchCollection method), 317
get_paths() (PolyCollection method), 317
get_paths() (QuadMesh method), 318
get_paths() (RegularPolyCollection method), 319
get_picker() (Artist method), 154
get_pickradius() (Axis method), 292
get_pickradius() (Collection method), 314
get_pickradius() (Line2D method), 162
get_plot_commands() (in module mat-

plotlib.pyplot), 376
get_points() (Bbox method), 122
get_points() (TransformedBbox method), 123
get_position() (Axes method), 236
get_position() (TextWithDash method), 185
get_position() (Text method), 182
get_prop_tup() (TextWithDash method), 185
get_prop_tup() (Text method), 182
get_recursive_filelist() (in module mat-

plotlib.cbook), 304
get_renderer_cache() (Axes method), 236
get_rgb() (GraphicsContextBase method), 438
get_rotation() (Text method), 182
get_rotation() (in module matplotlib.text), 186
get_scale() (Axis method), 292
get_setters() (ArtistInspector method), 157
get_shared_x_axes() (Axes method), 236
get_shared_y_axes() (Axes method), 236
get_siblings() (Grouper method), 300
get_size() (Text method), 182
get_size_inches() (Figure method), 195
get_solid_capstyle() (Line2D method), 162
get_solid_joinstyle() (Line2D method), 162
get_split_ind() (in module matplotlib.cbook),

304
get_str_bbox() (AFM method), 152
get_str_bbox_and_descent() (AFM method),

152
get_style() (Text method), 182
get_supported_filetypes() (FigureCanvas-

Base method), 434
get_supported_filetypes_grouped() (Figure-

CanvasBase method), 434
get_texmanager() (RendererBase method), 444
get_text() (Text method), 182
get_text_heights() (XAxis method), 295
get_text_width_height_descent() (Ren-

dererBase method), 444
get_text_widths() (YAxis method), 296

get_ticklabel_extents() (Axis method), 292
get_ticklabels() (Axis method), 292
get_ticklines() (Axis method), 292
get_ticklocs() (Axis method), 292
get_ticks_position() (XAxis method), 295
get_ticks_position() (YAxis method), 296
get_title() (Axes method), 236
get_transform() (Artist method), 154
get_transform() (Axis method), 292
get_transform() (Patch method), 171
get_transformed_clip_path_and_affine()

(Artist method), 155
get_transformed_path_and_affine() (Trans-

formedPath method), 133
get_transformed_points_and_affine()

(TransformedPath method), 133
get_transforms() (Collection method), 314
get_underline_thickness() (AFM method),

152
get_units() (Axis method), 292
get_va() (Text method), 182
get_valid_values() (ArtistInspector method),

158
get_vertical_stem_width() (AFM method),

152
get_verticalalignment() (Text method), 182
get_verts() (Patch method), 171
get_view_interval() (Axis method), 292
get_view_interval() (Tick method), 294
get_view_interval() (XAxis method), 295
get_view_interval() (XTick method), 296
get_view_interval() (YAxis method), 297
get_view_interval() (YTick method), 297
get_visible() (Artist method), 155
get_weight() (AFM method), 152
get_weight() (Text method), 182
get_width() (Rectangle method), 174
get_width_char() (AFM method), 152
get_width_from_char_name() (AFM method),

152
get_width_height() (FigureCanvasBase

method), 434
get_window_extent() (Axes method), 236
get_window_extent() (Figure method), 195
get_window_extent() (Line2D method), 162
get_window_extent() (Patch method), 171
get_window_extent() (TextWithDash method),

185

Index 459

Matplotlib, Release 0.98

get_window_extent() (Text method), 182
get_x() (Rectangle method), 174
get_xaxis() (Axes method), 236
get_xaxis_text1_transform() (Axes method),

236
get_xaxis_text2_transform() (Axes method),

237
get_xaxis_transform() (Axes method), 237
get_xbound() (Axes method), 237
get_xdata() (Line2D method), 162
get_xgridlines() (Axes method), 237
get_xheight() (AFM method), 152
get_xlabel() (Axes method), 237
get_xlim() (Axes method), 237
get_xmajorticklabels() (Axes method), 237
get_xminorticklabels() (Axes method), 237
get_xscale() (Axes method), 237
get_xticklabels() (Axes method), 237
get_xticklines() (Axes method), 237
get_xticks() (Axes method), 237
get_xy() (Polygon method), 174
get_xydata() (Line2D method), 162
get_y() (Rectangle method), 174
get_yaxis() (Axes method), 237
get_yaxis_text1_transform() (Axes method),

237
get_yaxis_text2_transform() (Axes method),

238
get_yaxis_transform() (Axes method), 238
get_ybound() (Axes method), 238
get_ydata() (Line2D method), 162
get_ygridlines() (Axes method), 238
get_ylabel() (Axes method), 238
get_ylim() (Axes method), 238
get_ymajorticklabels() (Axes method), 238
get_yminorticklabels() (Axes method), 238
get_yscale() (Axes method), 238
get_yticklabels() (Axes method), 238
get_yticklines() (Axes method), 238
get_yticks() (Axes method), 238
get_zorder() (Artist method), 155
getp() (in module matplotlib.artist), 158
getpoints() (YAArrow method), 178
GetRealpathAndStat (class in matplotlib.cbook),

300
ginput() (Figure method), 195
ginput() (in module matplotlib.pyplot), 376

GraphicsContextBase (class in mat-
plotlib.backend_bases), 438

gray() (in module matplotlib.pyplot), 376
grid() (Axes method), 238
grid() (Axis method), 292
grid() (in module matplotlib.pyplot), 376
Grouper (class in matplotlib.cbook), 300

H
has_data() (Axes method), 239
have_units() (Artist method), 155
have_units() (Axis method), 293
height (BboxBase attribute), 120
hex2color() (in module matplotlib.colors), 326
hexbin() (Axes method), 240
hexbin() (in module matplotlib.pyplot), 377
hist() (Axes method), 242
hist() (in module matplotlib.pyplot), 380
hitlist() (Artist method), 155
hlines() (Axes method), 245
hlines() (in module matplotlib.pyplot), 383
hold() (Axes method), 246
hold() (Figure method), 195
hold() (in module matplotlib.pyplot), 384
HOME, 84, 95
home() (NavigationToolbar2 method), 441
home() (Stack method), 302
hot() (in module matplotlib.pyplot), 384
hsv() (in module matplotlib.pyplot), 384

I
identity (Affine2D attribute), 127
IdentityTransform (class in mat-

plotlib.transforms), 128
Idle (class in matplotlib.cbook), 300
idle_event() (FigureCanvasBase method), 434
IdleEvent (class in matplotlib.backend_bases), 439
ignore() (Bbox method), 122
imread() (in module matplotlib.pyplot), 384
imshow() (Axes method), 246
imshow() (in module matplotlib.pyplot), 385
in_axes() (Axes method), 248
interpolated() (Path method), 134
intersects_bbox() (Path method), 134
intersects_path() (Path method), 134
intervalx (BboxBase attribute), 120
intervaly (BboxBase attribute), 120
invalidate() (TransformNode method), 119

460 Index

Matplotlib, Release 0.98

inverse() (BoundaryNorm method), 324
inverse() (LogNorm method), 325
inverse() (NoNorm method), 326
inverse() (Normalize method), 326
inverse() (no_norm method), 327
inverse() (normalize method), 327
inverse_transformed() (BboxBase method),

120
invert_xaxis() (Axes method), 248
invert_yaxis() (Axes method), 248
inverted() (Affine2DBase method), 126
inverted() (BlendedGenericTransform method),

129
inverted() (CompositeGenericTransform

method), 131
inverted() (IdentityTransform method), 128
inverted() (Transform method), 124
ioff() (in module matplotlib.pyplot), 387
ion() (in module matplotlib.pyplot), 387
is_alias() (ArtistInspector method), 158
is_closed_polygon() (in module mat-

plotlib.cbook), 304
is_color_like() (in module matplotlib.colors),

326
is_dashed() (Line2D method), 162
is_figure_set() (Artist method), 155
is_first_col() (SubplotBase method), 289
is_first_row() (SubplotBase method), 289
is_gray() (Colormap method), 324
is_last_col() (SubplotBase method), 289
is_last_row() (SubplotBase method), 289
is_math_text() (Text method), 182
is_missing() (converter method), 303
is_numlike() (in module matplotlib.cbook), 304
is_scalar() (in module matplotlib.cbook), 304
is_sequence_of_strings() (in module mat-

plotlib.cbook), 304
is_string_like() (in module matplotlib.cbook),

304
is_transform_set() (Artist method), 155
is_unit() (BboxBase method), 120
is_writable_file_like() (in module mat-

plotlib.cbook), 304
ishold() (Axes method), 248
ishold() (in module matplotlib.pyplot), 387
isinteractive() (in module matplotlib.pyplot),

387

issubclass_safe() (in module matplotlib.cbook),
304

isvector() (in module matplotlib.cbook), 304
iter_segments() (Path method), 134
iter_ticks() (Axis method), 293
iterable() (in module matplotlib.cbook), 304

J
jet() (in module matplotlib.pyplot), 387
join() (Grouper method), 300
joined() (Grouper method), 300

K
key_press() (FigureManagerBase method), 437
key_press_event() (FigureCanvasBase method),

434
key_release_event() (FigureCanvasBase

method), 434
KeyEvent (class in matplotlib.backend_bases), 439
kwdoc() (in module matplotlib.artist), 159

L
label_outer() (SubplotBase method), 289
legend() (Axes method), 249
legend() (Figure method), 195
legend() (in module matplotlib.pyplot), 387
less_simple_linear_interpolation() (in

module matplotlib.cbook), 304
limit_range_for_scale() (Axis method), 293
Line2D (class in matplotlib.lines), 160
LinearSegmentedColormap (class in mat-

plotlib.colors), 325
LineCollection (class in matplotlib.collections),

315
ListedColormap (class in matplotlib.colors), 325
listFiles() (in module matplotlib.cbook), 305
LocationEvent (class in mat-

plotlib.backend_bases), 440
loglog() (Axes method), 250
loglog() (in module matplotlib.pyplot), 389
LogNorm (class in matplotlib.colors), 325

M
make_axes() (in module matplotlib.colorbar), 322
make_compound_path (Path attribute), 134
makeMappingArray() (in module mat-

plotlib.colors), 326
matplotlib (module), 147

Index 461

Matplotlib, Release 0.98

matplotlib.afm (module), 151
matplotlib.artist (module), 153
matplotlib.axes (module), 201
matplotlib.axis (module), 291
matplotlib.backend_bases (module), 433
matplotlib.backends.backend_wxagg (mod-

ule), 445
matplotlib.cbook (module), 299
matplotlib.cm (module), 309
matplotlib.collections (module), 311
matplotlib.colorbar (module), 321
matplotlib.colors (module), 323
matplotlib.figure (module), 187
matplotlib.lines (module), 160
matplotlib.patches (module), 165
matplotlib.path (module), 133
matplotlib.pyplot (module), 329
matplotlib.text (module), 178
matplotlib.transforms (module), 117
matrix_from_values (Affine2DBase attribute),

126
matshow() (Axes method), 253
matshow() (in module matplotlib.pyplot), 392
max (BboxBase attribute), 120
maxdict (class in matplotlib.cbook), 305
MemoryMonitor (class in matplotlib.cbook), 301
min (BboxBase attribute), 120
mkdirs() (in module matplotlib.cbook), 305
motion_notify_event() (FigureCanvasBase

method), 434
mouse_move() (NavigationToolbar2 method), 441
MouseEvent (class in matplotlib.backend_bases),

440
mpl_connect() (FigureCanvasBase method), 435
mpl_disconnect() (FigureCanvasBase method),

435
MPLCONFIGDIR, 84, 95

N
NavigationToolbar2 (class in mat-

plotlib.backend_bases), 440
NavigationToolbar2WxAgg (class in mat-

plotlib.backends.backend_wxagg), 445
new_figure_manager() (in module mat-

plotlib.backends.backend_wxagg), 445
new_gc() (RendererBase method), 444
no_norm (class in matplotlib.colors), 327
NoNorm (class in matplotlib.colors), 326

nonsingular() (in module matplotlib.transforms),
133

Normalize (class in matplotlib.colors), 326
normalize (class in matplotlib.colors), 327
Null (class in matplotlib.cbook), 301
numvertices (RegularPolygon attribute), 176

O
onetrue() (in module matplotlib.cbook), 305
onHilite() (FigureCanvasBase method), 435
onpick() (VertexSelector method), 165
onRemove() (FigureCanvasBase method), 435
open_group() (RendererBase method), 444
option_image_nocomposite() (RendererBase

method), 444
orientation (RegularPolygon attribute), 176
over() (in module matplotlib.pyplot), 392
overlaps() (BboxBase method), 121

P
p0 (BboxBase attribute), 121
p1 (BboxBase attribute), 121
padded() (BboxBase method), 121
pan() (Axis method), 293
pan() (NavigationToolbar2 method), 441
parse_afm() (in module matplotlib.afm), 152
Patch (class in matplotlib.patches), 170
PatchCollection (class in matplotlib.collections),

316
PATH, 44, 47
Path (class in matplotlib.path), 133
path_length() (in module matplotlib.cbook), 305
PathPatch (class in matplotlib.patches), 172
pchanged() (Artist method), 155
pcolor() (Axes method), 253
pcolor() (in module matplotlib.pyplot), 392
pcolorfast() (Axes method), 255
pcolormesh() (Axes method), 256
pcolormesh() (in module matplotlib.pyplot), 395
pick() (Artist method), 155
pick() (Axes method), 258
pick() (FigureCanvasBase method), 436
pick_event() (FigureCanvasBase method), 436
pickable() (Artist method), 155
PickEvent (class in matplotlib.backend_bases), 442
pie() (Axes method), 258
pie() (in module matplotlib.pyplot), 397
pieces() (in module matplotlib.cbook), 305

462 Index

Matplotlib, Release 0.98

pink() (in module matplotlib.pyplot), 398
plot() (Axes method), 259
plot() (MemoryMonitor method), 301
plot() (in module matplotlib.pyplot), 398
plot_date() (Axes method), 261
plot_date() (in module matplotlib.pyplot), 401
plotfile() (in module matplotlib.pyplot), 402
plotting() (in module matplotlib.pyplot), 403
points_to_pixels() (RendererBase method),

444
polar() (in module matplotlib.pyplot), 405
PolyCollection (class in matplotlib.collections),

317
Polygon (class in matplotlib.patches), 173
popall() (in module matplotlib.cbook), 305
popd() (in module matplotlib.cbook), 305
pprint_getters() (ArtistInspector method), 158
pprint_setters() (ArtistInspector method), 158
press() (NavigationToolbar2 method), 441
press_pan() (NavigationToolbar2 method), 441
press_zoom() (NavigationToolbar2 method), 441
print_bmp() (FigureCanvasBase method), 436
print_cycles() (in module matplotlib.cbook),

305
print_emf() (FigureCanvasBase method), 436
print_eps() (FigureCanvasBase method), 436
print_figure() (FigureCanvasBase method), 436
print_figure() (FigureCanvasWxAgg method),

445
print_pdf() (FigureCanvasBase method), 436
print_png() (FigureCanvasBase method), 436
print_ps() (FigureCanvasBase method), 436
print_raw() (FigureCanvasBase method), 436
print_rgb() (FigureCanvasBase method), 436
print_svg() (FigureCanvasBase method), 436
print_svgz() (FigureCanvasBase method), 436
prism() (in module matplotlib.pyplot), 405
process() (CallbackRegistry method), 300
process_selected() (VertexSelector method),

165
psd() (Axes method), 263
psd() (in module matplotlib.pyplot), 405
push() (Stack method), 302
push_current() (NavigationToolbar2 method),

441
PYTHONPATH, 95

Q
QuadMesh (class in matplotlib.collections), 317
quiver() (Axes method), 265
quiver() (in module matplotlib.pyplot), 407
quiverkey() (Axes method), 267
quiverkey() (in module matplotlib.pyplot), 409

R
radius (RegularPolygon attribute), 176
rc() (in module matplotlib), 148
rc() (in module matplotlib.pyplot), 410
rcdefaults() (in module matplotlib), 148
rcdefaults() (in module matplotlib.pyplot), 411
recache() (Line2D method), 162
Rectangle (class in matplotlib.patches), 174
recursive_remove() (in module mat-

plotlib.cbook), 305
redraw_in_frame() (Axes method), 268
RegularPolyCollection (class in mat-

plotlib.collections), 318
RegularPolygon (class in matplotlib.patches), 175
release() (NavigationToolbar2 method), 441
release_pan() (NavigationToolbar2 method), 441
release_zoom() (NavigationToolbar2 method),

441
relim() (Axes method), 268
remove() (Artist method), 155
remove() (Stack method), 302
remove_callback() (Artist method), 155
RendererBase (class in matplotlib.backend_bases),

442
report() (MemoryMonitor method), 301
report_memory() (in module matplotlib.cbook),

305
resize() (FigureCanvasBase method), 436
resize() (FigureManagerBase method), 437
resize_event() (FigureCanvasBase method), 436
ResizeEvent (class in matplotlib.backend_bases),

444
reverse_dict() (in module matplotlib.cbook),

305
rgb2hex() (in module matplotlib.colors), 327
rgrids() (in module matplotlib.pyplot), 411
RingBuffer (class in matplotlib.cbook), 301
rotate() (Affine2D method), 127
rotate_around() (Affine2D method), 127
rotate_deg() (Affine2D method), 127
rotate_deg_around() (Affine2D method), 127

Index 463

Matplotlib, Release 0.98

rotated() (BboxBase method), 121
run() (Idle method), 301
run() (Timeout method), 302

S
safezip() (in module matplotlib.cbook), 305
save_figure() (NavigationToolbar2 method), 441
savefig() (Figure method), 196
savefig() (in module matplotlib.pyplot), 411
sca() (Figure method), 197
ScalarMappable (class in matplotlib.cm), 309
scale() (Affine2D method), 127
scaled() (Normalize method), 326
scaled() (normalize method), 327
ScaledTranslation (class in mat-

plotlib.transforms), 132
scatter() (Axes method), 268
scatter() (in module matplotlib.pyplot), 412
Scheduler (class in matplotlib.cbook), 301
sci() (in module matplotlib.pyplot), 414
scroll_event() (FigureCanvasBase method), 436
segment_hits() (in module matplotlib.lines), 165
semilogx() (Axes method), 270
semilogx() (in module matplotlib.pyplot), 414
semilogy() (Axes method), 271
semilogy() (in module matplotlib.pyplot), 416
set() (Affine2D method), 128
set() (Artist method), 155
set() (Bbox method), 122
set() (TransformWrapper method), 125
set_aa() (Line2D method), 162
set_aa() (Patch method), 171
set_adjustable() (Axes method), 272
set_alpha() (Artist method), 155
set_alpha() (Collection method), 314
set_alpha() (ColorbarBase method), 322
set_alpha() (GraphicsContextBase method), 438
set_anchor() (Axes method), 273
set_animated() (Artist method), 155
set_antialiased() (Collection method), 314
set_antialiased() (GraphicsContextBase

method), 438
set_antialiased() (Line2D method), 162
set_antialiased() (Patch method), 171
set_antialiaseds() (Collection method), 314
set_array() (ScalarMappable method), 309
set_aspect() (Axes method), 273
set_autoscale_on() (Axes method), 273

set_axes() (Artist method), 155
set_axes() (Line2D method), 162
set_axis_bgcolor() (Axes method), 273
set_axis_off() (Axes method), 273
set_axis_on() (Axes method), 273
set_axisbelow() (Axes method), 273
set_backgroundcolor() (Text method), 182
set_bad() (Colormap method), 324
set_bbox() (Text method), 182
set_bounds() (Rectangle method), 175
set_c() (Line2D method), 162
set_canvas() (Figure method), 197
set_capstyle() (GraphicsContextBase method),

438
set_children() (TransformNode method), 119
set_clim() (ScalarMappable method), 309
set_clip_box() (Annotation method), 180
set_clip_box() (Artist method), 156
set_clip_on() (Artist method), 156
set_clip_path() (Artist method), 156
set_clip_path() (Axis method), 293
set_clip_path() (GraphicsContextBase method),

439
set_clip_path() (Tick method), 294
set_clip_rectangle() (GraphicsContextBase

method), 439
set_closed() (Polygon method), 174
set_cmap() (ScalarMappable method), 310
set_color() (Collection method), 314
set_color() (Line2D method), 162
set_color() (LineCollection method), 316
set_color() (Text method), 182
set_color_cycle() (Axes method), 274
set_colorbar() (ScalarMappable method), 310
set_contains() (Artist method), 156
set_cursor() (NavigationToolbar2 method), 441
set_cursor_props() (Axes method), 274
set_dash_capstyle() (Line2D method), 162
set_dash_joinstyle() (Line2D method), 162
set_dashdirection() (TextWithDash method),

185
set_dashes() (Collection method), 314
set_dashes() (GraphicsContextBase method),

439
set_dashes() (Line2D method), 162
set_dashlength() (TextWithDash method), 185
set_dashpad() (TextWithDash method), 185
set_dashpush() (TextWithDash method), 185

464 Index

Matplotlib, Release 0.98

set_dashrotation() (TextWithDash method),
185

set_data() (Line2D method), 163
set_data_interval() (Axis method), 293
set_data_interval() (XAxis method), 295
set_data_interval() (YAxis method), 297
set_default_color_cycle() (in module mat-

plotlib.axes), 289
set_dpi() (Figure method), 197
set_ec() (Patch method), 171
set_edgecolor() (Collection method), 314
set_edgecolor() (Figure method), 197
set_edgecolor() (Patch method), 171
set_edgecolors() (Collection method), 314
set_facecolor() (Collection method), 314
set_facecolor() (Figure method), 197
set_facecolor() (Patch method), 171
set_facecolors() (Collection method), 315
set_family() (Text method), 182
set_fc() (Patch method), 172
set_figheight() (Figure method), 197
set_figsize_inches() (Figure method), 197
set_figure() (Annotation method), 180
set_figure() (Artist method), 156
set_figure() (Axes method), 274
set_figure() (TextWithDash method), 185
set_figwidth() (Figure method), 198
set_fill() (Patch method), 172
set_fontname() (Text method), 183
set_fontproperties() (Text method), 183
set_fontsize() (Text method), 183
set_fontstyle() (Text method), 183
set_fontweight() (Text method), 183
set_foreground() (GraphicsContextBase

method), 439
set_frame_on() (Axes method), 274
set_frameon() (Figure method), 198
set_graylevel() (GraphicsContextBase method),

439
set_ha() (Text method), 183
set_hatch() (GraphicsContextBase method), 439
set_hatch() (Patch method), 172
set_height() (Rectangle method), 175
set_history_buttons() (NavigationToolbar2

method), 441
set_horizontalalignment() (Text method), 183
set_joinstyle() (GraphicsContextBase method),

439

set_label() (Artist method), 156
set_label() (ColorbarBase method), 322
set_label() (Tick method), 295
set_label1() (Tick method), 295
set_label2() (Tick method), 295
set_label_coords() (Axis method), 293
set_label_position() (XAxis method), 296
set_label_position() (YAxis method), 297
set_linespacing() (Text method), 183
set_linestyle() (Collection method), 315
set_linestyle() (GraphicsContextBase method),

439
set_linestyle() (Line2D method), 163
set_linestyle() (Patch method), 172
set_linestyles() (Collection method), 315
set_linewidth() (Collection method), 315
set_linewidth() (GraphicsContextBase method),

439
set_linewidth() (Line2D method), 163
set_linewidth() (Patch method), 172
set_linewidths() (Collection method), 315
set_lod() (Artist method), 156
set_ls() (Line2D method), 163
set_ls() (Patch method), 172
set_lw() (Collection method), 315
set_lw() (Line2D method), 163
set_lw() (Patch method), 172
set_ma() (Text method), 183
set_major_formatter() (Axis method), 293
set_major_locator() (Axis method), 293
set_marker() (Line2D method), 163
set_markeredgecolor() (Line2D method), 163
set_markeredgewidth() (Line2D method), 163
set_markerfacecolor() (Line2D method), 163
set_markersize() (Line2D method), 163
set_matrix() (Affine2D method), 128
set_mec() (Line2D method), 163
set_message() (NavigationToolbar2 method), 442
set_mew() (Line2D method), 163
set_mfc() (Line2D method), 163
set_minor_formatter() (Axis method), 293
set_minor_locator() (Axis method), 293
set_ms() (Line2D method), 163
set_multialignment() (Text method), 183
set_name() (Text method), 183
set_navigate() (Axes method), 274
set_navigate_mode() (Axes method), 274
set_norm() (ScalarMappable method), 310

Index 465

Matplotlib, Release 0.98

set_offset_position() (YAxis method), 297
set_offsets() (Collection method), 315
set_over() (Colormap method), 324
set_pad() (Tick method), 295
set_picker() (Artist method), 156
set_picker() (Line2D method), 163
set_pickradius() (Axis method), 293
set_pickradius() (Collection method), 315
set_pickradius() (Line2D method), 164
set_points() (Bbox method), 123
set_position() (Axes method), 274
set_position() (TextWithDash method), 186
set_position() (Text method), 183
set_rotation() (Text method), 183
set_scale() (Axis method), 293
set_segments() (LineCollection method), 316
set_size() (Text method), 183
set_size_inches() (Figure method), 198
set_solid_capstyle() (Line2D method), 164
set_solid_joinstyle() (Line2D method), 164
set_style() (Text method), 183
set_text() (Text method), 184
set_ticklabels() (Axis method), 293
set_ticks() (Axis method), 293
set_ticks_position() (XAxis method), 296
set_ticks_position() (YAxis method), 297
set_title() (Axes method), 274
set_transform() (Artist method), 157
set_transform() (Line2D method), 164
set_transform() (TextWithDash method), 186
set_under() (Colormap method), 325
set_units() (Axis method), 293
set_va() (Text method), 184
set_variant() (Text method), 184
set_verticalalignment() (Text method), 184
set_verts() (LineCollection method), 316
set_verts() (PolyCollection method), 317
set_view_interval() (Axis method), 294
set_view_interval() (Tick method), 295
set_view_interval() (XAxis method), 296
set_view_interval() (XTick method), 296
set_view_interval() (YAxis method), 297
set_view_interval() (YTick method), 297
set_visible() (Artist method), 157
set_weight() (Text method), 184
set_width() (Rectangle method), 175
set_window_title() (FigureCanvasBase

method), 436

set_window_title() (FigureManagerBase
method), 438

set_x() (Rectangle method), 175
set_x() (TextWithDash method), 186
set_x() (Text method), 184
set_xbound() (Axes method), 275
set_xdata() (Line2D method), 164
set_xlabel() (Axes method), 275
set_xlim() (Axes method), 276
set_xscale() (Axes method), 277
set_xticklabels() (Axes method), 277
set_xticks() (Axes method), 278
set_xy() (Polygon method), 174
set_y() (Rectangle method), 175
set_y() (TextWithDash method), 186
set_y() (Text method), 184
set_ybound() (Axes method), 278
set_ydata() (Line2D method), 164
set_ylabel() (Axes method), 278
set_ylim() (Axes method), 279
set_yscale() (Axes method), 280
set_yticklabels() (Axes method), 280
set_yticks() (Axes method), 281
set_zorder() (Artist method), 157
setp() (in module matplotlib.artist), 159
setp() (in module matplotlib.pyplot), 417
Shadow (class in matplotlib.patches), 176
show_popup() (FigureManagerBase method), 438
shrunk() (BboxBase method), 121
shrunk_to_aspect() (BboxBase method), 121
silent_list (class in matplotlib.cbook), 306
simple_linear_interpolation() (in module

matplotlib.cbook), 306
size (BboxBase attribute), 121
sort() (Sorter method), 301
Sorter (class in matplotlib.cbook), 301
soundex() (in module matplotlib.cbook), 306
specgram() (Axes method), 281
specgram() (in module matplotlib.pyplot), 418
spectral() (in module matplotlib.pyplot), 419
splitx() (BboxBase method), 121
splity() (BboxBase method), 121
spring() (in module matplotlib.pyplot), 419
spy() (Axes method), 282
spy() (in module matplotlib.pyplot), 419
Stack (class in matplotlib.cbook), 301
StarPolygonCollection (class in mat-

plotlib.collections), 319

466 Index

Matplotlib, Release 0.98

start_event_loop() (FigureCanvasBase
method), 437

start_event_loop_default() (FigureCanvas-
Base method), 437

start_pan() (Axes method), 283
start_rasterizing() (RendererBase method),

444
stem() (Axes method), 283
stem() (in module matplotlib.pyplot), 420
step() (Axes method), 283
step() (in module matplotlib.pyplot), 420
stop() (Scheduler method), 301
stop_event_loop() (FigureCanvasBase method),

437
stop_event_loop_default() (FigureCanvas-

Base method), 437
stop_rasterizing() (RendererBase method),

444
string_width_height() (AFM method), 152
strip_math() (RendererBase method), 444
strip_math() (in module matplotlib.cbook), 306
Subplot (class in matplotlib.axes), 289
subplot() (in module matplotlib.pyplot), 420
subplot_class_factory() (in module mat-

plotlib.axes), 289
subplot_tool() (in module matplotlib.pyplot),

421
SubplotBase (class in matplotlib.axes), 289
SubplotParams (class in matplotlib.figure), 199
subplots_adjust() (Figure method), 198
subplots_adjust() (in module mat-

plotlib.pyplot), 421
summer() (in module matplotlib.pyplot), 421
suptitle() (Figure method), 198
suptitle() (in module matplotlib.pyplot), 421
switch_backend() (in module matplotlib.pyplot),

422
switch_backends() (FigureCanvasBase method),

437

T
table() (Axes method), 283
table() (in module matplotlib.pyplot), 422
Text (class in matplotlib.text), 180
text() (Axes method), 284
text() (Figure method), 198
text() (in module matplotlib.pyplot), 422
TextWithDash (class in matplotlib.text), 184

thetagrids() (in module matplotlib.pyplot), 424
Tick (class in matplotlib.axis), 294
tick_bottom() (XAxis method), 296
tick_left() (YAxis method), 297
tick_right() (YAxis method), 297
tick_top() (XAxis method), 296
Ticker (class in matplotlib.axis), 295
ticklabel_format() (Axes method), 285
Timeout (class in matplotlib.cbook), 302
title() (in module matplotlib.pyplot), 425
to_filehandle() (in module matplotlib.cbook),

306
to_polygons() (Path method), 135
to_rgb() (ColorConverter method), 324
to_rgba() (ColorConverter method), 324
to_rgba() (ScalarMappable method), 310
to_rgba_array() (ColorConverter method), 324
to_values() (Affine2DBase method), 126
todate (class in matplotlib.cbook), 306
todatetime (class in matplotlib.cbook), 306
tofloat (class in matplotlib.cbook), 306
toint (class in matplotlib.cbook), 306
tostr (class in matplotlib.cbook), 306
Transform (class in matplotlib.transforms), 123
transform() (Affine2DBase method), 126
transform() (BlendedGenericTransform method),

130
transform() (CompositeGenericTransform

method), 131
transform() (IdentityTransform method), 128
transform() (Transform method), 124
transform_affine() (Affine2DBase method),

126
transform_affine() (BlendedGenericTransform

method), 130
transform_affine() (CompositeGenericTrans-

form method), 131
transform_affine() (IdentityTransform

method), 128
transform_affine() (Transform method), 124
transform_non_affine() (AffineBase method),

125
transform_non_affine() (BlendedGeneric-

Transform method), 130
transform_non_affine() (CompositeGeneric-

Transform method), 131
transform_non_affine() (IdentityTransform

method), 129

Index 467

Matplotlib, Release 0.98

transform_non_affine() (Transform method),
124

transform_path() (CompositeGenericTransform
method), 131

transform_path() (IdentityTransform method),
129

transform_path() (Transform method), 124
transform_path_affine() (AffineBase method),

125
transform_path_affine() (CompositeGeneric-

Transform method), 131
transform_path_affine() (IdentityTransform

method), 129
transform_path_affine() (Transform method),

124
transform_path_non_affine() (AffineBase

method), 125
transform_path_non_affine() (Composite-

GenericTransform method), 131
transform_path_non_affine() (IdentityTrans-

form method), 129
transform_path_non_affine() (Transform

method), 124
transform_point() (Affine2DBase method), 126
transform_point() (Transform method), 124
transformed() (BboxBase method), 121
transformed() (Path method), 135
TransformedBbox (class in matplotlib.transforms),

123
TransformedPath (class in matplotlib.transforms),

133
TransformNode (class in matplotlib.transforms),

119
TransformWrapper (class in mat-

plotlib.transforms), 125
translate() (Affine2D method), 128
translated() (BboxBase method), 121
twinx() (Axes method), 285
twinx() (in module matplotlib.pyplot), 425
twiny() (Axes method), 286
twiny() (in module matplotlib.pyplot), 425

U
unicode_safe() (in module matplotlib.cbook),

306
union (BboxBase attribute), 121
unique() (in module matplotlib.cbook), 306
unit (Bbox attribute), 123

unit_circle (Path attribute), 135
unit_rectangle (Path attribute), 135
unit_regular_asterisk (Path attribute), 135
unit_regular_polygon (Path attribute), 135
unit_regular_star (Path attribute), 135
unmasked_index_ranges() (in module mat-

plotlib.cbook), 306
unmasked_index_ranges() (in module mat-

plotlib.lines), 165
update() (Artist method), 157
update() (NavigationToolbar2 method), 442
update() (SubplotParams method), 200
update_bruteforce() (Colorbar method), 321
update_coords() (TextWithDash method), 186
update_datalim() (Axes method), 286
update_datalim_bounds() (Axes method), 286
update_datalim_numerix() (Axes method), 286
update_from() (Artist method), 157
update_from() (Line2D method), 164
update_from() (Patch method), 172
update_from() (Text method), 184
update_from_data() (Bbox method), 123
update_from_data_xy() (Bbox method), 123
update_params() (SubplotBase method), 289
update_position() (XTick method), 296
update_position() (YTick method), 297
update_positions() (Annotation method), 180
update_scalarmappable() (Collection method),

315
update_units() (Axis method), 294
use() (in module matplotlib), 149

V
vector_lengths() (in module matplotlib.cbook),

307
VertexSelector (class in matplotlib.lines), 164
vlines() (Axes method), 286
vlines() (in module matplotlib.pyplot), 425

W
waitforbuttonpress() (Figure method), 199
waitforbuttonpress() (in module mat-

plotlib.pyplot), 426
Wedge (class in matplotlib.patches), 176
wedge (Path attribute), 135
width (BboxBase attribute), 121
winter() (in module matplotlib.pyplot), 427
wrap() (in module matplotlib.cbook), 307

468 Index

Matplotlib, Release 0.98

X
x0 (BboxBase attribute), 121
x1 (BboxBase attribute), 122
XAxis (class in matplotlib.axis), 295
xaxis_date() (Axes method), 287
xaxis_inverted() (Axes method), 287
xcorr() (Axes method), 287
xcorr() (in module matplotlib.pyplot), 427
xlabel() (in module matplotlib.pyplot), 428
xlat() (Xlator method), 302
Xlator (class in matplotlib.cbook), 302
xlim() (in module matplotlib.pyplot), 428
xmax (BboxBase attribute), 122
xmin (BboxBase attribute), 122
xscale() (in module matplotlib.pyplot), 429
XTick (class in matplotlib.axis), 296
xticks() (in module matplotlib.pyplot), 429
xy() (MemoryMonitor method), 301
xy (Polygon attribute), 174
xy (RegularPolygon attribute), 176

Y
y0 (BboxBase attribute), 122
y1 (BboxBase attribute), 122
YAArrow (class in matplotlib.patches), 177
YAxis (class in matplotlib.axis), 296
yaxis_date() (Axes method), 289
yaxis_inverted() (Axes method), 289
ylabel() (in module matplotlib.pyplot), 429
ylim() (in module matplotlib.pyplot), 430
ymax (BboxBase attribute), 122
ymin (BboxBase attribute), 122
yscale() (in module matplotlib.pyplot), 430
YTick (class in matplotlib.axis), 297
yticks() (in module matplotlib.pyplot), 430

Z
zoom() (Axis method), 294
zoom() (NavigationToolbar2 method), 442

Index 469

	I The Matplotlib User's Guide
	Introduction
	Installing
	Dependencies

	pyplot tutorial
	Controlling line properties
	Working with multiple figures and axes
	Working with text

	Interactive navigation
	Customizing matplotlib
	The matplotlibrc file
	Dynamic rc settings

	Working with text
	Text introduction
	Basic text commands
	Text properties and layout
	Writing mathematical expressions
	Text rendering With LaTeX
	Annotating text

	Artist tutorial
	Customizing your objects
	Object containers
	Figure container
	Axes container
	Axis containers
	Tick containers

	Event handling and picking
	Event connections
	Event attributes
	Object picking

	II The Matplotlib FAQ
	Installation
	How do I report a compilation problem?
	matplotlib compiled fine, but I can't get anything to plot
	How do I cleanly rebuild and reinstall everything?
	Backends
	OS-X questions
	Windows questions

	Troubleshooting
	What is my matplotlib version?
	Where is matplotlib installed?
	Where is my .matplotlib directory?
	How do I report a problem?
	I am having trouble with a recent svn update, what should I do?

	Howto
	How do I find all the objects in my figure of a certain type?
	How do I save transparent figures?
	How do I move the edge of my axes area over to make room for my tick labels?
	How do I automatically make room for my tick labels?
	How do I configure the tick linewidths?
	How do I align my ylabels across multiple subplots?
	How do I use matplotlib in a web application server?
	How do I skip dates where there is no data?

	Environment Variables
	Setting environment variables in Linux and OS-X
	Setting environment variables in windows

	III The Matplotlib Developers's Guide
	Coding guide
	Version control
	Style guide
	Documentation and docstrings
	Licenses

	Documenting matplotlib
	Getting started
	Organization of matplotlib's documentation
	Formatting
	Figures
	Referring to mpl documents
	Internal section references
	Section names, etc
	Inheritance diagrams
	Emacs helpers

	Doing a matplolib release
	Testing
	Packaging
	Uploading
	Announcing

	Working with transformations
	matplotlib.transforms
	matplotlib.path

	Adding new scales and projections to matplotlib
	Creating a new scale
	Creating a new projection

	Docs outline
	Reviewer notes

	IV The Matplotlib API
	matplotlib configuration
	matplotlib

	matplotlib afm
	matplotlib.afm

	matplotlib artists
	matplotlib.artist
	matplotlib.lines
	matplotlib.patches
	matplotlib.text

	matplotlib figure
	matplotlib.figure

	matplotlib axes
	matplotlib.axes

	matplotlib axis
	matplotlib.axis

	matplotlib cbook
	matplotlib.cbook

	matplotlib cm
	matplotlib.cm

	matplotlib collections
	matplotlib.collections

	matplotlib colorbar
	matplotlib.colorbar

	matplotlib colors
	matplotlib.colors

	matplotlib pyplot
	matplotlib.pyplot

	matplotlib backends
	matplotlib.backend_bases
	matplotlib.backends.backend_gtkagg
	matplotlib.backends.backend_qt4agg
	matplotlib.backends.backend_wxagg

	V Glossary

